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Abstract. We look at analogues of the σ-algebras of events occurring
up to a time and the events which are strictly prior to a time of the
classical (commutative) theory. In the second case, we define the p-
times and investigate the order structure of time projections associated
with these times in an abstract set up.

0. Introduction

In this paper we discuss essentially two topics; the analogues of the σ-
algebras of events occurring up to a time and the events which are strictly
prior to a time and various properties analogous to that in the classical
(commutative) theory (cf. [8]) are investigated, the definition of time (or
p-time) is given and the structure of time projections associated with these
times in an arbitrary non-commutative filtration of von Neumann algebras
is studied. Our aim in this part is to propose a general form (scheme) for
the consideration of the order structure of time projections. The structure
of time projections associated with random times was studied in [2, 3, 10]
within an arbitrary non-commutative filtration of von Neumann algebras
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as well as those employed in quantum stochastic theory of the canonical
anticommutation relations (CAR) and the canonical commutation relations
(CCR) (cf. [4], [9]).

Section 2 contains a brief review of random times and the associated
time projection. In Section 3 we introduce subspaces of a von Neumann
algebra A analogous to the σ-algebras of events in the classical theory and
compare the common properties of these subspaces with those σ-algebras in
the classical case. Section 4 is devoted to the notion of time (or p-time) and
the order structure of time projections associated with p-times. We give in
this section the conditions under which the time projections associated with
simple times form a lattice. Accordingly, we divide the family T of times
into equivalent classes {[p] : p is a projection in A} and we show that if p is
projection in A0, the time projections associated with times in [p] have all
the corresponding properties from [2, 3, 10].

1. Notation and preliminiaries

Let H be a complex Hilbert space, B (H) — the bounded linear op-
erators on H, A ⊆ B (H) — a von Neumann algebra, and let (At),
t ∈ R+, be an increasing, right continuous family of von Neumann sub-
algebras of A such that A = A+∞ is generated by the collection {At :
t ∈ [0,+∞)}. We also suppose that there is a cyclic and separating
unit vector Ω for A in H, and that there is a family (Et) of normal
ω-invariant conditional expectations Et : A → At, where ω is the vector
state induced by Ω. If we denote the closure of AtΩ in H by Ht, and the
orthogonal projection from H onto Ht by Pt, we have

Pt (aΩ) = Et (a) Ω

for any a ∈ A. Furthermore, since Ht is invariant under At, it follows that
Pt ∈ A′t (see [1], [2] for a more detailed description). By an A-valued process
we mean a map from [0,+∞] into A. An A-valued process f = (ft) is called
adapted if ft ∈ At for all t. We have also the notion of H-valued process.

2. Random times and time projections

We recall the definition and elementary properties of a random time and
its associated time projection. For more details the reader is referred to
[1, 2, 3].
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Definition 2.1. A random time, τ , is an increasing family of projections
τ = (qt), t ∈ [0,+∞], where qt ∈ At, q0 = 0 and q+∞ = 1. A random time
τ = (qt) is called simple, if it assumes only finitely many distinct values.

Let Θ denote the set of all finite partitions of [0,+∞]. Then, for θ ∈ Θ,
say θ = {0 = t0 < t1 < . . . < tn = +∞}, the simple random time associated
with τ and θ is given by τ (θ) =

(
qθt
)
, where

qθt =
n−1∑
i=0

qtiχ[ti,ti+1) (t)

for t ∈ [0,∞), and qθ+∞ = 1.

Definition 2.2. (i) Let τ = (qt) and σ = (q′t) be random times. We say
that τ ≤ σ, if q′t ≤ qt for each t ∈ R+. We define τ ∧ σ and τ ∨ σ to be the
random times τ ∧ σ = (qt ∨ q′t) and τ ∨ σ = (qt ∧ q′t). In a similar fashion,
for any family Λ of random times, we define sup Λ and inf Λ as the random
times consisting respectively of infima and suprema of the corresponding
projections.

(ii) Let θ = {0 = t0 < t1 < . . . < tn = +∞} ∈ Θ. We define

Mτ(θ) =
n∑
i=1

(
qti − qti−1

)
Pti ≡

∑
θ

∆qtiPti .

Mτ(θ) has the following properties (see [1, Theorem 2.3]):
1. Mτ(θ) is an orthogonal projection;
2. For θ, η ∈ Θ with η finer than θ,Mτ(η) ≤Mτ(θ);
3. If σ is another random time with τ ≤ σ, thenMτ(θ) ≤Mσ(θ) for each
θ ∈ Θ.

These properties and the fact that Θ is a directed set ordered by inclusion,
imply that {Mτ(θ) : θ ∈ Θ} is a decreasing net of orthogonal projections.
Hence there exists a unique orthogonal projection

Mτ =
∧
θ∈Θ

Mτ(θ);

moreover,

Mτ(θ) ↘Mτ

in the strong operator topology as θ refines. We shall call Mτ the time
projection for the random time τ ([1, Definition 2.4]). The next result
summarises what is known about the order structure of random times.

