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Abstract. We look at analogues of the o-algebras of events occurring
up to a time and the events which are strictly prior to a time of the
classical (commutative) theory. In the second case, we define the p-
times and investigate the order structure of time projections associated
with these times in an abstract set up.

0. Introduction

In this paper we discuss essentially two topics; the analogues of the o-
algebras of events occurring up to a time and the events which are strictly
prior to a time and various properties analogous to that in the classical
(commutative) theory (cf. [8]) are investigated, the definition of time (or
p-time) is given and the structure of time projections associated with these
times in an arbitrary non-commutative filtration of von Neumann algebras
is studied. Our aim in this part is to propose a general form (scheme) for
the consideration of the order structure of time projections. The structure
of time projections associated with random times was studied in [2, 3, 10]
within an arbitrary non-commutative filtration of von Neumann algebras
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as well as those employed in quantum stochastic theory of the canonical
anticommutation relations (CAR) and the canonical commutation relations
(CCR) (cf. [4], [9]).

Section 2 contains a brief review of random times and the associated
time projection. In Section 3 we introduce subspaces of a von Neumann
algebra A analogous to the o-algebras of events in the classical theory and
compare the common properties of these subspaces with those o-algebras in
the classical case. Section 4 is devoted to the notion of time (or p-time) and
the order structure of time projections associated with p-times. We give in
this section the conditions under which the time projections associated with
simple times form a lattice. Accordingly, we divide the family 7 of times
into equivalent classes {[p] : p is a projection in A} and we show that if p is
projection in Ay, the time projections associated with times in [p] have all
the corresponding properties from [2, 3, 10].

1. Notation and preliminiaries

Let H be a complex Hilbert space, B(H) — the bounded linear op-
erators on H, A C B(H) — a von Neumann algebra, and let (A),
t € RT, be an increasing, right continuous family of von Neumann sub-
algebras of A such that A = A, is generated by the collection {A;:
t € [0,400)}. We also suppose that there is a cyclic and separating
unit vector Q for A in H, and that there is a family (&) of normal
w-invariant conditional expectations &: A — A;, where w is the vector
state induced by Q. If we denote the closure of A;Q in H by H;, and the
orthogonal projection from H onto H; by P;, we have

P (af2) = & (a) Q2

for any a € A. Furthermore, since H; is invariant under Ay, it follows that
Py € A; (see [1], [2] for a more detailed description). By an A-valued process
we mean a map from [0, +o00] into A. An A-valued process f = (f;) is called
adapted if f; € Ay for all t. We have also the notion of H-valued process.

2. Random times and time projections

We recall the definition and elementary properties of a random time and
its associated time projection. For more details the reader is referred to
1,2, 3].
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Definition 2.1. A random time, 7, is an increasing family of projections
T = (q), t € [0,+00], where ¢ € A, go = 0 and ¢+ = 1. A random time
T = (q) is called simple, if it assumes only finitely many distinct values.

Let © denote the set of all finite partitions of [0, +oc]. Then, for 6 € O,
say 0 = {0 =1ty <t; <...<t, =400}, the simple random time associated
with 7 and 6 is given by 7 (0) = (¢f), where

n—1
0
qr = Z qtix[ti7ti+1) (t)
1=0
for t € [0,00), and ¢ ., = 1.

Definition 2.2. (i) Let 7 = (¢) and 0 = (q;) be random times. We say
that 7 < o, if ¢, < ¢ for each t € RT. We define 7 A o and 7V ¢ to be the
random times 7 Ao = (¢ V q;) and 7V o = (¢: A ¢;). In a similar fashion,
for any family A of random times, we define sup A and inf A as the random
times consisting respectively of infima and suprema of the corresponding
projections.

(i) Let 0 ={0=ty < t1 <...<t, =400} € O. We define
MT(@) = Z (Qtl - Qti,l) Pti = Z A(Ztlptz
i=1 0
M9y has the following properties (see [1, Theorem 2.3]):
1. M g) is an orthogonal projection;
2. For 0,n € © with n finer than 0, M.,y < My );

3. If o is another random time with 7 < o, then M) < M, g) for each
0 € 0.

These properties and the fact that © is a directed set ordered by inclusion,
imply that {M): 6 € O} is a decreasing net of orthogonal projections.
Hence there exists a unique orthogonal projection

M = /\ MT(Q);
0cO
moreover,
Mz@) \ M-

in the strong operator topology as 6 refines. We shall call M, the time
projection for the random time 7 ([1, Definition 2.4]). The next result
summarises what is known about the order structure of random times.

