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Abstract. In the first part of this paper, we prove a minimax inequal-
ity for maps satisfying a generalized coercivity type condition. As a
consequence, we prove a result on the solvability of complementarity
problems. In the second part, a result on the existence of maximal ele-
ment in non-compact domains is obtained and as application, we prove
the existence of equilibrium for an abstract economy (or generalized
game) with non-compact choice sets.

1. Introduction

This paper is a study of minimax inequality and equilibrium for maps
satisfying a “coercivity” type condition. We firstly recall the notion of
coercing family for set-valued maps (also called correspondences) defined
by Ben-El-Mechaiekh, Chebbi and Florenzano in [2]. As an example, we
give the very general coercivity condition obtained by Ding and Tan in [5].
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In Section 2, we prove a minimax inequality for maps satisfying a gen-
eralized quasi-concavity condition and a coercivity type condition. Our
result extends the minimax inequality obtained by Yen [11] to non-compact
domains and generalizes also the minimax inequalities obtained in the non-
compact case by Fan [6] and Ding and Tan [5]. As a consequence, we
extend results on complementarity problems obtained by Karamardian [8]
and Allen [1].

In Section 3, we prove the existence of maximal elements for preferences
correspondences defined on non-compact subsets of a topological vector
space and satisfying a coercivity type condition. As application, we prove
an equilibrium existence result for generalized game (or abstract economy)
with non-compact choice sets. The results of this section generalize corre-
sponding results obtained in Borglin and Keiding [4], Toussaint [9], Tulcea
[10] and Ding and Tan [5].

Throughout the paper, vector spaces are real and topological (vector)
spaces are assumed to be Hausdorff. The convex hull of a subset A of a
vector space is denoted by coA, the closure of a subset A of a topological
space is denoted by clA and for any set X, 〈X〉 denotes the family of all
non-empty finite subsets of X.

Let X be a subset of a topological vector space, Y a topological space
and F : X → Y be a correspondence. In order to define the setting of this
paper, we need the following definition given in [2]:

Definition 1. A family {(Ci,Ki)}i∈I of pair of sets is said to be coercing
for F if and only if:

(i) For each i ∈ I, Ci is contained in a compact convex subset of X and
Ki is a compact subset of Y .

(ii) For each i, j ∈ I, there exists k ∈ I such that Ci ∪ Cj ⊆ Ck.
(iii) For each i ∈ I, there exists k ∈ I with

⋂
x∈Ck

F (x) ⊂ Ki.

For any correspondence F : X → Y , let F ∗ : Y → X be the “dual” cor-
respondence of F defined by F ∗(y) = X \ F−1(y). Using the following
equivalent formulation, we can easly see that (iii) is a coercivity type con-
dition:

Remark 1. Let X be a subset of a topological vector space and F : X → Y
be a correspondence. A family {(Ci,Ki)}i∈I of pair of sets is coercing for F
if and only if it satisfies conditions (i), (ii) of Definition 1 and the following
one:

∀i ∈ I, ∀y ∈ X \Ki, F
∗(y) ∩ Ck 6= ∅ for some k ∈ I. (C)



MINIMAX INEQUALITY AND EQUILIBRIA 121

Definition 2. A family {(Ci,Ki)}i∈I of pair of sets is said to be C-coercing
for F if and only if it satisfies conditions (i), (ii) of Definition 1 and condition
(C) in Remark 1.

Note that in case where the family is reduced to one element, condition
(C) appeared first in this generality (with two sets K and C) in [3] and
generalizes condition of Karamardian [8] and Allen [1]. Condition (C) is
also an extension of the coercivity condition given by Fan [6]. Fore more
examples about correspondences admitting a coercing family (when I is a
singleton), see [2]. By the following example, we can see that the notion of
coercing family is very general:

Example 1. If F : X → X is a correspondence satisfying the following
condition given in [5]: There exists X0 contained in a compact convex subset
of X and K a compact subset of X such that:

∀y ∈ X \K,F (y) ∩ co(X0 ∪ y) 6= ∅.
Then F admits a C-coercing family.