Let τ , σ be random times. For θ, η ∈ Θ we have

Mτ(θ) ∨Mσ(η) =Mτ(θ)∨σ(η) and Mτ(θ) ∧Mσ(η) =Mτ(θ)∧σ(η).
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Also

Mτ ∧Mσ =Mτ∧σ,

so that, in particular, if σ ≤ τ then Mσ ≤Mτ (Optional Stopping Theorem).
The complete proofs of these relations can be found in [2], [3]. One of our
aims in this paper is to investigate them in the case of p-times.

3. Random times and subspaces

In this section we look at the analogues of the σ-algebras of events taking
place up to a time and the events which are strictly before a time (see [8]),
and prove some results analogous to those in the classical theory.

Definition 3.1. Let τ = (qt) be a random time. By analogy with the
commutative (classical) case, we define the subspace Aτ ⊆ A of all events
taking place up to a time τ by

Aτ = {a ∈ A : qta ∈ At for all t ∈ [0,+∞]}

and the subspace A−τ ⊆ A of all events taking place strictly before a time τ
by

A−τ = span{(1− qt+) a : a ∈ At, t ∈ [0,+∞)},

where qt+ = lims>t qs (with 0+ = 0 and∞+ = +∞) and the closure is taken
in the strong operator topology.

Recall that an A-valued adapted process is, by definition, a family (ft)
satisfying ft ∈ At for each t ∈ [0,+∞]. Let τ = (qt) be a random time. We
consider, for each partition, θ = {0 = t0 < t1 < . . . < tn = +∞} of [0,+∞]
the integral sum

S lθ (f ; τ) =
n∑
i=1

(
qti − qti−1

)
fti−1 ≡

∑
θ

∆qtifti−1 .

Let us start with following lemma.

Lemma 3.2. Let τ = (qt) be a random time and (ft) be an A-valued
adapted process. Then

1. Aτ is closed in the strong operator topology;
2. qt ∈ Aτ for each t ∈ [0,+∞];
3. S lθ (f ; τ) ∈ Aτ for each partition θ of [0,+∞];
4. (AτΩ) ⊆Mτ (H).
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Proof. The assertions 1 and 2 are obvious by the definition of Aτ . To prove
3 we note, for any t ∈ [0,+∞] and partition, θ, of [0,+∞], that

qtS lθ (f ; τ) =
∑
θ

qt∆qsifsi−1 ∈ At

since fsi ∈ At, for all si ≤ t, and qt∆qsi = qt ∧ qsi − qt ∧ qsi−1 ∈ At and
equals zero for si−1 > t. Hence qtS lθ (f ; τ) ∈ At for every t ∈ [0,+∞]. Thus
S lθ (f ; τ) ∈ Aτ . To prove the assertion 4, we use Theorem 2.12 of [2], which
states that ζ ∈ Mτ (H) if and only if qtζ ∈ Ht for all t ∈ [0,+∞]. Let
ζ ∈ (AτΩ) then there exists (an) ⊂ Aτ such that anΩ → ζ in H. Hence
qtanΩ → qtζ in H. Note that qtan ∈ At for all t ∈ [0,+∞] and for all n.
Also qtanΩ ∈ AtΩ ⊆ Ht for all t ∈ [0,+∞]. So qtζ ∈ Ht for all t ∈ [0,+∞].
Thus ζ ∈Mτ (H), as required.

The assertion 2 in Lemma 3.2 is an analogue of the classical result which
states that τ is measurable with respect to the σ-algebra Fτ ([8, Proposition
3.5 (a)]). Concerning assertion 3, note that S lθ (f ; τ) is an operator in A; if
limθ S lθ (f ; τ) Ω = ζ exists, then the left stochastic integral may be defined
by [∫

dτ (t) f (t)
] (
a′Ω
)

= a′ζ, a′ ∈ A′.

Then
∫
dτ (t) f (t) is a densely defined closable operator whose closure is

affiliated to A, for more details see [11]. Moreover, if
∫
dτ (t) f (t) Ω ∈ AτΩ,

we obtain that
∫
dτ (t) f (t) ∈Aτ . Indeed, if

∫
dτ (t) f (t) Ω = aΩ for some

a ∈ Aτ , then for each a′ ∈ A′ we have[∫
dτ (t) f (t)

] (
a′Ω
)

= a′
∫
dτ (t) f (t) Ω = a′aΩ = a

(
a′Ω
)
,

which means
∫
dτ (t) f (t) = a on the dense subspace A′Ω, so∫

dτ (t) f (t) ∈Aτ . As for assertion 4, a natural question arises — is the
converse true? Put another way, consider the von Neumann algebra gener-
ated by Aτ which is denoted again by Aτ , is (AτΩ) =Mτ (H)? Below we
give a partial answer to the question for deterministic times. Before that,
we discuss this relation for bounded random times, for more details see [6].

Definition 3.3. A random time τ = (qα) is bounded if there exists s ∈
[0,+∞) such that qα = 1, for each α ≥ s.