Let 7, 0 be random times. For 6,17 € © we have

M)V Moy = Mrgyvo(m and Mgy A Mgy = Megyroa):
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Also
MT A MO’ = MT/\O'7

so that, in particular, if o < 7 then M, < M, (Optional Stopping Theorem).
The complete proofs of these relations can be found in [2], [3]. One of our
aims in this paper is to investigate them in the case of p-times.

3. Random times and subspaces

In this section we look at the analogues of the o-algebras of events taking
place up to a time and the events which are strictly before a time (see [§8]),
and prove some results analogous to those in the classical theory.

Definition 3.1. Let 7 = (¢;) be a random time. By analogy with the
commutative (classical) case, we define the subspace A, C A of all events
taking place up to a time 7 by

Ar={ac A: qa e A for all t € [0, +00]}
and the subspace A~ C A of all events taking place strictly before a time 7
by
AZ =span{(l — q;+)a: a € Ay, t € [0,+00)},

where ¢+ = limgsy g5 (with 07 = 0 and co™ = +00) and the closure is taken
in the strong operator topology.

Recall that an A-valued adapted process is, by definition, a family (f;)
satisfying f; € Ay for each t € [0,4+o0]. Let 7 = (¢;) be a random time. We
consider, for each partition, § = {0 =1ty < t; < ... <t, =400} of [0, +0]
the integral sum

Sh(fir) = Z (gt = atiy) iy = ZAQtiftifl-
; 9

=1

Let us start with following lemma.

Lemma 3.2. Let 7 = (q;) be a random time and (fi) be an A-valued
adapted process. Then

1. A; is closed in the strong operator topology;
2. ¢ € A; for each t € [0,400];
3. S, (f;7) € A, for each partition 6 of [0, +00);

)
(A-Q) € M, (H).

e
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Proof. The assertions 1 and 2 are obvious by the definition of A,. To prove
3 we note, for any ¢ € [0, +o00] and partition, 6, of [0, 4+occ], that

@Sy (f;7) thAqs fos €A

since fs, € Ay, for all s; < ¢, and thqsi =qNgs; — @ Ngs,_, € A and
equals zero for s;_1 > t. Hence ¢:S} (f;7) € A for every t € [0, +oc]. Thus
Sl (f;7) € As. To prove the assertion 4, we use Theorem 2.12 of [2], which
states that ¢ € M, (H) if and only if ;¢ € H; for all t € [0,+00]. Let
¢ € (A:Q) then there exists (an) C A; such that a,©2 — ¢ in H. Hence
qran) — ¢¢ in ‘H. Note that qa, € A; for all ¢ € [0,400] and for all n.
Also q:an§ € A2 C Hy for all ¢t € [0,400]. So ¢:¢ € Hy for all ¢ € [0, +00].
Thus ¢ € M (H), as required. O

The assertion 2 in Lemma 3.2 is an analogue of the classical result which
states that 7 is measurable with respect to the o-algebra F; ([8, Proposition
3.5 (a)]). Concerning assertion 3, note that S} (f;7) is an operator in A; if
limg S(l, (f;7)Q = ( exists, then the left stochastic integral may be defined
by

[/ dr (t) f(t)} (dQ)=d¢, deA.

Then [dr(t) f (¢) is a densely defined closable operator whose closure is
affiliated to A, for more details see [11]. Moreover, if [ dr (t) f (t)Q € A;Q,

we obtain that [dr (¢) f (t) €A;. Indeed, if [dr (t) f (t) 2 = a for some
a € A, then for each a’ € A’ we have

|:/d7' } (a'Q) —a/dT Q=daQ=a(dQ),

which means [dr(t)f(t) = a on the dense subspace A'Q, so

Jdr(t ) €A.. As for assertion 4, a natural question arises — is the
converse true7 Put another way, consider the von Neumann algebra gener-
ated by A; which is denoted again by A, is (A;Q) = M, (H)? Below we
give a partial answer to the question for deterministic times. Before that,
we discuss this relation for bounded random times, for more details see [6].

