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Abstract. The notion of the resolvability of a topological space was
introduced by E. Hewitt [8]. Recently it was understood that this no-
tion is also important in the study of ω-primitives, especially in the
case of nonmetrizable spaces. In the present paper a criterion for the
resolvability of a topological space at a point (“local resolvability”) is
given. This criterion, stated in terms of oscillation and quasicontinuity,
permits to conclude, for instance, that on irresolvable spaces no posi-
tive continuous real-valued function has an ω-primitive. The result is
strenghtened in the case of SI-spaces. It is also shown that every non-
negative upper semicontinuous function on a resolvable Baire space has
an ω-primitive.

1. Basic definitions and preliminaries

Throughout the paper only dense-in-themselves topological spaces will
be considered. Let X = (X, τ) be a topological space. To each function
F : X → R one associates the upper and lower Baire functions

M(F, ·) : X → R, m(F, ·) : X → R (1)
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defined by

M(F, x) = inf
U(x)∈τx

sup
ξ∈U(x)

F (ξ), (2)

m(F, x) = sup
U(x)∈τx

inf
ξ∈U(x)

F (ξ) (3)

where U(x) ranges over a neighborhood base τx for the topology τ at x ∈ X.
One can easily check that these values are independent of the choice of τx.

It is well known that M(F, ·) is upper semicontinuous while m(F, ·) is
lower semicontinuous on X.

Recall that a function ϕ : X → R is said to be upper (lower) semicontinu-
ous if for each a ∈ R the set {x ∈ X : ϕ(x) < a} (resp. {x ∈ X : ϕ(x) > a})
is open.

We will use the abbreviations USC and LSC for “upper semicontinuous”
and “lower semicontinuous”.

Definition 1. The value

ω(F, x) = M(F, x)−m(F, x) ∈ [0,∞]. (4)

is called the oscillation of F at a point x.

Regarding definition (4), we adopt the convention: +∞− (−∞) = +∞,
and +∞− a = +∞, a− (−∞) = +∞ for a ∈ R. Note that (4) can also be
written in the form

ω(F, x) = inf
U(x)∈τx

sup
x′,x′′∈U(x)

(F (x′)− F (x′′)). (5)

Definition 2. Let X = (X, τ) be a topological space and a USC function
f : X → [0,∞] be given. If there exists a function F : X → R such that

∀x ∈ X : ω(F, x) = f(x)

then we call F an ω-primitive for f .

Note that f may take the value +∞ while, according to our definition,
an ω-primitive should be finite.

By the “ω-problem” (on a topological space X) we mean the problem of
the existence of an ω-primitive for a given USC function f : X → [0,∞]. The
ω-problem was completely solved in the case of metric spaces [5]. Namely,
the following results were obtained.

Theorem 1. ([5], Theorems 3, 4∗) Let X = (X, d) be an arbitrary metric
space and f : X → [0,∞) (or f : X → [0,∞]) a USC function which vanishes
∗Correction: in the statement of Theorem 4 in [5] the inequality −g < F ≤ f should

be replaced by −g < F <∞. The proof remains unchanged.
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at each isolated point of X. Then for each LSC function g : X → (0,∞)
there exists a function F : X → R such that ω(F, ·) = f and −g < F ≤ f
(respectively: −g < F < ∞). Such a function F can always be found in at
most Baire class 2.

It is worth noting that generally one cannot eliminate an LSC function
g > 0 without failing Theorem 1 if the inequality −g < F ≤ f we replace
by 0 ≤ F ≤ f . This will follow from Theorem 2. But first we recall some
necessary definitions from [3].

A metric space X is called:

1) σ-discrete at a point x ∈ X if x has a neighborhood which is a σ-
discrete set;

2) locally σ-discrete if X is σ-discrete at each x ∈ X;
3) massive if X is not σ-discrete at any of its points.

It is clear that these definition are also valid for topological spaces. In [5]
it was shown that

a) Each locally σ-discrete metric space is σ-discrete.
b) Each metric space X can be written in the form of the disjoint union

X = Σ(X) ∪M(X), where Σ(X), M(X) are respectively σ-discrete
and massive subspaces of X (one of them may be empty). Such a
decomposition of X is unique.