Proof. Take the family:

{(CAy),K)}{y∈〈X\K〉,Ay∈〈X〉},

where for each y ∈ 〈X \K〉 and for each Ay ∈ 〈X〉, CAy = co(X0∪Ay). This
family verifies conditions (i) and (ii) of Definition 1, by putting Ay = {y}
for every y ∈ X \K, condition C is satisfied.

2. Minimax inequalities

Let us recall that if X is a subset of a vector space Y , a correspondence
F : X → Y is called KKM if for any A ∈ 〈X〉:

co(A) ⊂
⋃
x∈A

F (x).

A subset X of a topological space Y is compactly closed (open, respectively)
if for every compact set C of Y , X ∩ C is closed (open, respectively) in C.

The following minimax inequality is an equivalent analytic formulation
of Theorem 3.1 in [2]:

Theorem 1. Let X be a non-empty convex subset of a topological vector
space E and f : X ×X → R ∪ {−∞,+∞} be a function such that:

(a) For each fixed x ∈ X, the function: y 7→ f(x, y) is lower semi-
continuous on each non-empty compact subset of X.
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(b) For each A ∈ 〈X〉, sup
y∈coA

min
x∈A

f(x, y) ≤ 0.

(c) There exists a family {(Ci,Ki)}i∈I satisfying conditions (i) and (ii) of
Definition 1 and the following one: For each i ∈ I, there exists k ∈ I
such that:

{y ∈ X, f(x, y) ≤ 0, ∀x ∈ Ck} ⊂ Ki.

Then there exists y0 ∈ X such that f(x, y0) ≤ 0 for all x ∈ X.

Proof. For each x ∈ X, let F (x) = {y ∈ X : f(x, y) ≤ 0}. We have to
show that F satisfies all conditions of Theorem 3.1 in [2]. By (a), F (x)
is compactly closed in X for each x ∈ X. If F is not KKM, there exist
A ∈ 〈X〉 and y ∈ coA such that f(x, y) > 0 for all x ∈ A, which contradicts
(b). Condition (c) implies that F admits a coercing family, it follows that⋂
x∈X

F (x) 6= ∅. Let y0 ∈
⋂
x∈X

F (x), then f(x, y0) ≤ 0, for all x ∈ X.

Theorem 1 extends Theorem 6 of Fan [6]. Using Example 1, Theorem 1
is also a generalization of Theorem 1 in [5].

Corollary 1. Let X be a non-empty convex subset of a topological vector
space E and f, g : X ×X → R ∪ {−∞,+∞} be such that:

(i) For each (x, y) ∈ X ×X, f(x, y) ≤ g(x, y).
(ii) For each x ∈ X, g(x, x) ≤ 0.

(iii) For each fixed x ∈ X, the function: y 7→ f(x, y) is lower semi-
continuous on each non-empty compact subset of X.

(iv) For each fixed y ∈ X, the set {x ∈ X : g(x, y) > 0} is convex.
(v) There exists a family {(Ci,Ki)}i∈I satisfying conditions (i) and (ii) of

Definition 1 and the following one: For each i ∈ I, there exists k ∈ I
such that:

{y ∈ X : f(x, y) ≤ 0, ∀x ∈ Ck} ⊂ Ki.

Then there exists y0 ∈ X such that f(x, y0) ≤ 0 for all x ∈ X.

Proof. It is sufficient to show that (i), (ii) and (iv) imply condition (b)
of Theorem 1. If not, there exist A ∈ 〈X〉 and y ∈ coA such that
minx∈A f(x, y) > 0. Then by (i), minx∈A g(x, y) > 0. It follows by (iv)
that g(y, y) > 0, which contradicts (ii).

The following minimax inequality, which includes a generalization of The-
orem 1 of Yen [11], can be deduced from Corollary 1:
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Corollary 2. Let X be a non-empty convex subset of a topological vector
space E and f, g : X ×X → R ∪ {−∞,+∞} be such that:

(a) For each (x, y) ∈ X ×X, f(x, y) ≤ g(x, y).

(b) For each fixed x ∈ X, the function: y 7→ f(x, y) is lower semi-
continuous on each non-empty compact subset of X.