Definition 3.3. A random time 7 = (g,) is bounded if there exists s €
[0, 4+00) such that g, = 1, for each a > s.

Proposition 3.4. Let 7 = () be a bounded random time. Then A, C A
and

(A-Q) € M- (H) € (As),
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where s = inf{t: ¢ = 1}.

Proof. Let a € A; so that ¢sa € A; for each ¢ € [0,400]. Let s =
inf{t: ¢ = 1}. So a € A; for each t > s and hence a € (5, A1) = As
(since the filtration (At)te[o, too] 18 right continous). Thus A, C A,. Moving

on to the second part we have (A;Q) C M, (H), by Lemma 3.2 (4). Now
let ¢ € M, (H) then ;¢ € H; for each t € [0,+0oc] ([2, Theorem 2.12]).
This implies that ¢ € H; for each t > s and hence ¢ € (o, Hi) = Hs
(since s +— Ps is strongly continuous, see Proposition 3.2 of [4]). Note that

Hs = (AsQ). Thus (A,-Q) C M, (H) C (AsQ), which shows the claim. [

Remark 3.5. If 7 = (¢s) corresponds to the deterministic time ¢ € (0, +00)

defined by
)0 s<t
=1 s>t

A ={a € A: qsa € A, for all s} = Ay,
A~ =span{(1 —gs+)a: a € A;, s € [0,+00)}

=span{a € As: s <t} = (UAs)-

s<t

then we have

Its clear that (A,Q) = (AQ2) = Hy = Py (H) = M- (H) and A; # (U As)
if we have a filtration in which (J,_, As is not dense in A; (the filtration is
not left continous).

s<t

The relation between A, and A is as expected.

Proposition 3.6. For any random time 7 = (¢;), A7 C A, and the inclu-
sion can be strict.

Proof. Consider any element of the form ¢s (I — ¢;+)a where a € A;. If
s <t then g5 < ¢+ and so ¢s (1 — g+ ) is zero. So qs (1 —qp+)a € As. If
s > t then ¢s (1 — q+) = qs — qsqi+ € As, difference of elements in A,
and so ¢s (1 — q+)a € As. Putting the two parts together and using the
definition of A, proves the first assertion. The above remark shows that the
inclusion may be strict when 7 is the deterministic time ¢ € (0,4o00) then

A7 = (Us<y As) - If we have a filtration which is not left continuous then
A will be strictly smaller than A, = A;. O
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Proposition 3.7. Let 7 = (q;) and o0 = (p;) be random times. Then
AT/\O’ - A’T m .Ag—.

Proof. Let a € A;x, then (¢ V pt)a € A; for each ¢ € [0,+00]. For each
t € [0, +0oc], we have ¢; V p; € Ay and

qa = q; (¢ Vpr)a, pa=Dpi(qV pe)a.

We conclude that ¢a € A; and pra € Ay for each t € [0,400]. So a € A
and a € A,. Hence a € A-NA,. For the second part, let a € A;NA,. Then
qra € Ay and pra € A, for each t € [0, 4+00]. Furthermore, we have ua € A,
for each t € [0, +o0], where u € A; is a finite linear combination of finite
products of ¢; and p;. There is a net (u;) of finite linear combinations
of finite products of ¢; and p; which converges to ¢; V p; in the strong-
operator topology. This implies that the net (uja) converges to (q; V pt) a
in the strong-operator topology and hence (¢; V p;) a € A;. This means that
a € AT/\O—. D

The above result is valid for any finite family of random times and the
proof is obvious.

We recall from [6] that the set 7 of random times is partially ordered
by the relation defined in 2.2 (i) and under this relation the set 7 forms
a complete lattice. Now, let {7,: @ € A} be a set of times. By adjoining
to this subset the infima of each finite subset of this family, we generate a
decreasing net of random times whose infimum, 7, is identical with that of
the original family. Similarly, we can construct an increasing net of random
times whose supremum is identical with the supremum of the original family.

Let {7} = {(qga))} be a net of random times, and 7 = (¢;) be a random
time. Then 7, is said to converge strongly to 7, if qt(a) — q; strongly for
each t € [0, +o0].