Proposition 3.4. Let τ = (qt) be a bounded random time. Then Aτ ⊆ As
and

(AτΩ) ⊆Mτ (H) ⊆ (AsΩ),
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where s = inf{t : qt = 1}.

Proof. Let a ∈ Aτ so that qta ∈ At for each t ∈ [0,+∞]. Let s =
inf{t : qt = 1}. So a ∈ At for each t > s and hence a ∈ (

⋂
t>sAt) = As

(since the filtration (At)t∈[0,+∞] is right continous). Thus Aτ ⊆ As. Moving
on to the second part we have (AτΩ) ⊆ Mτ (H), by Lemma 3.2 (4). Now
let ζ ∈ Mτ (H) then qtζ ∈ Ht for each t ∈ [0,+∞] ([2, Theorem 2.12]).
This implies that ζ ∈ Ht for each t > s and hence ζ ∈ (

⋂
t>sHt) = Hs

(since s 7→ Ps is strongly continuous, see Proposition 3.2 of [4]). Note that
Hs = (AsΩ). Thus (AτΩ) ⊆Mτ (H) ⊆ (AsΩ), which shows the claim.

Remark 3.5. If τ = (qs) corresponds to the deterministic time t ∈ (0,+∞)
defined by

qs =

{
0 s ≤ t
1 s > t,

then we have

Aτ ={a ∈ A : qsa ∈ As, for all s} = At,
A−τ =span{(1− qs+) a : a ∈ As, s ∈ [0,+∞)}

=span{a ∈ As : s < t} = (
⋃
s<t

As).

Its clear that (AτΩ) = (AtΩ) = Ht = Pt (H) =Mτ (H) andAt 6= (
⋃
s<tAs)

if we have a filtration in which
⋃
s<tAs is not dense in At (the filtration is

not left continous).

The relation between Aτ and A−τ is as expected.

Proposition 3.6. For any random time τ = (qt), A−τ ⊆ Aτ and the inclu-
sion can be strict.

Proof. Consider any element of the form qs (I − qt+) a where a ∈ At. If
s ≤ t then qs ≤ qt+ and so qs (1− qt+) is zero. So qs (1− qt+) a ∈ As. If
s > t then qs (1− qt+) = qs − qsqt+ ∈ As, difference of elements in As,
and so qs (1− qt+) a ∈ As. Putting the two parts together and using the
definition of Aτ proves the first assertion. The above remark shows that the
inclusion may be strict when τ is the deterministic time t ∈ (0,+∞) then
A−τ =

(⋃
s<tAs

)
. If we have a filtration which is not left continuous then

A−τ will be strictly smaller than Aτ = At.
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Proposition 3.7. Let τ = (qt) and σ = (pt) be random times. Then

Aτ∧σ = Aτ ∩ Aσ.

Proof. Let a ∈ Aτ∧σ then (qt ∨ pt) a ∈ At for each t ∈ [0,+∞]. For each
t ∈ [0,+∞], we have qt ∨ pt ∈ At and

qta = qt (qt ∨ pt) a, pta = pt (qt ∨ pt) a.

We conclude that qta ∈ At and pta ∈ At for each t ∈ [0,+∞]. So a ∈ Aτ
and a ∈ Aσ. Hence a ∈ Aτ∩Aσ. For the second part, let a ∈ Aτ∩Aσ. Then
qta ∈ At and pta ∈ At for each t ∈ [0,+∞]. Furthermore, we have ua ∈ At
for each t ∈ [0,+∞], where u ∈ At is a finite linear combination of finite
products of qt and pt. There is a net (uj) of finite linear combinations
of finite products of qt and pt which converges to qt ∨ pt in the strong-
operator topology. This implies that the net (uja) converges to (qt ∨ pt) a
in the strong-operator topology and hence (qt ∨ pt) a ∈ At. This means that
a ∈ Aτ∧σ.

The above result is valid for any finite family of random times and the
proof is obvious.

We recall from [6] that the set T of random times is partially ordered
by the relation defined in 2.2 (i) and under this relation the set T forms
a complete lattice. Now, let {τα : α ∈ Λ} be a set of times. By adjoining
to this subset the infima of each finite subset of this family, we generate a
decreasing net of random times whose infimum, τ , is identical with that of
the original family. Similarly, we can construct an increasing net of random
times whose supremum is identical with the supremum of the original family.

Let {τα} = {(q(α)
t )} be a net of random times, and τ = (qt) be a random

time. Then τα is said to converge strongly to τ , if q(α)
t → qt strongly for

each t ∈ [0,+∞].
The next result is an analogue of the classical results for a descending

family of random times (see Proposition 3.5 (b) and Theorem 6.3 (a) of [8]).
Also note that the classical result is considered for a countable family only.

Theorem 3.8. Let σ and τ be random times with σ ≤ τ . Then Aσ ⊆ Aτ .
If {τα : α ∈ Λ} is a family of random times, with τ = infα τα, then

Aτ =
⋂
α∈Λ

Aτα .