Observe that Σ(X) is open while M(X) is closed and dense in itself (if
nonempty).

Open problem. Do (or under what conditions) claims a), b) hold for non-
metrizable spaces?

Now let us prove

Theorem 2. Let X = (X, d) be a dense-in-itself metric space. Assume
that each USC function f : X → [0,∞) has an ω-primitive F such that
0 ≤ F ≤ f . Then X is a massive space.

Proof. Assume that X is not massive. Then we have the decomposition
X = Σ(X)∪M(X) with Σ(X) 6= ∅. As Σ(X) is σ-discrete, then by Lemma
2 of [3] it can be represented in the form

Σ(X) =
∞⋃
n=1

Cn
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where ∆Cn := inf{d(x1, x2) : x1, x2 ∈ Cn, x1 6= x2} > 0 for each n ∈ N.
Consider f : X → [0,∞) defined by

f(x) =

0 if x ∈M(X);
n+ 1
n

if x ∈ Cn, n ∈ N.
Since ∆Cn > 0, n ∈ N, we have that no point of Σ(X) is an accumulation
point of any Cn, n ∈ N. It easily follows, in view of the construction of f ,
that

∀x ∈ Σ(X) : f(x)− lim sup
y→x

f(y) > 0. (6)

This obviously implies that f is USC on X. Note that since X is dense in
itself, its open subset Σ(X) is so too, and therefore the upper limit in (6)
exists. By assumption, there is an ω-primitive F for f such that 0 ≤ F ≤ f .
It follows that (cf. (1))

∀x ∈ X : m(F, x) = 0 (7)

and

∀x ∈ X : M(F, x) = f(x). (8)

Note that M(F, x) = max{F (x), lim supy→x F (y)}. Since F ≤ f , we get, in
view of (6),

∀x ∈ Σ(X) : lim sup
y→x

F (y) ≤ lim sup
y→x

f(y) < f(x).

It follows by (8), that F (x) = f(x) for each x ∈ X. This implies, taking
into account the construction of f , that F (x) > 1 for each x ∈ Σ(X), which
contradicts (7). Our argument thus shows that there should be Σ(X) = ∅.
Therefore X =M(X) what was to be shown.

Thus 0 ≤ F ≤ f cannot hold for X σ-discrete. It should also be noted
that the metrizability of a space is only a sufficient condition for the ex-
istence of an ω-primitive. For instance, in [4] some special classes of non-
metrizable first countable T1-spaces without isolated points were considered
for which the question of the existence of ω-primitives is answered affirma-
tively.

In the present paper it will be shown, in particular, that results analogous
to Theorem 1 need not hold for nonmetrizable topological spaces. This is the
case of the so-called irresolvable spaces. To this end we will use Theorem 3.

To simplify notations, we will sometimes write X instead of (X, τ), if no
confusion could arise. The closure of a set E ⊂ X will be denoted by E and
by Int E we denote the interior of E.
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Definition 3 ([8]). A topological space X is said to be resolvable if there
exists a set S ⊂ X which is dense and boundary in X, i.e. S = X \ S = X.
Such a set (as well as its complementary X \S) is called a CD-set. A space
which is not resolvable is called irresolvable.

It is immediate from Definition 3 that a resolvable space is dense in itself
and the following are equivalent:

(a) The space X is resolvable.
(b) There exist two disjoint sets A, B ⊂ X such that each of them is dense

in X.
E. Hewitt pointed out in [8] that “all commonly studied” dense-in-

themselves topological spaces are resolvable. In particular, he proved that
first countable T0-spaces without isolated points are resolvable. It follows,
by the way, that all nonmetrizable spaces considered in [4] are resolvable.
Amazingly, it was shown in [8] that irresolvable spaces do exist. Since then,
numerous research papers related to that topic have appeared (see, e.g., a
survey article by W. W. Comfort [1]).

Definition 4 ([8]). A subset E of a topological space X is said to be re-
solvable if E is resolvable as a topological space equipped with the subspace
topology.

