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Abstract. We investigate the functional equation
r+y+z

of Ty @) "
1
:bfx;y iy y;rz ny z;x

for f: M — S, where M is an Abelian 2- and 3-divisible group and S
is an abstract convex cone. The motivation for studying this equation
came from results due to Tiberiu Trief [8] and Young Whan Lee [3],
where equation (1) was considered with constants a = 3, b = 2 and
a =9 and b = 4, respectively.

1. Let (M, +) be an Abelian group in which the unique division by 2 and 3 is
performable. Let (S, +) be an Abelian semigroup. Suppose that S contains
the identity element 0 and for each A > 0 and s € S, an element \-s in S is
defined. It is assumed that the multiplication [0,00) xS > (\,s) — A-s € S
satisfies the following axioms:

1‘5257 A(:[’LS):()\:M)S7
A(s+t)=A-s+Xt, A+pu)-s=X-s+pu-s
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for all s,t € S and A\, u > 0. Then S is said to be an abstract convex cone
(see e.g. [7]).

If s,t,t' € S, t+s =t + s always implies that ¢t = ¢/, then S is said to
satisfy the cancellation law.

Suppose that an invariant with respect to translations and positively
homogeneous metric g is given in S, i.e.,

o(t + s,t' +5) = o(t, t)

and
Q()‘S7 )‘t) - )‘Q(Sa t)
for A\ >0 and s,t,t' € S.

It is easy to see that the mappings [0,00) X S 3 (A,s) — A-s € S and
S x S35 (s,t)— s+t €S are continuous in the metric topology.

We are going to examine functional equation (1) where a,b are non-
negative constants and f is an unknown function defined in M with values
in S. Equation (1) in the case a = 3, b = 2 was studied in the paper of
Tiberiu Trif [8] in the class of functions f: X — Y, where X and Y are real
vector spaces. For the same a and b equation (1) was considered in [6] for
functions f: M — S. In paper [6] it has been shown that every solution of
the equation

3f <:”+§))’+’Z> +F@) + Fy) + f(2) =

ol (52) o (57) - (5]

has to be of the form

(2)

f(z) = f(0) +a(x), (3)
where a: M — S is an additive function. In the case a = 9 and b = 4
equation (1) was considered in paper [3] of Yong Whan Lee also in the class
of functions f: X — Y, where X,Y are real vector spaces.

One could believe that the natural domain of equation (2) is a convex
set. The following example shows that there are solutions f: M — S of (2)
which does not have to be of form (3). We take f(z) = [0,1—x] for z € [0, 1].
This function has values in the convex cone cc(R) of all non-empty convex
compact subsets of R and is a solution of the Jensen functional equation

1

F(55Y) = U@+ f) (@)

so it is a solution of (2) but it cannot be represented in the form f(x) =
f(0) + a(x), where a is an additive function (cf. [5]).
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2. In the sequel we will assume that

(a) M is an Abelian group with zero in which the unique division by 2
and 3 is performable;

(b) S is an abstract cone satisfying the cancellation law;

(c) (S,p) is a complete metric space and p is translation invariant and
positively homogeneous.

We start from the following lemma.

Lemma 1. If A-s = pu-s for some \,u >0 and s € S, thens =0 or A = p.

Proof. If A\ # p, for example A > p, then A\-s = (A —p) +p)-s = (A—p)-
s+ u-s, whence (A—p)-s=0. Thus 0= p((A—p) - 5,0) = (A — u)p(s,0).
Since A # u, p(s,0) =0 and s = 0 follows. O

Of course, the zero function is a solution of (1).

Proposition. If f: M — S is a non-zero solution of (1), then

a=3(0b-1). (5)

Proof. There exists an xg € M such that f(xg) # 0. Setting z =y = 2
=z in (1) we obtain

(a+3)f(zo) = 3bf (o).
Thus by Lemma 1 formula (5) follows. O O

Since a, b are non-negative constants, b > 1.

Theorem 1. Let a = 3(b—1). If f: M — S is a solution of (4), then f
satisfies (1). Conversely, if b > 1, b # 4, and f: M — S is a solution of
(1), then f satisfies (4).

Proof. Suppose that f: M — S is a solution of (4). Since
FAB) (@ +y+2) = (1/3) (f(x) + f(y) + f(2)),

300 - 0f (TEEE) 4 )+ 1)+ 5) =0 (0) + £+ SN

The right hand side of (1), in virtue of (4), is also equal to
b[f(x)+ f(y) + f(2)], so the first statement of the theorem follows.