The next result is an analogue of the classical results for a descending
family of random times (see Proposition 3.5 (b) and Theorem 6.3 (a) of [8]).
Also note that the classical result is considered for a countable family only.

Theorem 3.8. Let o and 7 be random times with o < 7. Then A, C A,.
If {ro: a € A} is a family of random times, with T = inf, 7,, then

AT - ﬂ Aq—a.

acel

Proof. The relation o < 7 entails 7 (t) < o (t) for each t € [0,+00]. Let
a € A, then o (t)a € A; for each t € [0,+00]. Since 7 (t) € A; for each
t € [0,00] and 7 (t)a = 7 (t) o (t) a for each t € [0, +0o0], we conclude that
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7 (t)a € A; for each t € [0, +o0] and so for a € A;. So A, C A;. Moving
on to the second part we see immediately that

A- € () An,
aEN
by the first part. Now let a € (\,cp Az, then a € A, for each o € A
and 7, (t)a € A; for each t € [0,400]. As we noted above, we may include
the infima of finite subsets of the set of times without altering the infima
of the collection. Thus we may assume that {7,} is a decreasing directed
family of random times. Then 7, (t) increase to 7 (¢) and hence converges
to it strongly and it follows that 7, (¢) a converges strongly to 7 (¢) a. Thus
7(t)a € Ay, that is, a € A;. This shows that () ., Az, € A; and so they
agree. O

Theorem 3.8 and Remark 3.5 show that {A;: 7 is a random time} is an
increasingly directed family of subspaces of A that contains the filtration
(At)tefo,4+00)- Analogous to Proposition 6.1 (d) and Theorem 6.3 (c) of [8]
of the classical case which is given in countable case, we have

Theorem 3.9. Let o and 7 be random times with o < 1. Then A, C A.
If {7 « € A} is an increasing family of random times, with T = sup,, Ta,

then
AD = (U A¥a>.
aEA

Proof. The relation o < 7 implies 7 (t) < o (t) for each ¢t € [0,+o00] and
hence 7 (t1) < o (t1) for each t € [0,4+00). Thus (1 —o (t1)) < (1 —7(t1))
for each t € [0,400) and so for a € Ay,

(A-o()a=Q1-0(")Q-7("))a
=(1-7(") [(A-o(t7))a] € A,
since we have (1 —o (t7))a € A+ = A;. Thus A7 C A-. Moving on to
the second part we see immediately that
(U An) €47,
acA

by the first part. Now for ¢ € [0,4+00] we have 7, (t) decreases to 7 (t)
and hence converges to it strongly. Let ¢ € [0,400) be fixed and { € H.
Choose s > t so that ||(7(¢t7) — 7 (s))¢|| is small (since 7 (t7) = limgsy
7(s)). Now choose @ € A so that ||(74 (s) — 7 (s))C]| is small. Note that
Ta (8) > 7o (1) > 7 (tT) because 7, < 7, s0

0§Ta(t+)—7(t+) §7’a(s)—7'(t+) :Ta(S)—T(S)+T(S)—T(t+).
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By using the triangle inequality (which works in ||-|| at () we get that
7o (t7) decreases strongly to 7 (t1). So (1 — 7, (t7)) increases strongly to
(1 —7(t")). It follows that, for ¢ € [0,4+0c) and a € A, (1 — 74 (t7))a
converges strongly to (1 —7 (t7))a. We know that (1 — 74 (t7))a € A-
for each a. Thus (1—7(t7))a € (Uyep Ar)- And we have A7 C

(UaEA A;a) 0

4. Order structure of p-times

In this section we define a general notion of random time which we shall
call p-time or time and as in the theory of random times (see [2, 3, 10]),
we shall discuss the structure of time projections associated with p-times,
the Optional Stopping Theorem and the range of time projection associated
with p-time. Subsequently, we divide the family T of all times into equivalent
classes [p], where p is a projection in A and we see that if p € Ag, then the
results of [2, 3, 10] concerning the structure of random times are still valid
for time projections associated with times in [p].

Definition 4.1. By a time (or p-time) we mean an increasing adapted fam-
ily of projections (q;), t € [0, +00], where gy = 0 and g, = p. Note that p is
not necessarily 1. Accordingly, the random times are 1-times which forms
a subfamily of the family T of all times.

