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Abstract. We investigate the functional equation
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for f : M → S, where M is an Abelian 2- and 3-divisible group and S
is an abstract convex cone. The motivation for studying this equation
came from results due to Tiberiu Trief [8] and Young Whan Lee [3],
where equation (1) was considered with constants a = 3, b = 2 and
a = 9 and b = 4, respectively.

1. Let (M,+) be an Abelian group in which the unique division by 2 and 3 is
performable. Let (S,+) be an Abelian semigroup. Suppose that S contains
the identity element 0 and for each λ ≥ 0 and s ∈ S, an element λ · s in S is
defined. It is assumed that the multiplication [0,∞)×S 3 (λ, s) 7−→ λ·s ∈ S
satisfies the following axioms:

1 · s = s, λ(µ · s) = (λµ) · s,
λ · (s+ t) = λ · s+ λ · t, (λ+ µ) · s = λ · s+ µ · s
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20 W. SMAJDOR

for all s, t ∈ S and λ, µ ≥ 0. Then S is said to be an abstract convex cone
(see e.g. [7]).

If s, t, t′ ∈ S, t + s = t′ + s always implies that t = t′, then S is said to
satisfy the cancellation law.

Suppose that an invariant with respect to translations and positively
homogeneous metric % is given in S, i.e.,

%(t+ s, t′ + s) = %(t, t′)

and
%(λs, λt) = λ%(s, t)

for λ > 0 and s, t, t′ ∈ S.
It is easy to see that the mappings [0,∞)× S 3 (λ, s) 7−→ λ · s ∈ S and

S × S 3 (s, t) 7−→ s+ t ∈ S are continuous in the metric topology.
We are going to examine functional equation (1) where a, b are non-

negative constants and f is an unknown function defined in M with values
in S. Equation (1) in the case a = 3, b = 2 was studied in the paper of
Tiberiu Trif [8] in the class of functions f : X → Y , where X and Y are real
vector spaces. For the same a and b equation (1) was considered in [6] for
functions f : M → S. In paper [6] it has been shown that every solution of
the equation
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has to be of the form

f(x) = f(0) + a(x), (3)

where a : M → S is an additive function. In the case a = 9 and b = 4
equation (1) was considered in paper [3] of Yong Whan Lee also in the class
of functions f : X → Y , where X,Y are real vector spaces.

One could believe that the natural domain of equation (2) is a convex
set. The following example shows that there are solutions f : M → S of (2)
which does not have to be of form (3). We take f(x) = [0, 1−x] for x ∈ [0, 1].
This function has values in the convex cone cc(R) of all non-empty convex
compact subsets of R and is a solution of the Jensen functional equation

f
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)
=

1
2

(f(x) + f(y)) (4)

so it is a solution of (2) but it cannot be represented in the form f(x) =
f(0) + a(x), where a is an additive function (cf. [5]).
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2. In the sequel we will assume that
(a) M is an Abelian group with zero in which the unique division by 2

and 3 is performable;
(b) S is an abstract cone satisfying the cancellation law;
(c) (S, ρ) is a complete metric space and ρ is translation invariant and

positively homogeneous.
We start from the following lemma.

Lemma 1. If λ ·s = µ ·s for some λ, µ ≥ 0 and s ∈ S, then s = 0 or λ = µ.

Proof. If λ 6= µ, for example λ > µ, then λ ·s = ((λ− µ) + µ) ·s = (λ−µ) ·
s+ µ · s, whence (λ− µ) · s = 0. Thus 0 = ρ ((λ− µ) · s, 0) = (λ− µ)ρ(s, 0).
Since λ 6= µ, ρ(s, 0) = 0 and s = 0 follows.

Of course, the zero function is a solution of (1).

Proposition. If f : M → S is a non-zero solution of (1), then

a = 3(b− 1). (5)

Proof. There exists an x0 ∈ M such that f(x0) 6= 0. Setting x = y = z
= x0 in (1) we obtain

(a+ 3)f(x0) = 3bf(x0).