We introduce the following

Definition 5. A topological space X is said to be resolvable at a point
x0 ∈ X if each open neighborhood of x0 contains a nonempty open subset
which is resolvable.

Lemma 1 ([8], Theorem 20). A topological space X is resolvable if and
only if every nonempty open subset of X contains a set which is resolvable.

This proposition immediately implies, in view of Definition 5, the follow-
ing corollary we will use later.

Corollary 1. If a topological space X is resolvable at each point of a set E
dense in X then X is resolvable.

Observe that each nonempty open subset of a resolvable space is resolv-
able [8].
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2. A criterion for local resolvability of a space

In this section we prove a necessary and sufficient condition for the resolv-
ability of a space at a point, what may be called as a “local resolvability”.
In Section 3 some consequences will be deduced from that criterion. Recall
the following

Definition 6 (see, e.g., [10]). Let X = (X, τ) be a topological space. A
function f : X → R is called quasicontinuous at x0 ∈ X if for each ε > 0
and each open neighborhood W (x0) of x0 there is a nonempty open set
U ⊂W (x0) such that for each x ∈ U we have |f(x)− f(x0)| < ε.

It is obvious that each continuous function is quasicontinuous.

Theorem 3 (a criterion for local resolvability). Let X = (X, τ) be a topo-
logical space. In order that X be resolvable at a point x0, it is necessary and
sufficient that the following condition be satisfied.

There exists an open neighborhood G of x0 and a function F : G → R,
such that 0 < ω(F, x0) <∞ and ω(F, ·) is quasicontinuous at x0.

Proof. (I) The condition is sufficient. Fix an ε, 0 < ε < ω(F, x0)/10.
Since M(F, ·), m(F, ·) are USC and LSC functions respectively, there exists
an open neighborhood W (x0) of x0, W (x0) ⊂ G, in which these functions
are finite and such that for each x ∈W (x0) we have

M(F, x) < M(F, x0) + ε and m(F, x) > m(F, x0)− ε. (9)

Since ω(F, ·) is quasicontinuous at x0, there is a nonempty open set U ⊂
W (x0) such that for each x ∈ U we have

|ω(F, x)− ω(F, x0)| < ε. (10)

Consider the following two sets:

A =
{
x ∈ U : F (x) >

M(F, x) +m(F, x)
2

}
, (11)

B =
{
x ∈ U : F (x) <

M(F, x) +m(F, x)
2

}
. (12)

Our aim is to prove that each of these disjoint sets is dense in U . First we
will show that the inequalities

|m(F, x′′)−m(F, x′)| < 3ε, (13)

|M(F, x′′)−M(F, x′)| < 3ε (14)

hold for all x′, x′′ ∈ U .
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1) Proof of (13). In view of (9), (10) we have that for each x ∈ U

m(F, x0)− ε < m(F, x) = m(F, x)−M(F, x) +M(F, x)

< M(F, x0) + ε− ω(F, x) < M(F, x0)− ω(F, x0) + 2ε.

It follows that

∀x ∈ U : m(F, x) ∈ (m(F, x0)− ε,M(F, x0)− ω(F, x0) + 2ε)

which, clearly, implies (13).

2) Proof of (14) is similar to the proof of (13). Indeed, using again (9),
(10), we may write for each x ∈ U

M(F, x0) + ε > M(F, x) = ω(F, x) +m(F, x)

> ω(F, x) +m(F, x0)− ε > ω(F, x0) +m(F, x0)− 2ε,

whence it follows that

∀x ∈ U : M(F, x) ∈ (ω(F, x0) +m(F, x0)− 2ε,M(F, x0) + ε)

which obviously implies (14).

Finally, let us prove that the sets A, B defined by (11), (12) are both
dense in U .

3) Proof of “A is dense in U”. Assume the contrary. Then there is a
nonempty open set D ⊂ U such that

∀x ∈ D : m(F, x0)− ε < m(F, x) ≤ F (x) ≤ M(F, x) +m(F, x)
2

.