Now, assume that b = 1 and that f is a solution of (1). Then a = 0 and
f satisfies the equation

fa v s+ 56 = (550 s (M50 1 (550). @




22 W. SMAJDOR
By letting y = z = 0 in (6), we infer
x
f@) +10) =2 (3)-

Next putting z = 0 in (6) we obtain hence

o+ s+ 101 =1 (Z20) 0 (2) 1 (2

= (55) + 3@+ 5100+ 360+ 30)

= ("5Y) + 3@+ 3500+ 0

Consequently f satisfies (4).
Now suppose that b > 1. Let us assume that f is a solution of (1) and
write

(f(z) + f(=x)), zeM.

Of course g is a solution of (1), i.e.,

3(b—1)g ( > +9(x) +g(y) +9(2)

b3 (25) ()]

g is even and ¢(0) = f(0).
We note that z =y + 2z =0 in (7) gives

N |

g(z) ==

r+y+z

3(b—1)g(0) +g(0) +29(y) = 2bg (%) + bg(0).

Hence
)
2(b = 1)g(0) +bg(0) +29(y) = 2bg (5) +bg(0)
and after cancelling bg(0) we have
—pa (¥
(b—1)9(0) +g(y) = bg (5)
whence

o) = o)+ (1= ) g0 ®

Inserting 2y instead of y we get

9(2y) = %9(221/) + <1 - (1)) 9(0).
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We substitute the last equality into (8) to obtain

1 1
o) = o) + (1= 33 ) 90
By induction

o) = o @)+ (1) 90 )

for all y € M and n € N.
We will prove that the sequence ((1/b™)g (2"y)) satisfies the Cauchy con-
dition. For every positive integers m and n we have by (9)

: <bm1+n9 (2") e (27 >>

= 0 (Gt (270) + (1 gz ) 90) g @)+ (1 ) 90
+ (;n - bm1+n> 9(0)> =0 (g(y),g(w + (bln - bm1+n> 9(0)>
oo () ) = (&) 00

Thus we may define the function G: M — S as follows

G(y) = lim bing (2"y). (10)
Of course G(0) = 0, is also even and by (9)
9(y) =9(0) +G(y) = f(0)+G(y), yeM. (11)

Setting 2"z, 2"y,2"z instead of z,y,z, respectively, in (7) we obtain on
letting n — o0,

3(b—1)G (“g“) +G(z) + Gly) + G(2)

() e () +e (550)]

i.e., G is a solution of (1). By (10)

(12)

1
G(2y) = nan;o —g (2"+1 )="b hm

o 2"+1y) = bG(y).

1
bn+1g(
Thus (12) becomes

3(b— 1)G <"’"+5§+Z> +G@) + Gly) + Gl=)

=Gxz+y) +Gly+2)+G(z+x).
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If we put y = z = 0, then we obtain the condition

3(b—1)G <§> = G(z), ze€M. (14)
This equality and (13) lead to

Glx+y+2)+Gx)+Gly)+G(z) =Gz +y)+ Gy + 2) + G(z + z).
Taking y + z = 0 we obtain
2G(z) +2G(y) =Gz +y) + Gz —vy), =z,y€ M,

so G is a quadratic function. By (14)

3(b—1)G(x) =G3x), =€ M.

On the other hand G(3z) = 9G(z) for each x € M. Thus 3G(z) =
(b—1)G(x), x € M. Note that by the assumption b # 4. Consequently by
Lemma 1, G =0 in M. So by (11) we get g(y) = f(0) for y € M, whence
f(z)+ f(—z) =2f(0) for all =€ M.

Putting z = —y in (1) we obtain

(0~ 17 (5) 1@+ £+ 10 =0 | (50 ) w0+ 7 (5]
Hence
3b-1)f (5) + F(2) +2f(0) = {f (m;y) +f <x;y>} +b7(0).

We observe that the left-hand side does not depend on y. So setting y = 0
in the above equality and comparing the right-hand sides we derive

f<x—2ky>+f<x;y> :2f(g>, x,y € M.

Consequently f is a solution of the Jensen functional equation (4). O

It is not difficult to check that every quadratic function ¢: M — S is a
solution of the equation

9f (W) + f(2)+ fy) + £(2)

() () (5]

Analysing the proof of Theorem 1 one may obtain the following result.