Lemma 4.2. Let 7 = (qt) be a random time and p a projection in A;.
Then (q: Ap) is a p-time. Moreover, each p-time arises in this way for
some projection p in A,.

Proof. The relation p € A, entails ¢;p € Ay for all ¢ and so (¢p)* € A
for all ¢, for any k = 1,2,.... Letting k — +o0, we obtain ¢ A p € A
for all ¢. This shows that the increasing family (q; A p) of projections is
adapted, taking the value 0 at £ = 0 and the value p at ¢ = co. This means
that (¢: A p) is a p-time. Now let 0 = (e;) be a p-time. Define a random
time 7 = (q¢) as follows: ¢ = e; for all ¢t € [0,400) and ¢4o = 1. Then
gt Np = e for all t. Also note that ¢;p = e, € Ay for all t € [0,+00) and
G+o00P =P € Aioo. By Definition 3.1, p € A, which gives the claim. O

Recall that a random time o = (¢) is less than 7 = (p;) if and only if
pr < q for every t € [0,+00]. We extend this definition to all times in
this context. The requirement is exactly as before: the projections of the
“larger” family should be smaller than the projections of the smaller family
at each point t € [0,400]. Then the family T is partially ordered by the
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above relation, <, and under this relation the family T form a complete
lattice. The proof is essentially the same as that for random times (see [6,
Lemma 2.3]).

In preparation for a discussion of the order structure of the projections
associated with times, for any p-time 7 = (¢;), we set as for the random
times ([1, Definition 2.2])

n—1 n—1
MT(G) = Z (Qti+1 - Qti) Pt¢+1 = Z AQti+1Pti+1 = Z Aqti+17)ti+1
=0 =0 [%

where 0 = {0 =19 <t; <...<t, =00} €O. M_q) is an operator on H.

Theorem 4.3. Let 7 = (p;) be a time (p-time) and 0 € O a finite partition;
then the operator Mgy has the following properties:
1. Mgy is an orthogonal projection;
2. For 0,n € © with n finer than 6, M) < Mr(g);
3. Let o = (q¢) be another time (q-time) with o < 7. Then Mgy <
M9y if and only if p = q.

Proof. The assertions 1 and 2 follow immediately from Proposition 1.3 of
[7], by setting e; = p; and f; = P;. Moving on to the third assertion we see
immediately that p < ¢ (since 0 < 7). Then

MT(@)MU(G) = Z AptiptiAQtthj — Z ,PtiAptiAQtthj-
i,7=1 i,5=1

If j > i+ 1, then py,qi;_, = pt;, since 0 < 7, and so Apy, Ag;; = 0 whenever
j > 1+ 1. Hence

MT(Q)MO’(O) = Z Pti Aptl Aqt]‘ Ptj - Z Aptiptj AQtj

J<i J<t
= Z Z Apy, > AQtj = Z (p - ptj_l) Py, AQtj
J i>] J
=p Z Pt]' Aqt]’ - Z ,PtjptquQtj = pMo’(@) (*)
J J

Now assume that M, ) < M), then M, g = pM,p). Taking into
account that M2 = ¢, we get that ¢f2 = pg{) and hence q = gp (since
) is a separating vector for A). This means that ¢ < p and so p = q. Now
consider p = ¢, from equality (x) we get that M, oM, g = My =
M p). This means that M) < M), which shows the claim. O
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The properties of Theorem 4.3 and the fact that © is a directed set ordered
by inclusion, imply that {M4): 0 € O} is a decreasing net of orthogonal
projections. Hence there exists a unique orthogonal projection

M= N\ Mg);
6co
moreover,
M) N\ Mr

in the strong operator topology as 6 refines. We shall call M, again the
time projection for the p-time 7. Note that the equality (x) imply that the
time projection associated with a p-time is less or equal to p.

As an immediate corollary to Theorem 4.3, we have the following

Theorem 4.4 (Optional Stopping). Let 7 = (p;) be a p-time and o =
(qt) be a g-time with o < 1. We have M, < My if and only if p = q.

Proof. Since M, 9 M) = pMgg) for each § and multiplication is con-
tinuous in the strong operator topology on B (H) and jointly continuous on
bounded parts of B (H), we have

Mo gyMqyg) = Mz My,  and  pMyg) — pM,.

