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Abstract. The purpose of this paper is to study the weak and strong
convergence of an new implicit iteration process to a common fixed
point for a finite family of asymptotically nonexpansive mappings in
Banach spaces. The results presented in this paper extend and improve
important known results in [1], [2], [4]–[9], [11]–[15] and others.

1. Introduction and preliminaries

Throughout this paper we assume that E is a real Banach space and
T : E → E is a mapping. We denote by F (T ) and D(T ) the set of fixed
points and the domain of T , respectively.
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Recall that E is said to satisfy Opial condition, if for each sequence {xn}
in E, the condition that the sequence xn → x weakly implies that

lim sup
n→∞

||xn − x|| < lim sup
n→∞

||xn − y||

for all y ∈ E with y 6= x.

Definition 1.1. Let D be a closed subset of E and T : D → D be a map-
ping.

1. T is said to be demi-closed at the origin, if for each sequence {xn}
in D, the conditions xn → x0 weakly and Txn → 0 strongly imply
Tx0 = 0.

2. T is said to be semi-compact, if for any bounded sequence {xn} in D
such that ||xn − Txn|| → 0 (n→∞), then there exists a subsequence
{xni} ⊂ {xn} such that xni → x∗ ∈ D.

3. T is said to be asymptotically nonexpansive [4], if there exists a se-
quence {kn} ⊂ [1,∞) with limn→∞ kn = 1 such that

||Tnx− Tny|| ≤ kn||x− y|| ∀x, y ∈ D, n ≥ 1.

Proposition 1.1. Let K be a nonempty subset of E, {Ti}Ni=1 : K → K
be N asymptotically nonexpansive mappings. Then there exists a sequence
{kn} ⊂ [1,∞) with kn → 1 (n→∞) such that

||Tni x− Tni y|| ≤ kn||x− y||, ∀n ≥ 1, (1.1)

for all x, y ∈ K, i = 1, 2, . . . , N .

Proof. (1) Since for each i = 1, 2, . . . , N , Ti : K → K is an asymptotically
nonexpansive mapping, there exists a sequence {k(i)

n }⊂ [1,∞), with k(i)
n →1

(n→∞) such that

||Tni x− Tni y|| ≤ k(i)
n ||x− y||, ∀x, y ∈ K, ∀n ≥ 1, i = 1, 2, . . . , N.

Letting

kn = max{k(1)
n , k(2)

n , . . . , k(N)
n },

then we have that {kn} ⊂ [1,∞) with kn → 1 (n→∞) and

||Tni x− Tni y|| ≤ k(i)
n ||x− y|| ≤ kn||x− y||, ∀n ≥ 1,

for all x, y ∈ K, and for each i = 1, 2, . . . , N .
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Definition 1.2. Let K be a nonempty closed convex subset of E with
K + K ⊂ K, x0 ∈ K be any given point and {T1, T2, . . . , TN} : K → K
be N asymptotically nonexpansive mappings. Let {αn} and {βn} be two
sequences in [0, 1], {un} and {vn} be two bounded sequences in K. Then
the sequence {xn} defined by{

xn = (1− αn)xn−1 + αnT
n
n(modN)yn + un,

yn = (1− βn)xn + βnT
n
n(modN)xn + vn, ∀n ≥ 1

(1.2)

is called the implicit iterative sequence with errors for a finite family of
asymptotically nonexpansive mappings {Ti}Ni=1.

Especially, if {T1, T2, . . . , TN} : K → K be N asymptotically nonexpan-
sive mappings, {αn} be a sequence in [0, 1] and x0 ∈ K be a given point,
then the sequence {xn} defined by

xn = (1− αn)xn−1 + αnT
n
n(modN)xn, ∀n ≥ 1 (1.3)

is called the implicit iterative sequence for a finite family of asymptotically
nonexpansive mappings {Ti}Ni=1.