It follows by (9), (13) and (10) that

∀x′, x′′ ∈ D : F (x′′)− F (x′) ≤ M(F, x′′) +m(F, x′′)
2

−m(F, x′)

=
M(F, x′′)−m(F, x′′) + 2(m(F, x′′)−m(F, x′))

2

=
ω(F, x′′) + 2(m(F, x′′)−m(F, x′))

2

<
ω(F, x′′) + 6ε

2
<
ω(F, x0) + 7ε

2
.

Since D is open, this estimate yields (cf. (5)),

∀x ∈ D : ω(F, x) ≤ ω(F, x0) + 7ε
2

, (15)

and therefore, in view of (10), we get ω(F, x0) ≤ 9ε, a contradiction, since
ε < ω(F, x0)/10. Thus A is dense in U .
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4) Proof of “B is dense in U”. Just as in the previous argument, assume
that the claim is not true. Then there exists a nonempty open set D1 ⊂ U
such that

∀x ∈ D1 : M(F, x0) + ε > M(F, x) ≥ F (x) ≥ M(F, x) +m(F, x)
2

.

It follows, in view of (9), (14) and (10), that

∀x′, x′′ ∈ D1 : F (x′′)− F (x′) ≤M(F, x′′)− M(F, x′) +m(F, x′)
2

=
2(M(F, x′′)−M(F, x′)) + ω(F, x′)

2
<
ω(F, x0) + 7ε

2
.

Exactly like in the preceding proof, this estimation yields

∀x ∈ D1 : ω(F, x) ≤ ω(F, x0) + 7ε
2

,

which, as we have seen, leads to a contradiction ω(F, x0) ≤ 9ε, thereby
proving that the set B is dense in U .

Thus we have proved that each open neighborhood W (x0) of the point
x0 contains an open resolvable subset U (observe that, given any open set
O 3 x0, we may obviously always choose W (x0) ⊂ G ∩ O).

This means that the space X is resolvable at x0 (cf. Definition 5), what
was to be shown.

(II) The condition is necessary. To prove this, denote by D the
union of all resolvable open subsets of X. Since X is resolvable at x0, the
set D is obviously nonempty. It is also clear that it can be written in the
form

D =
⋃
s∈S

Us, (16)

where every Us is open and resolvable. Observe that from the definition of
D it follows that this set is maximal in the sense that there are no open
resolvable sets which are not contained in D.

First let us show that D is resolvable. Let Ω ⊂ D be a nonempty open
set. It is clear from (16) that there is s0 ∈ S such that Us0 ∩ Ω 6= ∅. Since
Us0 is resolvable, the set Us0 ∩Ω is resolvable too. Since Ω was an arbitrary
nonempty open subset of D, it follows by Lemma 1 that D is resolvable.

Next let us prove that x0 ∈ D. Assume this is not the case. Then
x0 ∈ X \ D, and X \ D is obviously an open neighborhood of x0. Since X
is assumed to be resolvable at x0, there is a nonempty open set V ⊂ X \D,
which is resolvable. Since V ∩ D = ∅, we have that D is a proper subset of
a resolvable open set D∪V , which contradicts the maximality of D. So, we
conclude that x0 ∈ D.
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Now we will construct a function F : G→ R with the required properties.
Since D is resolvable, there exists a CD-set A ⊂ D (in the subspace topology
of D). Put G = X and define F : G→ R letting

F (x) =

{
1 if x ∈ A
0 if x 6∈ A.

Since A and X \A are both dense in D, it is easy to see that

ω(F, x) =

{
1 if x ∈ D
0 if x 6∈ D.

(17)

Since x0 ∈ D, we have, of course, ω(F, x0) = 1, and it is trivial that ω(F, ·)
is quasicontinuous at x0 because each open neighborhood of x0 intersects D
where the oscillation of F equals 1 in view of (17). Thus F is the required
function.

3. Irresolvable spaces and ω-primitives

In this short section we deduce some almost immediate consequences of
Theorem 3. In particular, we will see that on every irresolvable space X
there are USC functions f : X → [0,∞) which have no ω-primitives. In
this connection we also consider SI-spaces which form a special class of
irresolvable spaces.

Theorem 4. Let X = (X, τ) be a dense-in-itself irresolvable space. Assume
that there exists a USC function f : X → [0,∞) and a dense set E ⊂ X
such that the following conditions are satisfied:

(a) f is quasicontinuous at each x ∈ E;
(b) f(x) > 0 for each x ∈ E.