Thus we obtain that M, M, = pM,. The remaining of the proof is
essentially the same as that of Theorem 4.3 (3). O

We would like to explain here why we consider the notion of p-times. We
do so because for this kind of times we can assume that the filtration is
indexed by a compact interval [0, 7] and so the time is an operator mono-
tone projection valued adapted process taking value 0 at t = 0 (we will
not pursue this here). The second reason is that we obtain that the von
Neumann algebra A is a subalgebra of V, where V is the von Neumann alge-
bra generated by the family {M: 7 is a time}. To clarify this relation, we
observe that each projection p € A can be considered as a time projection
associated with the p-time 7 = (p;) which is given by

{0 t € [0, 400)
bt =
p t=+oo.

Then M) = p for each § € © and hence M, = p. Also note that, it
is a simple matter to verify that the time projection associated with the
p-deterministic time t € [0, +oc], which is defined by

{0 s<t
Ps =
p s> t,
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agrees with pPy.
Let 7 = (q¢) be a g-time, 6 € ©. Then we have

n—1

M-(o) = Z At Priyy = Z (@1 — a) Priy
0 i=0
n—1
=Gt, Pt,, — Gt Pto — Z qt; (Pt,-+1 - Pti)
i=0
n—1 z n—1
=q — Z ai; (Pti+1 - Pti) =4q— Z QtiAPt¢+1a
i=0 i=0

where we have used gy = 0, ¢400 = ¢ and P4, = 1 in B (H). Note that

¢> AP, =q—qP,,

=1

so we can write M) as

MT(Q) = qp() + Z (q - Qti_l) Aptl
=1

Our next results show under which conditions the time projections asso-
ciated with simple times form a lattice.

Theorem 4.5. Let 7 = (q;) be a g-time and o = (p;) a p-time, and let
0 €0O. Then M, = Mo\ Mrg) if and only if ¢ = p.

Proof. Let 0 = {0 =ty <t1 <...<t, =+0o0} € O. Then we have

n—1
q— MT(G) = Z ai; (PtiJrl - Ptz)
=0

n—1

p— Mo‘(@) = Zpt‘ (Pti+1 - Ptl) )

i=0
and hence, for ¢ € H,

n—1 n—1
(q - MT(@)) (p - MG(9)> C = Z Qtj APtj+1 <Z ptiAPti+1 C)
7=0 =0

n—1ln—1

- Z Z 4t AptjﬂptiAPtiHC

§=0 =0
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|
—

|
—

n
= qtj A,PthA,PtintiC

%

n

I
- o
I
o

= QtjptjAPtj+1<3
=0
since APy, APy, = 0 if i # j. It follows that

3 .

n—1
(4= Ma@) (0~ o) ¢ = 3 (01, APy,

§=0
for any kK =1,2,.... Letting kK — +00, we obtain
n—1
(0= M) A (P = Mo9) ¢ =D (a, Ape;) APy, C
§=0
n—1
:(q/\p)c_ q/\p_Z(QtJ Aptj)APtj+1 C
§=0

= (g A p) ¢ = M@yn)S-

So

(q o MT(Q)) A (p - MU(G)) =qAp— M(o‘\/T)(Q)-
Now assume that p = ¢q. Then

(q o MT(Q)) A (p - MU(9)) =p — M’r(@) V MU(G)

=p— M(U\/T)(G)a
which yields that
M) V Mooy = Movr)()-

Conversely, we see that 0 < oV 7 and M, < My V Mg =
Msvr)@6)- Then by Theorem 4.3 (3) we obtain that p = p A ¢ and sim-
ilarly ¢ = p A gq. This means that p = ¢, as required. O

Theorem 4.6. Let 7 = (q;) be a q-time and o = (p;) a p-time, and let
0€©. Ifp,q € Ao, then Morry0) = Moy N Mz if and only if ¢ = p.