(15)

Theorem 2. If f: M — S is a function, then f is an even solution of (15)
if and only if there exists a quadratic function q: M — S such that

f(x) = f(0)+q(z), ze M.
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3. We do not know if every solution f: M — S of (15) has to be of the
form f(z) = f(0) 4+ a(x) + q(z), v € M, where a: M — S is an additive
function and ¢: M — S is a quadratic one. To obtain more informations
about solutions of equation (15) we will embed the abstract convex cone S
into a real vector space. We use the idea of H. Radstrom (cf. [4]).

The equivalence relation in S x S = S? is defined as follows

(s, t) ~ (u,v) & s+v=t+u.

The equvalence class containing a pair (s, t) is denoted by [s, t]. The quotient
space S?/ ~ is denoted by X. We define the addition in X by the formula

[s,t] + [u,v] = [s + u, t + V]
and if A > 0, then
As,t] =[N s, A 1]
while if A < 0, then
As,t] = [=X-t, =\ s].
With these operations the set X becomes a real vector space.

Suppose that f: M — S is a solution of (15). It is easy to check that the
function F: M — X

F(z) = [f(x), f(0)] (16)
is a solution of the equation
9F<$+y+z>+F (y) + F(2)
(17)

AR (“Z>+F(2’?>l

16) satisfies (17), then f is a solution of (15).

~ N

Conversely, if F' given by

Theorem 3. If f: M — S is a solution of (15), then functions a,q: M —
X defined as follows

f@), (=)
(@) + F(=2),20(0)

satisfy equation (17) and a is an additive function, q is a quadratic one.
Moreover F(x) = a(x) + q(x), © € M, where F is given by formula (16).

| — N~

Proof. We observe that a(0) = 0 and ¢(0) = 0, where the second zero in
the last equalities is zero of the vector space X. Further,
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and

a(~) = 5[F(@) + (=), 27(0)] = a(a)

Now we are going to show that a is a solution of (17). By the definition of
operations “4” and “” we have

18a (x ryt Z) + 2a(z) + 2a(y) + 2a(2)

)
:9[f<x+g+z>7f<_a:+g+z>}
f

)+aww+am+aw>

T+y Y+ z z+x
=4da | — da | —— 4 .
(5) e (157) +0e (557)

In order to prove that a is additive at first we put y+2z = 0 in (18). Then

9a (g) +a(z) = 4a <x;y> +4a <x2y> (19)

Next, putting y = = in (19) we have

9 <§> = 3a(x).

(18)

Thus
a(3z) = 3a(z), =€ M. (20)
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Further letting = 3y in (19) we get
9a(y) + a(3y) = 4a(2y) + 4a(y).
This equality and (20) imply
a(2y) = 2a(y), ye€ M. (21)
From (18) taking into account (20) and (21) we obtain
Ba(z +y+2) +a(x) +aly) + a(z) = 2a(x + y) + 2a(y + z) + 2a(z + z).
For z = —x — y we have hence
a(z) + aly) — a(z + y) = 2a(z +y) — 2a(z) — 2a(y),

whence the additivity of a follows.
Now we will show that ¢ is also a solution of (17). To see this note that

15 (585 ) s 2ate) + 20000+ 2002
9{f<x+g+z>+f<_x+§+z> 2f(0)]

[f()+f( z),2f(0)] + [f(y) + f(=y), 2f(0)] + [f(2) + f(—=2),2f(0)]

x—i—y—l—z)

$+g+z>+f($) +9f<

x) + f(—y) + f(—=2),24f(0)]

:E—i-y) +af <y—|—z) Ly (z—;—m)
> >+4f <—Z;$> ,24f(0)}
¥) 270)]

Thus ¢ satisfies the functional equation

o0 (552 ) +at) + )

T+y y+z z+x
:4q<2 >+4q< 2 >—|-4q< > )
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Now we proceed to show that ¢ is quadratic. We substitute z + z =0 in
(22) to obtain

0 (¥) + 20(a) + a(y >—4q( ;y)+4q(y;””). (23)
Taking y = 0 in (23) one has

whence the relation
q(2z) = 4q(x) (24)
follows. Further putting = = 0 in (23) leads to the relation

o 2) a0 2).

whence by (24)

q9(3y) = 94(y). (25)
Finally, with (24) and (25), equality (23) becomes
29(x) +2q(y) = q(z +y) + q(z — y), (26)

i.e., q is a quadratic function.
At the end notice that

() + q(e) = 5 [£(2), F(-a)] + 5 [F() + F(~),27(0)]