Then f has no ω-primitive.
In particular, no continuous function f : X → (0,∞) has an ω-primitive.

Proof. Suppose that f has an ω-primitive F : X → R. Then conditions
(a), (b) imply that all assumptions of Theorem 3 are satisfied for F and
each x ∈ E (with G = X). Therefore X is resolvable at each point x ∈ E.
Since E is dense in X, we conclude by Corollary 1 that X is resolvable.
This contradiction completes the proof.

Corollary 2. Let X be a dense-in-itself topological space. If there exists
a continuous function f : X → (0,∞) having an ω-primitive, then X is
resolvable.
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Definition 7. Let X be a topological space. We say that X is ω-regular
at x0 ∈ X if there exists an open neighborhood U of x0 such that each USC
function f : U → [0,∞) has an ω-primitive F : U → R.

Observe that Definition 7 simply describes the localization of the ω-
problem.

Theorem 5. Assume that a topological space X = (X, τ) is ω-regular at
each point of a set E ⊂ X dense in X. Then X is resolvable.

Proof. First note that X is dense in itself what is immediate from assump-
tions in view of Definition 7. For each x ∈ E there is a neighborhood
Ux ∈ τx in which the ω-problem is solvable. Now for each x ∈ E we let
f : Ux → [0,∞) be equal to 1. Clearly, f is USC on the subspace Ux. Since
X is ω-regular at x, f has an ω-primitive Fx : Ux → R. Now it is obvious
that all assumptions of Theorem 3 are satisfied, hence X is resolvable at
each x ∈ E. Since E is dense in X, it remains to apply Corollary 1.

Open problem. Assume that a topological space X is ω-regular at each
of its points. Is the ω-problem solvable on X?

But of course the main open problem is whether the ω-problem is solvable
on each resolvable space.

Definition 8 ([8]). A dense-in-itself topological space X is called an SI-
space (or, simply, SI) if X has no resolvable subsets.

In [8] it was shown that SI-spaces exist and each SI-space is irresolvable.

Theorem 6. Let X be an SI-space. If a USC function f : X → [0,∞)
is quasicontinuous and positive at some point x0 ∈ X then f has no ω-
primitives.

Proof. Indeed, if f had an ω-primitive then by Theorem 3, X would be
resolvable at x0 which is impossible because X is an SI-space.
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4. ω-problem for resolvable Baire spaces and quasicontinuity

First we will show that each boundary subset of a resolvable space can
be extended to a CD-set.

Theorem 7. Let X be a resolvable space. Then for each boundary set E ⊂
X there exists a CD-set A ⊂ X such that E ⊂ A.

Proof. If E = X then obviously it suffices to put A = E. So, assume
that Int (X \ E) 6= ∅. Since X is resolvable, Int (X \ E) is resolvable too.
Therefore there exists a CD-set S ⊂ Int (X \ E) (in the subspace topology
of Int (X \E)). It remains to check that A = E ∪ S is the required CD-set.

1) Proof of A = X. Suppose this is not the case. Then there is a
nonempty open set D ⊂ X such that D ∩A = ∅ (we may take D = X \A).
Then obviously D ∩ E = ∅, whence we get

∅ 6= D ⊂ X \ E ⊂ Int (X \ E) =⇒ D ∩ S 6= ∅

(because S is dense in Int (X\E)). But this contradicts the equality D∩A =
∅. Consequently, A = X.

2) Proof of X \A = X, or, what amounts to the same, Int A = ∅.
Suppose on the contrary that Int A 6= ∅. Then we will prove that

S ∩ Int A = ∅. (18)

Assume that this equality does not hold. Then, since S ⊂ Int (X \ E), it
follows that

W = Int A ∩ Int (X \ E) 6= ∅,
(observe that W ⊂ A = E ∪ S). We then have

∅ 6= W ⊂ Int A ∩ (X \ E) = (Int A) \ E ⊂ A \ E = S,

a contradiction, because Int S = ∅. Thus (18) holds.
Recall that we have supposed that Int A 6= ∅. Then by (18) we get

∅ 6= Int A = A ∩ Int A = (E ∪ S) ∩ Int A = E ∩ Int A ⊂ E.