Proof. The relation σ ≤ τ entails τ (t) ≤ σ (t) for each t ∈ [0,+∞]. Let
a ∈ Aσ then σ (t) a ∈ At for each t ∈ [0,+∞]. Since τ (t) ∈ At for each
t ∈ [0,∞] and τ (t) a = τ (t)σ (t) a for each t ∈ [0,+∞], we conclude that
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τ (t) a ∈ At for each t ∈ [0,+∞] and so for a ∈ Aτ . So Aσ ⊆ Aτ . Moving
on to the second part we see immediately that

Aτ ⊆
⋂
α∈Λ

Aτα ,

by the first part. Now let a ∈
⋂
α∈ΛAτα then a ∈ Aτα for each α ∈ Λ

and τα (t) a ∈ At for each t ∈ [0,+∞]. As we noted above, we may include
the infima of finite subsets of the set of times without altering the infima
of the collection. Thus we may assume that {τα} is a decreasing directed
family of random times. Then τα (t) increase to τ (t) and hence converges
to it strongly and it follows that τα (t) a converges strongly to τ (t) a. Thus
τ (t) a ∈ At, that is, a ∈ Aτ . This shows that

⋂
α∈ΛAτα ⊆ Aτ and so they

agree.

Theorem 3.8 and Remark 3.5 show that {Aτ : τ is a random time} is an
increasingly directed family of subspaces of A that contains the filtration
(At)t∈[0,+∞]. Analogous to Proposition 6.1 (d) and Theorem 6.3 (c) of [8]
of the classical case which is given in countable case, we have

Theorem 3.9. Let σ and τ be random times with σ ≤ τ . Then A−σ ⊆ A−τ .
If {τα : α ∈ Λ} is an increasing family of random times, with τ = supα τα,
then

A−τ =

(⋃
α∈Λ

A−τα

)
.

Proof. The relation σ ≤ τ implies τ (t) ≤ σ (t) for each t ∈ [0,+∞] and
hence τ (t+) ≤ σ (t+) for each t ∈ [0,+∞). Thus (1− σ (t+)) ≤ (1− τ (t+))
for each t ∈ [0,+∞) and so for a ∈ At,(

1− σ
(
t+
))
a =

(
1− σ

(
t+
)) (

1− τ
(
t+
))
a

=
(
1− τ

(
t+
)) [(

1− σ
(
t+)) a] ∈ A−τ ,

since we have (1− σ (t+)) a ∈ At+ = At. Thus A−σ ⊆ A−τ . Moving on to
the second part we see immediately that

(
⋃
α∈Λ

A−τα) ⊆ A−τ ,

by the first part. Now for t ∈ [0,+∞] we have τα (t) decreases to τ (t)
and hence converges to it strongly. Let t ∈ [0,+∞) be fixed and ζ ∈ H.
Choose s > t so that ‖(τ (t+)− τ (s))ζ‖ is small (since τ (t+) = lims>t

τ (s)). Now choose α ∈ Λ so that ‖(τα (s)− τ (s))ζ‖ is small. Note that
τα (s) ≥ τα (t+) ≥ τ (t+) because τα ≤ τ , so

0 ≤ τα
(
t+
)
− τ

(
t+
)
≤ τα (s)− τ

(
t+
)

= τα (s)− τ (s) + τ (s)− τ
(
t+
)
.
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By using the triangle inequality (which works in ‖·‖ at ζ) we get that
τα (t+) decreases strongly to τ (t+). So (1− τα (t+)) increases strongly to
(1− τ (t+)). It follows that, for t ∈ [0,+∞) and a ∈ At, (1− τα (t+)) a
converges strongly to (1− τ (t+)) a. We know that (1− τα (t+)) a ∈ A−τα
for each α. Thus (1− τ (t+)) a ∈ (

⋃
α∈ΛA

−
τα). And we have A−τ ⊆

(
⋃
α∈ΛA

−
τα).

4. Order structure of p-times

In this section we define a general notion of random time which we shall
call p-time or time and as in the theory of random times (see [2, 3, 10]),
we shall discuss the structure of time projections associated with p-times,
the Optional Stopping Theorem and the range of time projection associated
with p-time. Subsequently, we divide the family T of all times into equivalent
classes [p], where p is a projection in A and we see that if p ∈ A0, then the
results of [2, 3, 10] concerning the structure of random times are still valid
for time projections associated with times in [p].

Definition 4.1. By a time (or p-time) we mean an increasing adapted fam-
ily of projections (qt), t ∈ [0,+∞], where q0 = 0 and q∞ = p. Note that p is
not necessarily 1. Accordingly, the random times are 1-times which forms
a subfamily of the family T of all times.

Lemma 4.2. Let τ = (qt) be a random time and p a projection in Aτ .
Then (qt ∧ p) is a p-time. Moreover, each p-time arises in this way for
some projection p in Aτ .