= 2F(2) + f(=a), f(=2) + 2 (0)] = 5 [2f(2),2/(0)]

= [f(2), f(0)] = F ().
O

Theorem 4. A function f: M — S is a solution of (15) if and only if f
satisfies the system of the functional equations

flz+y) + f(=2)+ f(~y) = f(—z —y) + f(z) + f(v) (27)
2f(0)+ f(z+y) + flx—y) =2f(x) + fly) + f(~y). (28)

Proof. Assume that f is a solution of (15). Theorem 3 says that

is an additive function what means a(z + y) = a(z) + a(y) for z,y € M, or

[f(@+y), f(—z —y)] = [f(x), f(=2)] + [f(¥), f(=y)]. (29)
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(27) is an immediate consequence of (29). Similarly

alw) = 5[F(2) + f(~2), 2 (0)

is quadratic. Thus ¢ satisfies equation (26). Consequently
[f (@) + f(=2), 2f(0)] + [f (y) + F(—y), 2f(0)]

= UG )+ f(— =), 2 0)) + 51 — ) + (=2 +1),20(0))

The last equality may be rewritten as
f@+y)+f—z—y)+ fl@—y)+ f(—z +y) +4f(0)
=2f(x) +2f(—=) + 2f(y) + 2f(—y)
fety)+fla—y)+fl—z—y)+ f@)+ fly) + f(-z+y)
+ f(@) + f(—y) +4f(0) = 4f () + 2f(—2) + 3f(y) + 3f(—y).

From (27) the left-hand side of the above relation may be rewritten as
fa+y)+fa=y)+f(@+y)+f(—2)+f(y)+f (@e—y)+f(—2)+F(y) +4/(0).
Cancelling 2f(—x) + f(y) + f(—y) we obtain

2f(x+y) +2f(x —y) +4f(0) = 4f(x) + 2/ (y) + 2f(-y),

whence (28) follows.
Conversely, if f: M — S is a solution of system (27)—(28), then a given
by formula

is an additive function by (27) and
alw) = 5[F(z) + f(~2), 2f(0)

is a quadratic one by (28) and (27). Thus both of them are solutions of
equation (17). Consequently their sum

a(z) + q(x) = F(z) = [f(z), £(0)]

is also a solution of this equation, whence it follows that f satisfies (15). O

Remark 1. If f is a solution of (15), then g(y) = (1/2) (f(y) + f(—y)) is
an even solution of this equation. From Theorem 2, g(y) = ¢(0) + q(y),
where ¢ is a quadratic function. Thus (28) may be rewritten as follows

flx+y)+ flx—y) =2f(x) +2q(y).
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Remark 2. We are not able to solve the system of equations (27)—(28) in
the class of functions f: M — S. It is known that the only solutions of
equation (15) in the class of functions f: M — Y, where Y is a real vector
space, are of the form

f(z) =b+a(r) + q(x), (30)

where b € Y, a is additive and ¢ is quadratic (cf. [3]). Thus with respect to
Theorem 4 all solutions of the system of (27)—(28) are of form (30).

=~

4. Let X be a real Banach space and let clb(X) denote the hyperspace of
all non-empty convex closed bounded subset of X. It is clear that clb(X)
is an abstract convex cone with the addition given by

AY B=c(A+B),

where cl A denotes the closure of the set A, and with the multiplication \A
by non-negative numbers \. The identity element of clb(X) is the singleton
{0}. In this convex cone the cancellation law holds true. This is a conse-
quence of a generalization (cf. [7], also [1, Theorem II-17, p. 48]) of the
Radstrom’s lemma (cf. [4]). The convex cone clb(X) may be endowed with
the Hausdorff metric

h(A,B) =inf{t >0: AC B+tK,B+tK},

where K is the closed unit ball in X. The metric h is translation invariant
(cf. [2]), positively homogeneous and complete (cf. [1]) in clb(X)). Con-
sequently all the obtained results may be transfered to the set-valued case.
For example we can derive the following result from Theorem 1.

Theorem 5. Assume that b > 1. If F': M — clb(X) is a solution of the
functional equation
*

F(x;y>:;<F(x)+F(y)), x,y € M, (31)

then F is a solution of the functional equation

3(b—1)F <“§+Z> L F) ¥ F(y) + F()

THY\ * y+z\ * z+x
=b|F F F .
() () ()
Conversely, if b >1,b# 4 and F: M — clb(X) is a solution of (32), then
F satisfies the Jensen functional equation (31).

(32)
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