Thus by Lemma 1 formula (5) follows. 2

Since a, b are non-negative constants, b ≥ 1.

Theorem 1. Let a = 3(b − 1). If f : M → S is a solution of (4), then f
satisfies (1). Conversely, if b ≥ 1, b 6= 4, and f : M → S is a solution of
(1), then f satisfies (4).

Proof. Suppose that f : M → S is a solution of (4). Since
f ((1/3)(x+ y + z)) = (1/3) (f(x) + f(y) + f(z)),

3(b− 1)f
(
x+ y + z

3

)
+ f(x) + f(y) + f(z) = b [f(x) + f(y) + f(z)] .

The right hand side of (1), in virtue of (4), is also equal to
b [f(x) + f(y) + f(z)], so the first statement of the theorem follows.

Now, assume that b = 1 and that f is a solution of (1). Then a = 0 and
f satisfies the equation

f(x) + f(y) + f(z) = f
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By letting y = z = 0 in (6), we infer

f(x) + f(0) = 2f
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)
.

Next putting z = 0 in (6) we obtain hence
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Consequently f satisfies (4).
Now suppose that b > 1. Let us assume that f is a solution of (1) and

write

g(x) :=
1
2

(f(x) + f(−x)) , x ∈M.

Of course g is a solution of (1), i.e.,
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(7)

g is even and g(0) = f(0).
We note that x = y + z = 0 in (7) gives

3(b− 1)g(0) + g(0) + 2g(y) = 2bg
(y

2

)
+ bg(0).

Hence
2(b− 1)g(0) + bg(0) + 2g(y) = 2bg

(y
2

)
+ bg(0)

and after cancelling bg(0) we have

(b− 1)g(0) + g(y) = bg
(y

2

)
,

whence

g(y) =
1
b
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(
1− 1

b

)
g(0). (8)

Inserting 2y instead of y we get

g(2y) =
1
b
g(22y) +
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b

)
g(0).
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We substitute the last equality into (8) to obtain
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1
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b2
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g(0).

By induction
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for all y ∈M and n ∈ N.
We will prove that the sequence ((1/bn)g (2ny)) satisfies the Cauchy con-

dition. For every positive integers m and n we have by (9)
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Thus we may define the function G : M → S as follows

G(y) = lim
n→∞

1
bn
g (2ny) . (10)

Of course G(0) = 0, G is also even and by (9)

g(y) = g(0) +G(y) = f(0) +G(y), y ∈M. (11)

Setting 2nx, 2ny, 2nz instead of x, y, z, respectively, in (7) we obtain on
letting n→∞,
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(12)

i.e., G is a solution of (1). By (10)

G(2y) = lim
n→∞

1
bn
g
(
2n+1y

)
= b lim

n→∞

1
bn+1 g

(
2n+1y

)
= bG(y).

Thus (12) becomes

3(b− 1)G
(
x+ y + z

3

)
+G(x) +G(y) +G(z)

= G(x+ y) +G(y + z) +G(z + x).
(13)
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If we put y = z = 0, then we obtain the condition

3(b− 1)G
(x

3

)
= G(x), x ∈M. (14)

This equality and (13) lead to

G(x+ y + z) +G(x) +G(y) +G(z) = G(x+ y) +G(y + z) +G(z + x).

Taking y + z = 0 we obtain

2G(x) + 2G(y) = G(x+ y) +G(x− y), x, y ∈M,

so G is a quadratic function. By (14)

3(b− 1)G(x) = G(3x), x ∈M.

On the other hand G(3x) = 9G(x) for each x ∈ M . Thus 3G(x) =
(b− 1)G(x), x ∈ M . Note that by the assumption b 6= 4. Consequently by
Lemma 1, G = 0 in M . So by (11) we get g(y) = f(0) for y ∈ M , whence
f(x) + f(−x) = 2f(0) for all x ∈M .