Recently, concerning the convergence problems of an implicit (or non-
implicit) iterative process to a common fixed point for a finite family
of asymptotically nonexpansive mappings (or nonexpansive mappings) in
Hilbert spaces or uniformly convex Banach spaces have been considered by
several authors (see, for example, Bauschke [1], Chang and Cho [2], Goebel
and Kirk [4], Górnicki [5], Halpern [6], Lions [7], Osilike [8], Reich [9], Schu
[10], Sun [11], Tan and Xu [12], Wittmann [13], Xu and Ori [14] and Zhou
and Chang [15]).

The purpose of this paper is to study the weak and strong convergence
of implicit iterative sequence {xn} defined by (1.2) and (1.3) to a common
fixed point for a finite family of asymptotically nonexpansive mappings and
nonexpansive mappings in Banach spaces. The results presented in this
paper not only generalized and extend the corresponding results in [1], [2],
[4]–[9], [11]–[15], but also give an affirmative to the open question suggested
by Xu and Ori [14]. Moreover the results even in the case of un = vn = 0
or βn = 0, vn = 0, ∀n ≥ 1 are also new.

In order to prove the main results of this paper, we need the following
Lemmas:

Lemma 1.1 ([3, 5, 12]). Let E be a uniformly convex Banach space, K be
a nonempty closed convex subset of E and T : K → K be an asymptotically
nonexpansive mapping with F (T ) 6= ∅. Then I − T is semi-closed at zero,
i.e., for each sequence {xn} in K, if {xn} converges weakly to q ∈ K and
{(I − T )xn} converges strongly to 0, then (I − T )q = 0.
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Lemma 1.2 ([3, 12]). Let {an}, {bn}, {cn} be three nonnegative real se-
quences satisfying the following condition:

an+1 ≤ (1 + bn)an + cn, ∀n ≥ n0,

where n0 is some nonnegative integer,
∑∞

n=0 cn < ∞ and
∑∞

n=0 bn < ∞.
Then

(1) the limit limn→∞ an exists.
(2) In addition, if there exists a subsequence {ani}⊂{an} such that ani→0,

then an → 0 (n→∞).

Lemma 1.3 ([10]). Let E be a uniformly convex Banach space, b, c be two
constants with 0 < b < c < 1. Suppose that {tn} is a sequence in [b, c] and
{xn}, {yn} are two sequence in E. Then the conditions:

limn→∞ ||(1− tn)xn + tnyn|| = d,

lim supn→∞ ||xn|| ≤ d,
lim supn→∞ ||yn|| ≤ d,

imply that limn→∞ ||xn − yn|| = 0, where d ≥ 0 is some constant.

Lemma 1.4. Let E be a real Banach space, K be a nonempty closed convex
subset of E with K+K ⊂ K, {T1, T2, . . . , TN} : K → K be N asymptotically
nonexpansive mappings with F =

⋂N
i=1 F (Ti) 6= ∅. Let {αn} and {βn} be

two sequences in [0, 1], {un} and {vn} be two bounded sequences in K and
{kn} be the sequence defined by (1.1) and σ = supn≥1 kn ≥ 1 satisfying the
following conditions:

(i)
∑∞

n=1(kn − 1)αn <∞;

(ii) τ = sup{αn : n ≥ 1} < 1
σ2 ;

(iii)
∑∞

n=1 ||un|| <∞,
∑∞

n=1 ||vn|| <∞.

If {xn} is the implicit iterative sequence defined by (1.2), then for each
p ∈ F =

⋂N
i=1 F (Ti) the limit limn→∞ ||xn − p|| exists.