(c) For each fixed y ∈ X, the function: x 7→ g(x, y) is quasi-concave.

(d) For any α ∈ R, there exists a family {(Ci,Ki)}i∈I satisfying conditions
(i), (ii) of Definition 1 and the following one: For each i ∈ I, there
exists k ∈ I such that:

{y ∈ X : f(x, y) ≤ α, ∀x ∈ Ck} ⊂ Ki.

Then the following minimax inequality holds:

inf
y∈X

sup
x∈X

f(x, y) ≤ sup
x∈X

g(x, x).

Proof. We can assume that λ = supx∈X g(x, x) is finite, otherwise there
is nothing to prove. The functions f − λ and g − λ satisfy conditions of
Corollary 1, then there exists y0 ∈ X such that f(x, y0) ≤ λ, ∀x ∈ X.
Hence the minimax inequality follows.

The following extension of Theorem 3.1 of Karamardian [8] on the solv-
ability of complementarity problems follows immediately from Theorem 1:

Corollary 3. Let X be a non-empty convex subset of a topological vector
space E and f : X → E∗, where E∗ denotes the topological dual of E, be
such that:

(i) For each fixed x ∈ X, the function: y 7→ 〈f(y), y − x〉 is lower semi-
continuous on each non-empty compact subset of X.

(ii) There exists a family {(Ci,Ki)}i∈I satisfying conditions (i), (ii) of
Definition 1 and the following one: For each i ∈ I, there exists k ∈ I
such that:

{y ∈ X : 〈f(y), y − x〉 ≤ 0, ∀x ∈ Ck} ⊂ Ki.

Then there exists y∗ ∈ X such that 〈f(y∗), y∗ − x〉 ≤ 0 for all x ∈ X.
If moreover X is a cone and if X0 denotes the polar cone of X, then

−f(y∗) ∈ X0 and 〈f(y∗), y∗〉 = 0.
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3. Equilibria in an abstract economy

Correspondences play a central role in the theory of economic equilibria.
They usually represent preference relations (the value P (x) of a correspon-
dence P consists of all those commodities preferred to x). The issue there
is to determine the existence of a so-called maximal element for a given
preference P , i.e. an element x̄ with P (x̄) = ∅.

Definition 3. Using the terminology of Borglin and Keiding [4], given a
map P : X → X of a non-empty subset X of a topological vector space, we
say that:

(i) P is a KF correspondence if:
(a) for all y ∈ X, P−1(y) is compactly open in X;
(b) for all x ∈ X, x /∈ coP (x).

(ii) A correspondence Ψx : X → X is a KF -majorant of P at x ∈ X if Ψx

is KF and P (x′) ⊆ Ψx(x′), for all x′ in some open neighborhood Ux
of x in X.

(iii) P is KF -majorized if it admits a KF -majorant at each x ∈ X with
P (x) 6= ∅.

Remark 2. The concept of KF majoration is hereditary in the sense that
it becomes global in the presence of paracompactness. More precisely, if a
correspondence P : X → X is KF -majorized and if X is paracompact, then
P is majorized by a KF correspondence Ψ, i.e., P (x) ⊆ Ψ(x),∀x ∈ X (see
[4]).

Theorem 3.2 in [2] can be rephrased in terms of the existence of maximal
elements as follows:

Proposition 1. Let X be a non-empty convex and paracompact subset of
a topological vector space. A correspondence P : X → X admits a maximal
element provided that it is KF -majorized and has a C-coercing family.

Proof. Suppose that, for all x ∈ X, P (x) 6= ∅. Since P is KF -majorized
and X is paracompact, it follows from Remark 2 that there exists a KF
correspondence Ψ such that P (x) ⊆ Ψ(x), ∀x ∈ X. By Theorem 3.2 in [2],
the correspondence co Ψ admits a maximal element, which is also a maximal
element for P .