Proof. The relation p ∈ Aτ entails qtp ∈ At for all t and so (qtp)
k ∈ At

for all t, for any k = 1, 2, . . . . Letting k → +∞, we obtain qt ∧ p ∈ At
for all t. This shows that the increasing family (qt ∧ p) of projections is
adapted, taking the value 0 at t = 0 and the value p at t =∞. This means
that (qt ∧ p) is a p-time. Now let σ = (et) be a p-time. Define a random
time τ = (qt) as follows: qt = et for all t ∈ [0,+∞) and q+∞ = 1. Then
qt ∧ p = et for all t. Also note that qtp = et ∈ At for all t ∈ [0,+∞) and
q+∞p = p ∈ A+∞. By Definition 3.1, p ∈ Aτ , which gives the claim.

Recall that a random time σ = (qt) is less than τ = (pt) if and only if
pt ≤ qt for every t ∈ [0,+∞]. We extend this definition to all times in
this context. The requirement is exactly as before: the projections of the
“larger” family should be smaller than the projections of the smaller family
at each point t ∈ [0,+∞]. Then the family T is partially ordered by the



198 A. A. A. MOHAMMED

above relation, ≤, and under this relation the family T form a complete
lattice. The proof is essentially the same as that for random times (see [6,
Lemma 2.3]).

In preparation for a discussion of the order structure of the projections
associated with times, for any p-time τ = (qt), we set as for the random
times ([1, Definition 2.2])

Mτ(θ) =
n−1∑
i=0

(
qti+1 − qti

)
Pti+1 =

n−1∑
i=0

∆qti+1Pti+1 ≡
∑
θ

∆qti+1Pti+1

where θ = {0 = t0 < t1 < . . . < tn =∞} ∈ Θ. Mτ(θ) is an operator on H.

Theorem 4.3. Let τ = (pt) be a time (p-time) and θ ∈ Θ a finite partition;
then the operator Mτ(θ) has the following properties:

1. Mτ(θ) is an orthogonal projection;
2. For θ, η ∈ Θ with η finer than θ, Mτ(η) ≤Mτ(θ);
3. Let σ = (qt) be another time (q-time) with σ ≤ τ . Then Mσ(θ) ≤
Mτ(θ) if and only if p = q.

Proof. The assertions 1 and 2 follow immediately from Proposition 1.3 of
[7], by setting et = pt and ft = Pt. Moving on to the third assertion we see
immediately that p ≤ q (since σ ≤ τ). Then

Mτ(θ)Mσ(θ) =
n∑

i,j=1

∆ptiPti∆qtjPtj =
n∑

i,j=1

Pti∆pti∆qtjPtj .

If j ≥ i+ 1, then ptiqtj−1 = pti , since σ ≤ τ , and so ∆pti∆qtj = 0 whenever
j ≥ i+ 1. Hence

Mτ(θ)Mσ(θ) =
n∑
j≤i
Pti∆pti∆qtjPtj =

n∑
j≤i

∆ptiPtj∆qtj

=
∑
j

∑
i≥j

∆pti

Ptj∆qtj =
∑
j

(
p− ptj−1

)
Ptj∆qtj

=p
∑
j

Ptj∆qtj −
∑
j

Ptjptj−1∆qtj = pMσ(θ). (?)

Now assume that Mσ(θ) ≤ Mτ(θ), then Mσ(θ) = pMσ(θ). Taking into
account that Mσ(θ)Ω = qΩ, we get that qΩ = pqΩ and hence q = qp (since
Ω is a separating vector for A). This means that q ≤ p and so p = q. Now
consider p = q, from equality (?) we get that Mσ(θ)Mτ(θ) = qMσ(θ) =
Mσ(θ). This means that Mσ(θ) ≤Mτ(θ), which shows the claim.
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The properties of Theorem 4.3 and the fact that Θ is a directed set ordered
by inclusion, imply that {Mτ(θ) : θ ∈ Θ} is a decreasing net of orthogonal
projections. Hence there exists a unique orthogonal projection

Mτ =
∧
θ∈Θ

Mτ(θ);

moreover,

Mτ(θ) ↘Mτ

in the strong operator topology as θ refines. We shall call Mτ again the
time projection for the p-time τ . Note that the equality (?) imply that the
time projection associated with a p-time is less or equal to p.

As an immediate corollary to Theorem 4.3, we have the following

Theorem 4.4 (Optional Stopping). Let τ = (pt) be a p-time and σ =
(qt) be a q-time with σ ≤ τ . We have Mσ ≤Mτ if and only if p = q.

Proof. Since Mτ(θ)Mσ(θ) = pMσ(θ) for each θ and multiplication is con-
tinuous in the strong operator topology on B (H) and jointly continuous on
bounded parts of B (H), we have

Mτ(θ)Mσ(θ) →MτMσ, and pMσ(θ) → pMσ.

Thus we obtain that MτMσ = pMσ. The remaining of the proof is
essentially the same as that of Theorem 4.3 (3).

We would like to explain here why we consider the notion of p-times. We
do so because for this kind of times we can assume that the filtration is
indexed by a compact interval [0, T ] and so the time is an operator mono-
tone projection valued adapted process taking value 0 at t = 0 (we will
not pursue this here). The second reason is that we obtain that the von
Neumann algebra A is a subalgebra of V, where V is the von Neumann alge-
bra generated by the family {Mτ : τ is a time}. To clarify this relation, we
observe that each projection p ∈ A can be considered as a time projection
associated with the p-time τ = (pt) which is given by

pt =

{
0 t ∈ [0,+∞)
p t = +∞.