Putting z = −y in (1) we obtain
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We observe that the left-hand side does not depend on y. So setting y = 0
in the above equality and comparing the right-hand sides we derive

f
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2
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, x, y ∈M.

Consequently f is a solution of the Jensen functional equation (4).

It is not difficult to check that every quadratic function q : M → S is a
solution of the equation

9f
(
x+ y + z

3

)
+ f(x) + f(y) + f(z)

= 4
[
f

(
x+ y

2

)
+ f

(
y + z

2
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+ f

(
z + x

2

)]
.

(15)

Analysing the proof of Theorem 1 one may obtain the following result.

Theorem 2. If f : M → S is a function, then f is an even solution of (15)
if and only if there exists a quadratic function q : M → S such that

f(x) = f(0) + q(x), x ∈M.
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3. We do not know if every solution f : M → S of (15) has to be of the
form f(x) = f(0) + a(x) + q(x), x ∈ M , where a : M → S is an additive
function and q : M → S is a quadratic one. To obtain more informations
about solutions of equation (15) we will embed the abstract convex cone S
into a real vector space. We use the idea of H. R̊adström (cf. [4]).

The equivalence relation in S × S = S2 is defined as follows

(s, t) ∼ (u, v)⇔ s+ v = t+ u.

The equvalence class containing a pair (s, t) is denoted by [s, t]. The quotient
space S2/ ∼ is denoted by X. We define the addition in X by the formula

[s, t] + [u, v] = [s+ u, t+ v]

and if λ ≥ 0, then
λ[s, t] = [λ · s, λ · t]

while if λ < 0, then
λ[s, t] = [−λ · t,−λ · s].

With these operations the set X becomes a real vector space.
Suppose that f : M → S is a solution of (15). It is easy to check that the

function F : M → X

F (x) := [f(x), f(0)] (16)

is a solution of the equation

9F
(
x+ y + z

3

)
+ F (x) + F (y) + F (z)

= 4
[
F

(
x+ y

2

)
+ F

(
y + z

2

)
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(
z + x

2

)]
.

(17)

Conversely, if F given by (16) satisfies (17), then f is a solution of (15).

Theorem 3. If f : M → S is a solution of (15), then functions a, q : M →
X defined as follows

a(x) =
1
2

[f(x), f(−x)],

q(x) =
1
2

[f(x) + f(−x), 2f(0)]

satisfy equation (17) and a is an additive function, q is a quadratic one.
Moreover F (x) = a(x) + q(x), x ∈M , where F is given by formula (16).

Proof. We observe that a(0) = 0 and q(0) = 0, where the second zero in
the last equalities is zero of the vector space X. Further,

a(−x) =
1
2

[f(−x), f(x)] = −1
2

[f(x), f(−x)] = −a(x)
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and
q(−x) =

1
2

[f(x) + f(−x), 2f(0)] = q(x).

Now we are going to show that a is a solution of (17). By the definition of
operations “+” and “·” we have

18a
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f
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2

)
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f
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2

)
+ f

(
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2
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2
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2

)
, f

(
−x+ y

2

)]
+ 4

[
f

(
y + z

2
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2
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(
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)]
= 8a

(
x+ y

2
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Hence

9a
(
x+ y + z

3

)
+ a(x) + a(y) + a(z)

= 4a
(
x+ y

2

)
+ 4a

(
y + z

2
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(
z + x

2

)
.

(18)

In order to prove that a is additive at first we put y+z = 0 in (18). Then

9a
(x

3

)
+ a(x) = 4a

(
x+ y

2

)
+ 4a

(
x− y

2

)
. (19)

Next, putting y = x in (19) we have

9a
(x

3

)
= 3a(x).

Thus

a(3x) = 3a(x), x ∈M. (20)
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Further letting x = 3y in (19) we get

9a(y) + a(3y) = 4a(2y) + 4a(y).