Theorem 1 in [5] follows from Example 1 and Proposition 1:
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Corollary 4. Let X be a non-empty convex and paracompact subset of a
topological vector space and P : X → X a KF -majorized correspondence. If
P satisfies the following coercivity condition: There exist X0 contained in a
compact convex subset of X and K a compact subset of X such that:

∀y ∈ X \K,P (y) ∩ co(X0 ∪ y) 6= ∅.
Then P admits a maximal element.

Let now J be a (possibly infinite) set of agents. We consider the situation
where each agent j ∈ J has a non-empty choice set (or strategy set) Xj

and a preference correspondence P j : X =
∏
j∈J X

j → Xj such that xj /∈
P j(x), x ∈ X. Following Gale and Mas-Colell [7], we say that the collection
(Xj , P j)j∈J is a qualitative game.

Using Proposition 1, we obtain the following existence result for qualita-
tive games:

Proposition 2. Let (Xj , P j)j∈J be a qualitative game such that the set
X =

∏
j∈J X

j is paracompact and satisfying the following conditions for
each j ∈ J :

(i) Xj is a non-empty convex subset of a topological vector space Ej.
(ii) P j is KF -majorized.

(iii) {x ∈ X : P j(x) 6= ∅} is open in X.
(iv) P j admits a C-coercing family.
Then the game (Xj , P j)j∈J has an equilibrium.

Proof. For each x ∈ X, let J(x) = {j ∈ J : P j(x) 6= ∅}. Define Φ: X → X
by:

Φ(x) =


⋂

j∈J(x)

conv(P ′j(x)) if J(x) 6= ∅

∅ if J(x) = ∅

where P ′j : X → X is defined by: y ∈ P ′j(x) ⇐⇒ yj ∈ P j(x). Using
(ii), (iii), a standard argument (see [9]) shows that Φ is KF -majorized.
Hypothesis (iv) implies that Φ admits a C-coercing family. Hence, there
exists an x ∈ X such that Φ(x) = ∅ i.e. P j(x) = ∅ for all j ∈ J .

More generally, if each agent j is restricted in his choices to some non-
empty subset of his strategy set due to the actions of the other players; this
is formalized in terms of a constraint correspondence Bj : X → Xj . The
family (Xj , Bj , P j)j∈J is called a generalized qualitative game or an abstract
economy . We say that x ∈ X is an equilibrium of the game if for each j ∈ J :

xj ∈ clXj Bj(x) and Bj(x) ∩ P j(x) = ∅.
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Proposition 3. Let (Xj , Bj , P j)j∈J be a generalized qualitative game such
that the set X =

∏
j∈J X

j is paracompact and satisfying the following con-
ditions for each j ∈ J :

(i) Xj is a non-empty convex subset of a topological vector space.
(ii) For each x ∈ X, Bj(x) is non-empty and convex.

(iii) For each yj ∈ Xj, (Bj)−1(yj) is open in X.
(iv) clXj (Bj) : X → Xj is upper semi-continuous.
(v) Bj ∩ P j is KF -majorized.

(vi) {x ∈ X : (Bj ∩ P j)(x) 6= ∅} is open in X.

(vii) P j ∩Bj admits a C-coercing family.
Then the abstract economy (Xj , Bj , P j)j∈J has an equilibrium.

Proof. For each j ∈ J , let F j = {x ∈ X : xj /∈ clXj Bj(x)}. The set F j is
open in X by (iv). Define Qj : X → X by:

Qj(x) =

{
(Bj ∩ P j)(x) if x /∈ F j

Bj(x) if x ∈ F j .

We can also show by a standard argument (see [9]) that the qualitative
game (Xj , Qj)j∈J satisfies the hypotheses (i)–(iii) of Proposition 2. By
(vii) Qj admits a C-coercing family. We conclude that the qualitative game
(Xj , Qj)j∈J admits an equilibrium x. Since Bj(x) is non-empty for all
x ∈ X, this implies that for each j ∈ J , xj ∈ clXj (Bj(x)) and Bj(x) ∩
P j(x) = ∅.

Proposition 3 generalizes Theorem 4 in [5]. If Xj is compact for each
j ∈ J , then Proposition 2 reduces to Corollary 3 in [4], Theorem 2.5 in [9]
and Proposition 3 in [10].
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