Then Mτ(θ) = p for each θ ∈ Θ and hence Mτ = p. Also note that, it
is a simple matter to verify that the time projection associated with the
p-deterministic time t ∈ [0,+∞], which is defined by

ps =

{
0 s ≤ t
p s > t,



200 A. A. A. MOHAMMED

agrees with pPt.
Let τ = (qt) be a q-time, θ ∈ Θ. Then we have

Mτ(θ) =
∑
θ

∆qti+1Pti+1 =
n−1∑
i=0

(
qti+1 − qti

)
Pti+1

=qtnPtn − qt0Pt0 −
n−1∑
i=0

qti
(
Pti+1 − Pti

)
=q −

n−1∑
i=0

qti
(
Pti+1 − Pti

)
= q −

n−1∑
i=0

qti∆Pti+1 ,

where we have used q0 = 0, q+∞ = q and P+∞ = 1 in B (H). Note that

q
n∑
i=1

∆Pti = q − qP0,

so we can write Mτ(θ) as

Mτ(θ) = qP0 +
n∑
i=1

(
q − qti−1

)
∆Pti .

Our next results show under which conditions the time projections asso-
ciated with simple times form a lattice.

Theorem 4.5. Let τ = (qt) be a q-time and σ = (pt) a p-time, and let
θ ∈ Θ. Then M(σ∨τ)(θ) =Mσ(θ)

∨
Mτ(θ) if and only if q = p.

Proof. Let θ = {0 = t0 < t1 < . . . < tn = +∞} ∈ Θ. Then we have

q −Mτ(θ) =
n−1∑
i=0

qti
(
Pti+1 − Pti

)
p−Mσ(θ) =

n−1∑
i=0

pti
(
Pti+1 − Pti

)
,

and hence, for ζ ∈ H,

(
q −Mτ(θ)

) (
p−Mσ(θ)

)
ζ =

n−1∑
j=0

qtj∆Ptj+1

(
n−1∑
i=0

pti∆Pti+1ζ

)

=
n−1∑
j=0

n−1∑
i=0

qtj∆Ptj+1pti∆Pti+1ζ
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=
n−1∑
j=0

n−1∑
i=0

qtj∆Ptj+1∆Pti+1ptiζ

=
n−1∑
j=0

qtjptj∆Ptj+1ζ,

since ∆Ptj∆Pti = 0 if i 6= j. It follows that

[(
q −Mτ(θ)

) (
p−Mσ(θ)

)]k
ζ =

n−1∑
j=0

(
qtjptj

)k ∆Ptj+1ζ,

for any k = 1, 2, . . . . Letting k → +∞, we obtain

(
q −Mτ(θ)

)
∧
(
p−Mσ(θ)

)
ζ =

n−1∑
j=0

(
qtj ∧ ptj

)
∆Ptj+1ζ

= (q ∧ p) ζ−

q ∧ p−n−1∑
j=0

(
qtj ∧ ptj

)
∆Ptj+1

 ζ
= (q ∧ p) ζ −M(σ∨τ)(θ)ζ.

So (
q −Mτ(θ)

)
∧
(
p−Mσ(θ)

)
= q ∧ p−M(σ∨τ)(θ).

Now assume that p = q. Then(
q −Mτ(θ)

)
∧
(
p−Mσ(θ)

)
=p−Mτ(θ) ∨Mσ(θ)

=p−M(σ∨τ)(θ),

which yields that

Mτ(θ) ∨Mσ(θ) =M(σ∨τ)(θ).

Conversely, we see that σ ≤ σ ∨ τ and Mσ(θ) ≤ Mτ(θ) ∨ Mσ(θ) =
M(σ∨τ)(θ). Then by Theorem 4.3 (3) we obtain that p = p ∧ q and sim-
ilarly q = p ∧ q. This means that p = q, as required.

Theorem 4.6. Let τ = (qt) be a q-time and σ = (pt) a p-time, and let
θ ∈ Θ. If p, q ∈ A0, then M(σ∧τ)(θ) =Mσ(θ) ∧Mτ(θ) if and only if q = p.

Proof. Let θ = {0 = t0 < t1 < . . . < tn =∞} ∈ Θ. Then we have

Mτ(θ) =qP0 +
n−1∑
i=0

(q − qti) ∆Pti+1 ,
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Mσ(θ) =pP0 +
n−1∑
i=0

(p− pti) ∆Pti+1 .