Proof. Let 0 ={0 =1ty <t; <...<t, =00} € O. Then we have

n—1

MT(G) :qPO + Z (q - Qtl) Apti+1>
=0
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n—1

M) =pPo + Z (p—pt;) APy, -
i=0
Then, for any ¢ € H,
n—1
M 9)Mo0)¢ =qPopPoC + q¢Po Z (p—pt;) AP, C
=0

I
—

n

+ (q - qtl) Apti+1p7)0<

=0
n—1 n—1
+ (q— Qti) Apti+1 Z (p - ptj) APtHlC
i=0 Jj=0
n—1ln—1
=qpPoC + Z Z (¢ —q1,) APy, (p - ptj) AP €
=0 7=0
n—1 :1—1
=qpPoC+ Y Y (a—ai) (p—pt;) APy, AP, ¢
=0 7=0
n—1 ’
=qpPoC + Z (C] - Qti) (p - pti) Apti+1 ¢,
=0

since APy, APy, = 0 if i # j and PoAPy; = 0. Now if p = ¢, we obtain

Moy Ma)C = qPoC + > (a—a,) (g — pr,) APy, C.
9

As in the proof of Theorem 4.5, we see that
k
(Mg Moe)" ¢ = (@Po)* ¢+ (g —ar,) (g — pe.)]* APy, . C.
0

Letting £ — oo, we get

M) N Mo)C =g APoC+ D [(q—a,) Mg —pi)] AP, C
o

:qPOC + Z (q — qt; \ ptl) A,Plfi+1§
%

=My (0)S-
For the converse, we see that o AT < o and M, r9) = Mgy A Mgy <
Mgy Then by using Theorem 4.3 (3) we get p = p V ¢ and similarly we
get that ¢ = p V ¢q. This means that p = ¢, as required. ]
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Corollary 4.7. LetT = (q) be a g-time and o = (p;) a p-time. Ifp,q € Ao,
then Mopnr = Mg A M; if and only if ¢ = p.

Proof. Suppose that Mon, = Mg AM,;. Wehave c AT <o, 0 AT < T
and Mopr < My, Mopr < M. By virtue of Optional Stopping Theorem
(Theorem 4.4), we obtain that p = pV g and ¢ = p V ¢, so that ¢ = p.
Conversely, the assumption ¢ = p implies that M oary9) = Moy A M)
for each § € © (Theorem 4.6). Again by Optional Stopping Theorem we
obtain that Msnr < Mg A M, Since My A My < Mgy A Mrg) =
Moar)0), for all 0 € ©, we obtain My A M < Mya7, from which the
result follows. O

Next we prove the structure of the suprema and infima (without the
assumption that p,q € Ap) of time projections under different conditions.

Proposition 4.8. Let 7 = (q;) be a g-time and 0 = (p;) a p-time with
piq = qipt, Vt. Then My and M, commute and Mgoprr = My A M, and
MV My = Mgyr if and only if ¢ = p.

Proof. Let 8 € © and note that p; + ¢ = p: V. ¢¢ + pt A q¢. Then
Monry) = Z A (pti+1 v Qtz‘+1) Ptisa
[%

= Z A (pti+1 + Qti 1 = Ptiga A Qti+1) Pti+1
0

= Z Apti+1pt¢+1 + Z Ath—lPt'H—l - Z A(pti+1 N qti+1)73ti+1
[% 6 0

=Ma(o) + Mz(9) = Miovr)(0)-
Passing to the limit as 6 refines yields that
MO’/\T = MO’ + MT - MO’\/T'

Now assume that ¢ = p; using the Optional Stopping Theorem after multi-
plying M, or M on the left yields

Mg'/\f - MO"MT - MT'MO' - Mo’ /\ MT,

and from this the other required relation follows easily. The converse follows
immediately from the Optional Stopping Theorem. O

We see from the discussion above that the knowledge of the value of a
time at infinity is necessary and sufficient to study the structure of time
projections and their lattice properties. This leads to the following defini-
tion.
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Definition 4.9. Two times ¢ and 7 in a family T are said to be equivalent
if o (+00) = 7(400). We write this fact as o ~ 7. Clearly, the relation
o ~ T is an equivalence relation with partition {[q] : ¢ € A}, where A, is
the projection lattice of A. Accordingly, the family of random times is the
class [1]. The next result summarizes all above facts.

Corollary 4.10. Let o and T be any two times in [p| with p € Ag. Then,
for each 0 € ©, we have

L Mz AMo0) = Monr)o);

2. MT(@) V MJ(G) = M(O’\/T)(G);

3. MT /\ MO’ = MO'/\T;

4. If o < 1 then M, < M, (Optional Stopping Theorem).

Note that the result for suprema does not need the condition p € Ap.