In other words, we have ∅ 6= Int A ⊂ E, whence Int E 6= ∅, a contradiction,
since E is a boundary set. Thus the equality X \A = X is true too, and
we conclude that A is the required CD-set.

Theorem 8. Let X = (X, τ) be a resolvable Baire space. Then every USC
function f : X → [0,∞) has an ω-primitive.
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Proof. Let D(f) denote the set of all points at which f is not continuous.
The set D(f) is of first category (cf. [7]), and since X is Baire, the set D(f)
is boundary. By Theorem 7, there exists a CD-set A ⊂ X which contains
D(f). We claim that the function F : X → R defined by

F (x) =

{
f(x) if x ∈ A
0 if x ∈ X \A

(19)

is an ω-primitive for f .
First of all observe that since F ≤ f , the function f is USC, and as X \A

is dense in X, we obviously have

∀x ∈ X : M(F, x) ≤M(f, x) = f(x) (20)

and

∀x ∈ X : m(F, x) = 0. (21)

1) Let x ∈ A. Since F (x) = f(x), we have M(F, x) ≥ f(x). It follows, in
view of (20), (21), that

∀x ∈ A : ω(F, x) = f(x). (22)

2) Let x ∈ X \A. Then f is continuous at x. Fix an ε > 0. There exists
an open neighborhood Uε of x such that

∀ξ ∈ Uε : f(ξ) > f(x)− ε. (23)

Since A is dense in each neighborhood of x, particularly in Uε, it is imme-
diate from (23) that M(F, x) ≥ f(x) − ε. Then in view of (20), we may
write

∀ε > 0: f(x)− ε ≤M(F, x) ≤ f(x)
which clearly implies M(F, x) = f(x). Therefore, in view of (21), we obtain
ω(F, x) = f(x). We conclude that

∀x ∈ X \A : ω(F, x) = f(x)

which, combined with (22), completes the proof.

Remark 1. The above theorem generalizes essentially Theorem 3 of [2]
where it was additionally assumed that X is T1 and each x ∈ X has a
neighborhood base τx well ordered by inclusion relation.

Consider the following example. Assume the ZFC theory, and let X =
(Rn, τd) where τd is the usual density topology. It is well known that X
is Baire, Hausdorff, but not first countable [9]. Moreover, X is resolvable.
Indeed, it is clear that every Bernstein set B ⊂ Rn (which exists in the ZFC
theory) is a CD-subset of X. Therefore by virtue of Theorem 8, we have
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Corollary 3. Every USC function f : (Rn, τd) → [0,∞) has an ω-
primitive.

Remark 2. In [6], Theorem 2, one can find a different and direct proof of
the statement of Corollary 3.

Next result shows that we can give up on the Baireness of the space in
Theorem 8, but instead we will assume the quasicontinuity of f .

Theorem 9. Let X be a resolvable space. Then each quasicontinuous USC
function f : X → [0,∞) has an ω-primitive.

Proof. Proof is more simple than that of Theorem 8 because we need not
make use of Theorem 7. Fix a CD-set A ⊂ X and put F = fh where
h is the characteristic function of A. It is clear that ω(F, x) = f(x) at
each x ∈ A (the argument is the same as in 1) of Theorem 8). So, let
x ∈ X \A. Fix an ε > 0. Since f is quasicontinuous, and A is dense in X, it
is obvious that every neighborhood U of x contains a point y ∈ A for which
f(y) > f(x)− ε. This yields M(F, x) ≥ f(x)− ε and since ε was arbitrary,
we have M(F, x) ≥ f(x). Since the reverse inequality M(F, x) ≤ f(x) is
trivial, we conclude that M(F, x) = f(x). But the equality m(F, x) = 0
holds for each x ∈ X because X \A is dense in X. Therefore ω(F, x) = f(x)
for x ∈ X \A. We conclude that F = fh is an ω-primitive for f .

Remark 3. Theorem 9 generalizes, for instance, Theorem 1 of [2] which
was proved for continuous f .
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