Proof. Since F =
⋂N
n=1 F (Ti) 6= ∅, for any given p ∈ F , it follows from

(1.2) and Proposition 1.1 that

||xn − p|| = ||(1− αn)(xn−1 − p) + αn(Tnn(modN)yn − p) + un||
≤ (1− αn)||xn−1 − p||+ αn||Tnn(modN)yn − p||+ ||un||
= (1− αn)||xn−1 − p||+ αn||Tnn(modN))yn − T

n
n(modN)p||+ ||un||

≤ (1− αn)||xn−1 − p||+ αnkn||yn − p||+ ||un||. (1.4)
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Again it follows from (1.2) and Proposition 1.1 that

||yn − p|| = ||(1− βn)(xn − p) + βn(Tnn(modN)xn − p) + vn||
≤ (1− βn)||xn − p||+ βn||Tnn(modN)xn − p||+ ||vn||
= (1− βn)||xn − p||+ βn||Tnn(modN)xn − T

n
n(modN)p||+ ||vn||

≤ (1− βn)||xn − p||+ βnkn||xn − p||+ ||vn||
≤ kn||xn − p||+ ||vn||. (1.5)

Substituting (1.5) into (1.4), we obtain that

||xn − p|| ≤(1− αn)||xn−1 − p||+ αnk
2
n||xn − p||

+ αnkn||vn||+ ||un||.

which implies that

(1− αnk2
n)||xn − p|| ≤ (1− αn)||xn−1 − p||+ µn, (1.6)

where
µn = αnkn||vn||+ ||un||.

By the condition (iii) and the boundedness of the sequences {αn} and {kn}
we know that

∞∑
i=1

µn <∞.

From the condition (ii) we know that

αnk
2
n ≤ τσ2 < 1 and so 1− αnk2

n ≥ 1− τσ2 > 0,

hence from (1.6) we have

||xn − p|| ≤
1− αn

1− αnk2
n

||xn−1 − p||+
µn

1− τσ2

=
(

1 +
(k2
n − 1)αn

1− αnk2
n

)
||xn−1 − p||+

µn
1− τσ2

≤
(

1 +
(k2
n − 1)αn
1− τσ2

)
||xn−1 − p||+

µn
1− τσ2

= (1 + bn)||xn−1 − p||+ cn. (1.7)

where

bn =
(k2
n − 1)αn
1− τσ2 and cn =

µn
1− τσ2 .

By conditions (i) and (iii) we have that
∞∑
n=1

bn =
1

1− τσ2

∞∑
n=1

(k2
n − 1)αn
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=
1

1− τσ2

∞∑
n=1

(kn + 1)(kn − 1)αn

≤ 1 + σ

1− τσ2

∞∑
n=1

(kn − 1)αn <∞

and
∞∑
n=1

cn =
∞∑
n=1

µn
1− τσ2 <∞.

Taking an = ||xn−1 − p|| in inequality (1.7), we have

an+1 ≤ (1 + bn)an + cn, ∀n ≥ 1.

and the satisfy all conditions in Lemma 1.2. Therefore the limit
limn→∞ ||xn − p|| exists. Without loss of generality we may assume that

lim
n→∞

||xn − p|| = d, p ∈ F. (1.8)

where d ≥ 0 is some constant. This completes the proof of Lemma 1.4.

2. Main results

We are now in a position to prove our main results in this paper.

Theorem 2.1. Let E be a real Banach space, K be a nonempty closed
convex subset of E with K + K ⊂ K, {T1, T2, . . . , TN} : K → K be N

asymptotically nonexpansive mappings with F =
⋂N
i=1 F (Ti) 6= ∅ (the set

of common fixed points of {T1, T2, . . . , TN}). Let {αn} and {βn} be two
sequences in [0, 1], {un} and {vn} be two bounded sequences in K, {kn} be
the sequence defined by (1.1) and σ = supn≥1 kn ≥ 1 satisfying the following
conditions:

(i)
∑∞

n=1(kn − 1)αn <∞;

(ii) τ = sup{αn : n ≥ 1} < 1
σ2 ;

(iii)
∑∞

n=1 ||un|| <∞,
∑∞

n=1 ||vn|| <∞.