Then, for any ζ ∈ H,

Mτ(θ)Mσ(θ)ζ =qP0pP0ζ + qP0

n−1∑
i=0

(p− pti) ∆Pti+1ζ

+
n−1∑
i=0

(q − qti) ∆Pti+1pP0ζ

+
n−1∑
i=0

(q − qti) ∆Pti+1

n−1∑
j=0

(
p− ptj

)
∆Ptj+1ζ

=qpP0ζ +
n−1∑
i=0

n−1∑
j=0

(q − qti) ∆Pti+1

(
p− ptj

)
∆Ptj+1ζ

=qpP0ζ +
n−1∑
i=0

n−1∑
j=0

(q − qti)
(
p− ptj

)
∆Pti+1∆Ptj+1ζ

=qpP0ζ +
n−1∑
i=0

(q − qti) (p− pti) ∆Pti+1ζ,

since ∆Ptj∆Pti = 0 if i 6= j and P0∆Ptj = 0. Now if p = q, we obtain

Mτ(θ)Mσ(θ)ζ = qP0ζ +
∑
θ

(q − qti) (q − pti) ∆Pti+1ζ.

As in the proof of Theorem 4.5, we see that(
Mτ(θ)Mσ(θ)

)k
ζ = (qP0)k ζ +

∑
θ

[(q − qti) (q − pti)]
k ∆Pti+1ζ.

Letting k →∞, we get

Mτ(θ) ∧Mσ(θ)ζ =q ∧ P0ζ +
∑
θ

[(q − qti) ∧ (q − pti)] ∆Pti+1ζ

=qP0ζ +
∑
θ

(q − qti ∨ pti) ∆Pti+1ζ

=M(σ∧τ)(θ)ζ.

For the converse, we see that σ ∧ τ ≤ σ andMσ∧τ(θ) =Mτ(θ) ∧Mσ(θ) ≤
Mσ(θ). Then by using Theorem 4.3 (3) we get p = p ∨ q and similarly we
get that q = p ∨ q. This means that p = q, as required.
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Corollary 4.7. Let τ = (qt) be a q-time and σ = (pt) a p-time. If p, q ∈ A0,
then Mσ∧τ =Mσ ∧Mτ if and only if q = p.

Proof. Suppose that Mσ∧τ = Mσ ∧Mτ . We have σ ∧ τ ≤ σ, σ ∧ τ ≤ τ
and Mσ∧τ ≤Mσ, Mσ∧τ ≤Mτ . By virtue of Optional Stopping Theorem
(Theorem 4.4), we obtain that p = p ∨ q and q = p ∨ q, so that q = p.
Conversely, the assumption q = p implies that M(σ∧τ)(θ) =Mσ(θ) ∧Mτ(θ)
for each θ ∈ Θ (Theorem 4.6). Again by Optional Stopping Theorem we
obtain that Mσ∧τ ≤ Mσ ∧ Mτ . Since Mσ ∧ Mτ ≤ Mσ(θ) ∧ Mτ(θ) =
M(σ∧τ)(θ), for all θ ∈ Θ, we obtain Mσ ∧Mτ ≤ Mσ∧τ , from which the
result follows.

Next we prove the structure of the suprema and infima (without the
assumption that p, q ∈ A0) of time projections under different conditions.

Proposition 4.8. Let τ = (qt) be a q-time and σ = (pt) a p-time with
ptqt = qtpt, ∀t. Then Mσ and Mτ commute and Mσ∧τ = Mσ ∧Mτ and
Mτ ∨Mσ =Mσ∨τ if and only if q = p.

Proof. Let θ ∈ Θ and note that pt + qt = pt ∨ qt + pt ∧ qt. Then

M(σ∧τ)(θ) =
∑
θ

∆
(
pti+1 ∨ qti+1

)
Pti+1

=
∑
θ

∆
(
pti+1 + qti+1 − pti+1 ∧ qti+1

)
Pti+1

=
∑
θ

∆pti+1Pti+1 +
∑
θ

∆qti+1Pti+1 −
∑
θ

∆(pti+1 ∧ qti+1)Pti+1

=Mσ(θ) +Mτ(θ) −M(σ∨τ)(θ).

Passing to the limit as θ refines yields that

Mσ∧τ =Mσ +Mτ −Mσ∨τ .

Now assume that q = p; using the Optional Stopping Theorem after multi-
plying Mσ or Mτ on the left yields

Mσ∧τ =Mσ.Mτ =Mτ .Mσ =Mσ ∧Mτ ,

and from this the other required relation follows easily. The converse follows
immediately from the Optional Stopping Theorem.

We see from the discussion above that the knowledge of the value of a
time at infinity is necessary and sufficient to study the structure of time
projections and their lattice properties. This leads to the following defini-
tion.
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Definition 4.9. Two times σ and τ in a family T are said to be equivalent
if σ (+∞) = τ (+∞). We write this fact as σ ∼ τ . Clearly, the relation
σ ∼ τ is an equivalence relation with partition {[q] : q ∈ Ap}, where Ap is
the projection lattice of A. Accordingly, the family of random times is the
class [1]. The next result summarizes all above facts.

Corollary 4.10. Let σ and τ be any two times in [p] with p ∈ A0. Then,
for each θ ∈ Θ, we have

1. Mτ(θ)
∧
Mσ(θ) =M(σ∧τ)(θ);

2. Mτ(θ)
∨
Mσ(θ) =M(σ∨τ)(θ);

3. Mτ
∧
Mσ =Mσ∧τ ,

4. If σ ≤ τ then Mσ ≤Mτ (Optional Stopping Theorem).

Note that the result for suprema does not need the condition p ∈ A0.