Definition 4.11. We define a family of von Neumann algebras
{V,: p is a projection in A} by: V, is the von Neumann algebra generated
by

{M; : 7 is a time in [p]}.

V= (LI)JV},)N.

Lemma 4.12. For t € [0,400], P; belongs to the commutant of V, if and
only if pPr = Pyp.

Note that

Proof. Let t € [0,400], 7 = (pt) is a p-time and 0 = {0 = to,t1,... ,tp =
+o0} € ©. Then

Jk e {0,---,n—1} with tx <t < tgiq.

So
n—1
MT(@)Pt = Z (pti+1 _ptb) Ptprl Pt
=0
k—1 n—1
= (ptiJrl - ptz) PtH,lPt + Z (ptiJrl - ptl) PtiJrlPt
=0 i=k
(the first sum is equal to 0 if k£ = 0)
k—1 n—1
= (pti+1 - ptl) Pti+1 + Z (pti+1 - ptz) Pt
=0 i=k
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(since P;’s are orthogonal projections that increase with t)
k—1

= Z (pti+1 - pti) Pti+1 + (p - ptk) Pt-
1=0

Now assume that pP; = P;p; since P; lies in the commutant of A, we
get

k—1
MePr=>_Piyy Pty — 1) + Pe (0 — pr,)
=0
k—1
:Pt Pti+1 (ptiJrl - ptz) + Pt (p - ptk)]
=0
k—1 n—1
:Pt Z (pti+1 - ptl) Pti+1 + Pt Z PtiJrl (pti+1 - ptz)]
=0 i=k
:PtMT(g).

Now passing to the limit as 0 refines yields that M,.P; = P;M.. for each
t € [0, +00]. This means that P; commutes with the generators of V, and
as a result P; € VT’,. Conversely, we see immediately that M, P; = P M.,
for each 7 € [p]. But p = M, for the p-time 7 = (p¢) which is given by

{0 t € [0, +00)

Pt =

p t=+4o0.

So pP; = Pip, as required. O

As an immediate corollary, we have

Corollary 4.13. For t € [0,+00], if pP; = Pip then pP; belongs to the
centre of Vp.

Proof. Since pP; = Pip we get that P, € Vz,) (Lemma 4.12). We have shown

above that M, < p for each 7 € [p], so p commutes with the generators of

Vp and as a result p € V. This implies that pP, € V,. On the other side

we know that pP; is a time projection associated with p-deterministic time
€ [0, 4+00), which is defined by

)0 s<t
Ps = p s>t

so pP; € Vp and hence pP; € V, NV, = centre of V), as claimed. O
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Remark 4.14. We would like to stress again at this point that when p is a
projection in Ay, then the time projections associated with simple times in
[p] form a lattice and satisfy all the results concerning the structure of time
projections in [2, 3, 6, 10], within an arbitrary non-commutative filtration
of von Neumann algebras as well as those employed in quantum stochastic
theory of the canonical anticommutation relations (CAR) and the canonical
commutation relations (CCR); the proofs for the case of CAR and CCR are
quite routine (by using the martingale representation theorem for elements
of H, see [12]).

We finish this paper with a result on the range of the time projection
associated with a g-time.

Theorem 4.15. Let 7 = (q;) be a q-time. Then ¢ € H is in the range of a
time projection My if and only if ;¢ € Hy for allt € [0,400] and g = (.

Proof. If ¢ € M, (H), then ¢ € M) (H) for each § € ©. Suppose now
that ¢ € (0,+00) and take the partition 6; = {0 =tg < t; =t < t3 = +o00}.
Then

MT(Q%) = (1 - qt) + qtpta
and

¢= Mz, () =1 —aq) ¢+ aPC.

Applying ¢; to both sides yields ¢:¢( = ¢:P:( € H;. Concerning the second
part, we see immediately that ¢¢ = (¢ (since M, < ¢q). Conversely, if
¢ € Hy for all t € [0, 4+00] and g¢ = ¢, then

Mor0)¢ = ZA% P, ¢ = ZA(]t qt; P, C

= Z Agt, Py, (q1,€) Z Agt;qt,€
=2Aqti< = q¢=¢.
0

Taking the limit gives { = M,(. O
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