Then the implicit iterative sequence {xn} defined by (1.2) converges strongly
to a common fixed point p ∈ F =

⋂N
i=1 F (Ti) if and only if

lim inf
n→∞

d(xn, F ) = 0. (2.1)
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Proof. The necessity of condition (2.1) is obvious.
Next we prove the sufficiency of Theorem 2.1. For any given p ∈ F , it

follows from (1.7) in Lemma 1.4 that

||xn − p|| ≤ (1 + bn)||xn−1 − p||+ cn ∀n ≥ 1. (2.2)

where

bn =
(k2
n − 1)αn
1− τσ2 and cn =

µn
1− τσ2

with
∑∞

n=1 bn <∞ and
∑∞

n=1 cn <∞. Hence, we have

d(xn, F ) ≤ (1 + bn)d(xn−1, F ) + cn ∀n ≥ 1. (2.3)

It follows from (2.3) and Lemma 1.2 that the limit limn→∞ d(xn, F ) exists.
By the condition (2.1), we have

lim
n→∞

d(xn, F ) = 0.

Next we prove that the sequence {xn} is a Cauchy sequence in K. In
fact, since

∑∞
n=1 bn < ∞, 1 + t ≤ exp{t} for all t > 0, and (2.2), therefore

we have

||xn − p|| ≤ exp{bn}||xn−1 − p||+ cn. (2.4)

Hence, for any positive integers n, m, from (2.4) it follows that

||xn+m − p|| ≤ exp{bn+m}||xn+m−1 − p||+ cn+m

≤ exp{bn+m}[exp{bn+m−1}||xn+m−2 − p||+ cn+m−1] + cn+m

= exp{bn+m + bn+m−1}||xn+m−2 − p||+ exp{bn+m}cn+m−1

+ cn+m

≤ . . .

≤ exp

{
n+m∑
i=n+1

bi

}
||xn − p||+ exp

{
n+m∑
i=n+2

bi

}
n+m∑
i=n+1

ci

≤W ||xn − p||+W

∞∑
i=n+1

ci.

where W = exp{
∑∞

n=1 bn} <∞.
Since limn→∞ d(xn, F ) = 0 and

∑∞
n=1 cn <∞, for any given ε > 0, there

exists a positive integer n0 such that

d(xn, F ) <
ε

4(W + 1)
,

∞∑
i=n+1

ci <
ε

2W
, ∀n ≥ n0.

Therefore there exists p1 ∈ F such that

d(xn, p1) <
ε

2(W + 1)
, ∀n ≥ n0
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Consequently, for any n ≥ n0 and for all m ≥ 1 we have

||xn+m − xn|| ≤ ||xn+m − p1||+ ||xn − p1||

≤ (1 +W )||xn − p1||+W

∞∑
i=n+1

ci

<
ε

2(W + 1)
(1 +W ) +W · ε

2W
= ε.

This implies that {xn} is a Cauchy sequence in K. By the completeness
of K, we can assume that xn → x∗ ∈ K. Since the set of fixed pints of
a asymptotically nonexpansive mapping is closed, hence F is closed. This
implies that x∗ ∈ F , and so x∗ is a common fixed point of T1, T2, . . . , TN .
This completes the proof of Theorem 2.1.

Theorem 2.2. Let E be a real uniformly convex Banach space satisfying
Opial condition, K be a nonempty closed convex subset of E with K +K ⊂
K, {T1, T2, . . . , TN} : K → K be N asymptotically nonexpansive mappings
with F = ∩Ni=1F (Ti) 6= ∅. Let {αn} and {βn} be two sequences in [0, 1],
{un} and {vn} be two bounded sequences in K, {kn} be the sequence defined
by (1.1) and σ = supn≥1 kn ≥ 1 satisfying the following conditions:

(i)
∑∞

n=1(kn − 1)αn <∞;

(ii) 0 < τ1 = inf{αn : n ≥ 1} ≤ sup{αn : n ≥ 1} = τ2 <
1
σ2 ;

(iii) 0 ≤ µ = sup{βn : n ≥ 1} < 1
σ

;

(iv)
∑∞

n=1 ||un|| <∞,
∑∞

n=1 ||vn|| <∞;
(v) there exists constants L > 0 and α > 0 such that, for any i, j ∈
{1, 2, . . . , N} with i 6= j,

||Tni x− Tnj y|| ≤ L||x− y||α, ∀n ≥ 1,

for all x, y ∈ K.