This equality and (20) imply

a(2y) = 2a(y), y ∈M. (21)

From (18) taking into account (20) and (21) we obtain

3a(x+ y + z) + a(x) + a(y) + a(z) = 2a(x+ y) + 2a(y + z) + 2a(z + x).

For z = −x− y we have hence

a(x) + a(y)− a(x+ y) = 2a(x+ y)− 2a(x)− 2a(y),

whence the additivity of a follows.
Now we will show that q is also a solution of (17). To see this note that

18q
(
x+ y + z

3

)
+ 2q(x) + 2q(y) + 2q(z)

= 9
[
f

(
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3

)
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(
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3

)
, 2f(0)

]
+ [f(x) + f(−x), 2f(0)] + [f(y) + f(−y), 2f(0)] + [f(z) + f(−z), 2f(0)]

=
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9f
(
x+ y + z

3

)
+ f(x) + f(y) + f(z) + 9f

(
−x+ y + z

3

)
+f(−x) + f(−y) + f(−z), 24f(0)]

=
[
4f
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2

)
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(
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2

)
+ 4f

(
z + x

2

)
+4f

(
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)
+ 4f

(
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2

)
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(
−z + x

2

)
, 24f(0)
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= 4

[
f
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2

)
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(
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2

)
, 2f(0)

]
+ 4

[
f

(
y + z

2

)
+ f

(
−y + z

2

)
, 2f(0)

]
+ 4

[
f

(
z + x

2

)
+ f

(
−z + x

2

)
, 2f(0)

]
= 8q

(
x+ y

2

)
+ 8q

(
y + z

2

)
+ 8q

(
z + x

2

)
.

Thus q satisfies the functional equation

9q
(
x+ y + z

3

)
+ q(x) + q(y) + q(z)

= 4q
(
x+ y

2

)
+ 4q

(
y + z

2

)
+ 4q

(
z + x

2

)
.

(22)
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Now we proceed to show that q is quadratic. We substitute x+ z = 0 in
(22) to obtain

9q
(y

3

)
+ 2q(x) + q(y) = 4q

(
x+ y

2

)
+ 4q

(
y − x

2

)
. (23)

Taking y = 0 in (23) one has

q(x) = 4q
(x

2

)
,

whence the relation

q(2x) = 4q(x) (24)

follows. Further putting x = 0 in (23) leads to the relation

9q
(y

3

)
+ q(y) = 8q

(y
2

)
.

whence by (24)

q(3y) = 9q(y). (25)

Finally, with (24) and (25), equality (23) becomes

2q(x) + 2q(y) = q(x+ y) + q(x− y), (26)

i.e., q is a quadratic function.
At the end notice that

a(x) + q(x) =
1
2

[f(x), f(−x)] +
1
2

[f(x) + f(−x), 2f(0)]

=
1
2

[2f(x) + f(−x), f(−x) + 2f(0)] =
1
2

[2f(x), 2f(0)]

= [f(x), f(0)] = F (x).

Theorem 4. A function f : M → S is a solution of (15) if and only if f
satisfies the system of the functional equations

f(x+ y) + f(−x) + f(−y) = f(−x− y) + f(x) + f(y) (27)

2f(0) + f(x+ y) + f(x− y) = 2f(x) + f(y) + f(−y). (28)

Proof. Assume that f is a solution of (15). Theorem 3 says that

a(x) =
1
2

[f(x), f(−x)]

is an additive function what means a(x+ y) = a(x) + a(y) for x, y ∈M , or

[f(x+ y), f(−x− y)] = [f(x), f(−x)] + [f(y), f(−y)]. (29)
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(27) is an immediate consequence of (29). Similarly

q(x) =
1
2

[f(x) + f(−x), 2f(0)]

is quadratic. Thus q satisfies equation (26). Consequently

[f(x) + f(−x), 2f(0)] + [f(y) + f(−y), 2f(0)]

=
1
2

[f(x+ y) + f(−x− y), 2f(0)] +
1
2

[f(x− y) + f(−x+ y), 2f(0)].