Definition 4.11. We define a family of von Neumann algebras
{Vp : p is a projection in A} by: Vp is the von Neumann algebra generated
by

{Mτ : τ is a time in [p]}.
Note that

V =

(⋃
p

Vp

)′′
.

Lemma 4.12. For t ∈ [0,+∞], Pt belongs to the commutant of Vp if and
only if pPt = Ptp.

Proof. Let t ∈ [0,+∞], τ = (pt) is a p-time and θ = {0 = t0, t1, . . . , tn =
+∞} ∈ Θ. Then

∃k ∈ {0, · · · , n− 1} with tk ≤ t < tk+1.

So

Mτ(θ)Pt =

[
n−1∑
i=0

(
pti+1 − pti

)
Pti+1

]
Pt

=
k−1∑
i=0

(
pti+1 − pti

)
Pti+1Pt +

n−1∑
i=k

(
pti+1 − pti

)
Pti+1Pt

(the first sum is equal to 0 if k = 0)

=
k−1∑
i=0

(
pti+1 − pti

)
Pti+1 +

n−1∑
i=k

(
pti+1 − pti

)
Pt



A NOTE ON p-TIMES AND TIME PROJECTIONS 205

(since Pt’s are orthogonal projections that increase with t)

=
k−1∑
i=0

(
pti+1 − pti

)
Pti+1 + (p− ptk)Pt.

Now assume that pPt = Ptp; since Ps lies in the commutant of As, we
get

Mτ(θ)Pt =
k−1∑
i=0

Pti+1

(
pti+1 − pti

)
+ Pt (p− ptk)

=Pt

[
k−1∑
i=0

Pti+1

(
pti+1 − pti

)
+ Pt (p− ptk)

]

=Pt

[
k−1∑
i=0

(
pti+1 − pti

)
Pti+1 + Pt

n−1∑
i=k

Pti+1

(
pti+1 − pti

)]
=PtMτ(θ).

Now passing to the limit as θ refines yields that MτPt = PtMτ for each
t ∈ [0,+∞]. This means that Pt commutes with the generators of Vp and
as a result Pt ∈ V ′p. Conversely, we see immediately that MτPt = PtMτ

for each τ ∈ [p]. But p =Mτ for the p-time τ = (pt) which is given by

pt =

{
0 t ∈ [0,+∞)
p t = +∞.

So pPt = Ptp, as required.

As an immediate corollary, we have

Corollary 4.13. For t ∈ [0,+∞], if pPt = Ptp then pPt belongs to the
centre of Vp.

Proof. Since pPt = Ptp we get that Pt ∈ V ′p (Lemma 4.12). We have shown
above that Mτ ≤ p for each τ ∈ [p], so p commutes with the generators of
Vp and as a result p ∈ V ′p. This implies that pPt ∈ V ′p. On the other side
we know that pPt is a time projection associated with p-deterministic time
t ∈ [0,+∞), which is defined by

ps =

{
0 s ≤ t
p s > t,

so pPt ∈ Vp and hence pPt ∈ Vp ∩ V ′p = centre of Vp, as claimed.
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Remark 4.14. We would like to stress again at this point that when p is a
projection in A0, then the time projections associated with simple times in
[p] form a lattice and satisfy all the results concerning the structure of time
projections in [2, 3, 6, 10], within an arbitrary non-commutative filtration
of von Neumann algebras as well as those employed in quantum stochastic
theory of the canonical anticommutation relations (CAR) and the canonical
commutation relations (CCR); the proofs for the case of CAR and CCR are
quite routine (by using the martingale representation theorem for elements
of H, see [12]).

We finish this paper with a result on the range of the time projection
associated with a q-time.

Theorem 4.15. Let τ = (qt) be a q-time. Then ζ ∈ H is in the range of a
time projection Mτ if and only if qtζ ∈ Ht for all t ∈ [0,+∞] and qζ = ζ.

Proof. If ζ ∈ Mτ (H), then ζ ∈ Mτ(θ) (H) for each θ ∈ Θ. Suppose now
that t ∈ (0,+∞) and take the partition θt = {0 = t0 < t1 = t < t2 = +∞}.
Then

Mτ(θt) = (1− qt) + qtPt,

and

ζ =Mτ(θt) (ζ) = (1− qt) ζ + qtPtζ.

Applying qt to both sides yields qtζ = qtPtζ ∈ Ht. Concerning the second
part, we see immediately that qζ = ζ (since Mτ ≤ q). Conversely, if
qtζ ∈ Ht for all t ∈ [0,+∞] and qζ = ζ, then

Mτ(θ)ζ =
∑
θ

∆qtiPtiζ =
∑
θ

∆qtiqtiPtiζ

=
∑
θ

∆qtiPti (qtiζ) =
∑
θ

∆qtiqtiζ

=
∑
θ

∆qtiζ = qζ = ζ.

Taking the limit gives ζ =Mτζ.
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