Then the implicit iterative sequence {xn} defined by (1.2) converges weakly
to a common fixed point of {T1, T2, . . . , TN}.

Proof. Since F =
⋂N
i=1 F (Ti) 6= ∅, for any given p ∈ F , it follows from

(1.2) and (1.8) that

||xn−p||= ||(1−αn)[xn−1−p+un]+βn[Tnn(modN)yn−p+un]||→d (n→∞),

p ∈ F. (2.5)
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From (1.8) and the condition (iv) we know that

lim sup
n→∞

||xn−1 − p+ un||

≤ lim sup
n→∞

||xn−1 − p||+ lim sup
n→∞

||un|| = d, p ∈ F. (2.6)

It follows from (1.5) and the condition (iv) that

lim sup
n→∞

||Tnn(modN)yn − p+ un||

≤ lim sup
n→∞

kn||yn − p||+ lim sup
n→∞

||un||

= lim sup
n→∞

kn||yn − p||

≤ lim sup
n→∞

kn{kn||xn − p||+ ||vn||}

≤ lim sup
n→∞

k2
n||xn − p||+ lim sup

n→∞
kn||vn||

= d, p ∈ F. (2.7)

Therefore, from the condition (ii), (2.5)–(2.7) and Lemma 1.3 we know that

lim
n→∞

||Tnn(modN)yn − xn−1|| = 0. (2.8)

Moreover, since

||xn − xn−1|| = ||αn(Tnn(modN)yn − xn−1) + un||
≤ αn||Tnn(modN)yn − xn−1||+ ||un||, (2.9)

hence, from (2.8) and the condition (iv) we obtain

lim
n→∞

||xn − xn−1|| = 0 ∀j = 1, 2, . . . , N (2.10)

and so

lim
n→∞

||xn − xn+j || = 0 ∀j = 1, 2, . . . , N. (2.11)

On the other hand, we have

||xn − Tnn(modN)xn|| ≤||xn − xn−1||+ ||xn−1 − Tnn(modN)yn||
+ ||Tnn(modN)yn − T

n
n(modN)xn||. (2.12)

Now, we consider the third term on the right side of (2.12). From the
Proposition 1.1, (1.2) and the condition (iii) we have

||Tnn(modN)yn − T
n
n(modN)xn|| ≤ kn||yn − xn|| (2.13)

≤ σ||βn(Tnn(modN)xn − xn) + vn||
≤ σβn||Tnn(modN)xn − xn||+ σ||vn||
≤ σµ||Tnn(modN)xn − xn||+ σ||vn||.
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Substituting (2.13) into (2.12), we obtain that

||xn − Tnn(modN)xn|| ≤||xn − xn−1||+ ||xn−1 − Tnn(modN)yn||
+ σµ||Tnn(modN)xn − xn||+ σ||vn|| (2.14)

Hence, by virtue of the condition (iv), (2.8), (2.10) we have

lim sup
n→∞

||xn − Tnn(modN)xn|| ≤ σµ lim sup
n→∞

||xn − Tnn(modN)xn|| (2.15)

that is

(1− σµ) · lim sup
n→∞

||xn − Tnn(modN)xn|| ≤ 0 (2.16)

From the condition (iii), 0 ≤ σµ < 1, hence from (2.16) we have

lim
n→∞

||xn − Tnn(modN)xn|| = 0. (2.17)

By the condition (v), we have

||Tn−1
n(modN)xn − T

n−1
(n−1)(modN)xn−1|| ≤ L||xn − xn−1||α. (2.18)