The last equality may be rewritten as

f(x+ y) + f(−x− y) + f(x− y) + f(−x+ y) + 4f(0)

= 2f(x) + 2f(−x) + 2f(y) + 2f(−y)

or

f(x+ y) + f(x− y) + f(−x− y) + f(x) + f(y) + f(−x+ y)

+ f(x) + f(−y) + 4f(0) = 4f(x) + 2f(−x) + 3f(y) + 3f(−y).

From (27) the left-hand side of the above relation may be rewritten as

f(x+y)+f(x−y)+f(x+y)+f(−x)+f(−y)+f(x−y)+f(−x)+f(y)+4f(0).

Cancelling 2f(−x) + f(y) + f(−y) we obtain

2f(x+ y) + 2f(x− y) + 4f(0) = 4f(x) + 2f(y) + 2f(−y),

whence (28) follows.
Conversely, if f : M → S is a solution of system (27)–(28), then a given

by formula

a(x) =
1
2

[f(x), f(−x)]

is an additive function by (27) and

q(x) =
1
2

[f(x) + f(−x), 2f(0)]

is a quadratic one by (28) and (27). Thus both of them are solutions of
equation (17). Consequently their sum

a(x) + q(x) = F (x) = [f(x), f(0)]

is also a solution of this equation, whence it follows that f satisfies (15).

Remark 1. If f is a solution of (15), then g(y) = (1/2) (f(y) + f(−y)) is
an even solution of this equation. From Theorem 2, g(y) = g(0) + q(y),
where q is a quadratic function. Thus (28) may be rewritten as follows

f(x+ y) + f(x− y) = 2f(x) + 2q(y).
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Remark 2. We are not able to solve the system of equations (27)–(28) in
the class of functions f : M → S. It is known that the only solutions of
equation (15) in the class of functions f : M → Y , where Y is a real vector
space, are of the form

f(x) = b+ a(x) + q(x), (30)

where b ∈ Y , a is additive and q is quadratic (cf. [3]). Thus with respect to
Theorem 4 all solutions of the system of (27)–(28) are of form (30).

4. Let X be a real Banach space and let clb(X) denote the hyperspace of
all non-empty convex closed bounded subset of X. It is clear that clb(X)
is an abstract convex cone with the addition given by

A
∗
+ B = cl(A+B),

where clA denotes the closure of the set A, and with the multiplication λA
by non-negative numbers λ. The identity element of clb(X) is the singleton
{0}. In this convex cone the cancellation law holds true. This is a conse-
quence of a generalization (cf. [7], also [1, Theorem II-17, p. 48]) of the
R̊adström’s lemma (cf. [4]). The convex cone clb(X) may be endowed with
the Hausdorff metric

h(A,B) = inf{t > 0: A ⊂ B + tK,B + tK},
where K is the closed unit ball in X. The metric h is translation invariant
(cf. [2]), positively homogeneous and complete (cf. [1]) in clb(X)). Con-
sequently all the obtained results may be transfered to the set-valued case.
For example we can derive the following result from Theorem 1.

Theorem 5. Assume that b ≥ 1. If F : M → clb(X) is a solution of the
functional equation

F

(
x+ y

2

)
=

1
2

(
F (x)

∗
+ F (y)

)
, x, y ∈M, (31)

then F is a solution of the functional equation

3(b− 1)F
(
x+ y + z

3

)
∗
+ F (x)

∗
+ F (y)

∗
+ F (z)

= b

[
F

(
x+ y

2

)
∗
+ F

(
y + z

2

)
∗
+ F

(
z + x

2

)]
.

(32)

Conversely, if b ≥ 1, b 6= 4 and F : M → clb(X) is a solution of (32), then
F satisfies the Jensen functional equation (31).
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[7] Urbański, R., A generalization of Minkowski-R̊adström-Hörmander theorem, Bull.
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