From (2.10), (2.17), (2.18) and Proposition 1.1 that

||xn − Tn(modN)xn|| ≤||xn − Tnn(modN)xn||+ ||T
n
n(modN)xn − Tn(modN)xn||

≤||xn − Tnn(modN)xn||+ k1||Tn−1
n(modN)xn − xn||

≤||xn − Tnn(modN)xn||

+ k1{||Tn−1
n(modN)xn − T

n−1
(n−1)(modN)xn−1||

+ ||Tn−1
(n−1)(modN)xn−1 − xn−1||+ ||xn−1 − xn||}

≤||xn − Tnn(modN)xn||+ k1L||xn − xn−1||α

+ k1||Tn−1
(n−1)(modN)xn−1 − xn−1||

+ k1||xn−1 − xn|| → 0 (n→∞),

which implies that

||xn − Tn(modN)xn|| → 0 (n→∞) (2.19)

and so, from (2.10) and (2.19), it follows that, for any j = 1, 2, . . . , N ,

||xn − Tn(modN)+jxn|| ≤||xn − xn+j ||+ ||xn+j − Tn(modN)+jxn+j ||
+ ||Tn(modN)+jxn+j − Tn(modN)+jxn||
≤||xn − xn+j ||+ ||xn+j − Tn(modN)+jxn+j ||

+ k1||xn+j − xn|| → 0 (n→∞). (2.20)

Since E is uniformly convex, every bounded subset of E is weakly com-
pact. Again since {xn} is a bounded sequence in K, there exists a subse-
quence {xnk} ⊂ {xn} such that {xnk} converges weakly to q ∈ K.
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Without loss of generality, we can assume that nk = j(modN), where
j is some positive integer in {1, 2, . . . , N}. Otherwise, we can take
a subsequence {xnki} ⊂ {xnk} such that nki = j(modN). For any
l ∈ {1, 2, . . . , N}, there exists an integer i ∈ {1, 2, . . . , N} such that
nk + i = l(modN). Hence, from (2.20) we have

lim
k→∞

||xnk − Tlxnk || = 0. (2.21)

By Lemma 1.1, we know that q ∈ F (Tl). By the arbitrariness of l ∈
{1, 2, . . . , N}, we know that q ∈ F =

⋂N
j=1 F (Tj).

Finally, we prove that the sequence {xn} converges weakly to q. In fact,
suppose this not true. Then there exists some subsequence {xnj} ⊂ {xn}
such that {xnj} converges weakly to q1 ∈ K and q1 6= q. Then by the same
method as given above, we can also prove that q1 ∈ F =

⋂N
j=1 F (Tj).

Taking p = q and p = q1 and using the same method given in the proof
of (1.8), we can prove that the following two limits exist and

lim
n→∞

||xn − q|| = d1, lim
n→∞

||xn − q1|| = d2

where d1 and d2 are two nonnegative numbers. By virtue of the Opial
condition of E, we have

d1 = lim sup
nk→∞

||xnk − q|| < lim sup
nk→∞

||xnk − q1|| = d2

= lim sup
nj→∞

||xnj − q1|| < lim sup
nj→∞

||xnj − q|| = d1.

This is a contradiction. Hence q1 = q. This implies that {xn} converges
weakly to q. This completes the proof of Theorem 2.2.

Theorem 2.3. Let E be a real uniformly convex Banach space satis-
fying Opial condition, K be a nonempty closed convex subset of E,
{T1, T2, . . . , TN} : K → K be N asymptotically nonexpansive mappings with
F =

⋂N
i=1 F (Ti) 6= ∅. Let {αn} be a sequence in [0, 1], {kn} be the sequence

defined by (1.1) and σ = supn≥1 kn ≥ 1 satisfying the following conditions:
(i)
∑∞

n=1(kn − 1)αn <∞;

(ii) 0 < τ1 = inf{αn : n ≥ 1} ≤ sup{αn : n ≥ 1} = τ2 <
1
σ2 ;

(iii) there exists constants L > 0 and α > 0 such that, for any i, j ∈
{1, 2, . . . , N} with i 6= j,

||Tni x− Tnj y|| ≤ L||x− y||α, ∀n ≥ 1,

for all x, y ∈ K.

Then the implicit iterative sequence {xn} defined by (1.3) converges weakly
to a common fixed point of {T1, T2, . . . , TN}.
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Proof. Taking βn = 0, un = vn = 0, ∀n ≥ 1 in Theorem 2.2, then the
conclusion of Theorem 2.3 can be obtained from Theorem 2.2 immediately.
This completes the proof of Theorem 2.3.

Theorem 2.4. Let E be a real uniformly convex Banach space, K
be a nonempty closed convex subset of E with K + K ⊂ K,
{T1, T2, . . . , TN} : K → K be N asymptotically nonexpansive mappings with
F =

⋂N
i=1 F (Ti) 6= ∅ and there exist an Tj, 1 ≤ j ≤ N , which is semi-

compact (without loss of generality, we can assume that T1 is semi-compact).
Let {αn} and {βn} be two sequences in [0, 1], {un} and {vn} be two bounded
sequences in K, {kn} be the sequence defined by (1.1) and σ = supn≥1 kn ≥ 1
satisfying the following conditions:

(i)
∑∞

n=1(kn − 1)αn <∞;

(ii) 0 < τ1 = inf{αn : n ≥ 1} ≤ sup{αn : n ≥ 1} = τ2 <
1
σ2 ;

(iii) 0 ≤ µ = sup{βn : n ≥ 1} < 1
σ

;

(iv)
∑∞

n=1 ||un|| <∞,
∑∞

n=1 ||vn|| <∞;
(v) there exists constants L > 0 and α > 0 such that, for any i, j ∈
{1, 2, . . . , N} with i 6= j,

||Tni x− Tnj y|| ≤ L||x− y||α, ∀n ≥ 1,

for all x, y ∈ K.

Then the implicit iterative sequence {xn} defined by (1.2) converges strongly
to a common fixed point of {T1, T2, . . . , TN} in K.

Proof. For any given p ∈ F =
⋂N
i=1 F (Ti), by the same method as given in

proving (1.8) and (2.21), we can prove that

lim
n→∞

||xn − p|| = d, (2.22)

where d ≥ 0 is some nonnegative number, and

lim
k→∞

||xnk − Tlxnk || = 0, ∀l = 1, 2, . . . , N. (2.23)

Especially, we have

lim
k→∞

||xnk − T1xnk || = 0. (2.24)

By the assumption, T1 is semi-compact, therefore it follows from (2.24) that
there exists a subsequence {xnki} ⊂ {xnk} such that xnki → x∗ ∈ K. Hence
from (2.23) we have that

||x∗ − Tlx∗|| = lim
ki→∞

||xnki − Tlxnki || = 0, ∀l = 1, 2, . . . , N,
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which implies that

x∗ ∈ F =
N⋂
i=1

F (Ti).

Take p = x∗ in (1.8), similarly we can prove that

lim
n→∞

||xn − x∗|| = d1,

where d1 ≥ 0 is some nonnegative number. From xnki → x∗ we know that
d1 = 0, i.e., xn → x∗. This completes the proof of Theorem 2.4.

Theorem 2.5. Let E be a real uniformly convex Banach space, K be a
nonempty closed convex subset of E, {T1, T2, . . . , TN} : K → K be N asymp-
totically nonexpansive mappings with F =

⋂N
i=1 F (Ti) 6= ∅ and there exist

an Tj, 1 ≤ j ≤ N , which is semi-compact (without loss of generality, we can
assume that T1 is semi-compact). Let {αn} be a sequence in [0, 1], {kn} be
the sequence defined by (1.1) and σ = supn≥1 kn ≥ 1 satisfying the following
conditions:

(i)
∑∞

n=1(kn − 1)αn <∞;

(ii) 0 < τ1 = inf{αn : n ≥ 1} ≤ sup{αn : n ≥ 1} = τ2 <
1
σ2 ;

(iii) there exists constants L > 0 and α > 0 such that, for any i, j ∈
{1, 2, . . . , N} with i 6= j,

||Tni x− Tnj y|| ≤ L||x− y||α, ∀n ≥ 1,

for all x, y ∈ K.
Then the implicit iterative sequence {xn} defined by (1.3) converges strongly
to a common fixed point of {T1, T2, . . . , TN} in K.

Proof. Taking βn = 0, un = vn = 0, ∀n ≥ 1 in Theorem 2.4, then the
conclusion of Theorem 2.5 can be obtained from Theorem 2.4 immediately.
This completes the proof of Theorem 2.5.

Remark 2.1. Since 0 ≤ (kn − 1)αn ≤ kn − 1, therefore, it is easy to see
that if condition (ii) is replaced by (ii’):
(ii’)

∑∞
n=1(kn − 1) <∞,

then the conclusion of Theorem 2.1–2.5 all are holds.

Remark 2.2. It is pointed out Xu and Ori [14] that is unclear what as-
sumptions on the mappings {T1, T2, . . . , TN} and / or the parameters {αn}
are sufficient to guarantee the strong convergence of the sequence {xn}.
However, Theorem 2.4 and Theorem 2.5 answered this open question to
some extent.
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Remark 2.3. Theorem 2.2 improves and extends Theorem 3.1 of Chang
and Cho [2] in its two aspects:

(1) The key condition “
∑∞

n=1(kn − 1) < ∞” is replaced by more weak
condition “

∑∞
n=1(kn − 1)αn <∞”.

(2) The implicit iterative process {xn} in [2] is replaced by the more gen-
eral and new implicit iterative process {xn} with errors defined by
(1.2).

Remark 2.4. Theorem 2.2 improves and extends Theorem 1 of Zhou and
Chang [15] in the following ways:

(1) The key condition “
∑∞

n=1(kn − 1) < ∞” is replaced by more weak
condition “

∑∞
n=1(kn − 1)αn <∞”.

(2) The condition (v) in [15, Theorem 1]: there exists a constant L > 0
such that for any i, j ∈ {1, 2, . . . , N}, i 6= j

||Tni x− Tnj y|| ≤ L||x− y||, ∀n ≥ 1, ∀x, y ∈ K

is replaced by the more general condition (v) in Theorem 2.2.
(3) The implicit iterative process {xn} in [15] is replaced by the more

general and new implicit iterative process {xn} with errors defined by
(1.2).

Remark 2.5. Theorem 2.4 improves and extends Theorem 3 of Zhou and
Chang [15] in its three aspects:

(1) The mappings {T1, T2, . . . , TN} : K → K be N semi-compact in [15,
Theorem 3] is extended to requiring only one member T in the family
{T1, T2, . . . , TN} to be semi-compact.

(2) The class of nonexpansive mappings is extended to more general
asymptotically nonexpansive mappings.

(3) The implicit iterative process {xn} in [15] is replaced by the more
general and new implicit iterative process {xn} with errors defined by
(1.2).

Remark 2.6. Theorem 2.1–2.5 generalize and improve the main results of
Bauschke [1], Halpern [6], Lions [7], Reich [9], Wittmann [13], Xu and Ori
[14] in the following aspects:

(1) The class of Hilbert spaces is extended to that of Banach spaces sat-
isfying Opial’s or semi-compactness condition.

(2) The class of nonexpansive mappings is extended to that of asymptot-
ically nonexpansive mappings.

(3) The implicit iterative process {xn} is replaced by the more general and
new implicit iterative process {xn} with errors defined by (1.2).
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(4) The methods of the proofs used in this paper are different from those
of used in the papers of [1], [6], [7], [9], [13] and [14].

Acknowledgements. The author sincerely thanks the referees for their
valuable suggestions.
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