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Abstract. We investigate a class of over-determined parabolic prob-
lems involving a non-constant boundary condition. The Weinstein’s
technique known for the elliptic problems is extended to the parabolic
one by means of auxiliary functions and Green classical formula.

1. Introduction

Maximum principles are power tools for partial differential equations both
of elliptic and parabolic equations [5], [9], [10], [11], in particular the study of
the over-determined boundary value problems is of great interests. The two
different classes elliptic and parabolic problems are investigated by many
authors (see [6], [7], [15], [21]) where mostly in these kind of situations,
the normal derivative of the solution already used has a constant value on
the boundary ∂Ω of Ω, where Ω is assumed to be bounded, and in some
cases convex. We refer for existence and uniqueness of solutions of elliptic
problems to [2], [3], [4] and the references therein. In 1971, Serrin [18]
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in his elegant paper considered the following problem, called Saint-Venant
problem:

∆u = −1 in Ω, u = 0 and
∂u

∂n
= const

on the boundary ∂Ω. He showed that the only configuration of this do-
main is the ball. In his proof he used the moving plane method together
with maximum principles of E. Hopf [9], [10], [19] while Weinberger [21]
proved shortly the result by constructing a new auxiliary function. From
these new techniques arising in a class of over-determined problems was
derived many results. Unfortunately, for the elliptic boundary value prob-
lems we have limit success when the normal derivative is not constant on
the boundary ∂Ω. For example, in order to compare the solution u with
the reflected solution uλ some difficulties are met when the moving plane
is involved. In this direction many efforts are done (see [1], [8], [13], [22])
and Weinstein’s technique seems best way even if we have partial results.
Basically, the idea of Weinstein is to reduce the original problem to a new
one where the method of Serrin [18] is applicable. Alternatively, using the
continuous Steiner symmetrization with domain derivative, F. Brock [1] has
successfully proved that the domain is an N -ball when the normal derivative
depends on the radius r of the form ψ(r). With a weaker condition than of
F. Brock, Tewodros [20] used an other approach based on auxiliary func-
tions and maximum principles where he treated the Saint-Venant problem
over-determined by

∂u

∂n
= −cr,

he showed too, that Ω is an N -ball. Now the concerns herein, is to extend
the argument of Weinstein to a class of parabolic over-determined problems.
The ingredients of this investigation are auxiliary functions and classical
formula of Green. Although the proof made in this paper inspired from A.
Weinstein, the difficulties for a class of parabolic problems are met again.

This paper is organized as follows. In Section 2, we consider an initial
parabolic problem in R2, defined in an angular domain Ω where the normal
derivative of u takes two different variables data on the boundary ∂Ω and
we show that the only configuration of the non-radial component Γ is an
arc of circle for two particular cases. In Section 3, we investigate an initial
parabolic problem in R3 where the region considered Ω is tubular. We show
that the solution is axially symmetric and the corresponding components of
the domain are two co-axial circular cylinders.

In the sequel, for each section we assume that the solution for the problem
in consideration exists. In addition the domain Ω will be supposed to be of
class C2 and its boundary ∂Ω of class C2+ε.
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2. On a class of initial parabolic boundary value problems

Let Ω be an angular domain defined in polar coordinates (r, θ) by

Ω :=
{

(r cos θ, r sin θ) ∈ R2 | 0 < r < r(θ), θ ∈
[
0,
π

α

]}
,

where (r, θ) is a given positive function, bounded, defined on [0, π/α], and
α ≥ 1. We consider the initial boundary value problem

∆u = ut in Ω× (0,∞), (1)

u(x, y, t) = 0 on ∂Ω× (0,∞), (2)

u(x, y, 0) = (rα sinαθ)g(r) in Ω, (3)

where g is supposed to be of class C2 on Ω̄ and r :=
√
x2 + y2.

In (1), ∆ denotes the Laplace operator in R2, and ∂Ω is the boundary
of Ω assumed sufficiently regular. We use the comma notation with the
summation convention, i.e. the comma denotes partial differentiation and
the repeated index indicates summation over i = 1, 2, as

u,ii =
∂2u

∂x2 +
∂2u

∂y2 = ∆u, u,iu,i = |∇u|2 =
(
∂u

∂x

)2

+
(
∂u

∂y

)2

.

In the next statement we formulate our mean result

Theorem 2.1. We assume that u satisfies the problem (1)–(3) in a bounded
domain Ω, regular and convex and its boundary ∂Ω of class C2+ε. If we
impose furthermore the following boundary condition

∂u

∂n
= −c(t)rα sinαθ on Γ, t > 0, (4)

where c(t) is a positive function in t, and Γ denotes the non-radial compo-
nent of the boundary ∂Ω. Then the domain Ω is a circular sector of angle
π

α
.

The aim of this theorem is to determine for which kind of Γ the over-
determined problem (1)–(4) possesses a solution. The desired geometrical
form is determined for some particular situations, this is due to the fact
that when the original problem is not transformed to the classical problem
of Serrin, we are unable to prove or disprove in R2 the claimed configuration
stated in Theorem 2.1.

In this section, we conjecture that the only configuration of Γ for which
the over-determined problem (1)–(4) possesses a solution, is an arc of circle
centered at the origin. We investigate this conjecture for two particular
cases, α = 1 and α = 2 by means of Weinstein’s technique, already used
by Payne [12], Payne and Weinstein [13] for a class of elliptic problems.
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Since this method seems with limited success, the problem is still open for
α ≥ 3. We begin by the first case, when α = 1. In this situation the
over-determined condition (4) takes the form

∂u

∂n
= −c(t)y on Γ > 0, t > 0. (5)

The corresponding domain is situated in the first quadrant y > 0. Upon, we
prove that the geometrical form of the resulting over-determined problem
(1)–(3), (5) is a semi-disc centered at the origin. As a first step, we reduce
the over-determined problem (1)–(4) to the simplest one in the sense that
the normal derivative of the solution u will be constant on the boundary
∂Ω after what Green classical formula leads to the desired result. We make
a clear vision by considering the new reduced problem in more dimensional
space.

We set

u(x, y, t) = yv(x, y, t). (6)

We see easily that the function v defined in (6) satisfies the following con-
ditions

∆ v + 2
vy
y

= vt, v > 0 in Ω, t > 0, (7)

v(x, y, t) = 0 on Γ, t > 0, (8)
∂v

∂n
= −c(t) on Γ, t > 0, (9)

v(x, y, 0) = g(r), (x, y) ∈ Ω. (10)

For reason of compatibility, the function g appearing in (10) must satisfy
g = 0 on the boundary Γ of Ω. Furthermore, we observe that on the
x-axis the normal derivative of v is trivial, this is due to the elementary
computation

∂v

∂y
=
(
u

y

)
y

=
yuy − u
y2 . (11)

Employing (1) and (2), we get

∂v

∂y

∣∣∣
y=0

= lim
y→0

uyy
2

= 0. (12)

Now in order to reduce the problem in higher dimension, we introduce a
new function Φ defined by

Φ(x1, x2, x3, x4, t) = v(x, y, t), (x, y) ∈ Ω, t > 0, (13)
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with 
x = x1

y =
√
x2 + x2

3 + x2
4

t = t.

(14)

It is easy to check that the function Φ solves the problem in an axially
symmetric domain Ω4 generated by a spherical rotation of Ω around of its
plane of symmetry x = 0.

Indeed, the corresponding domain Ω4 is then defined in R4 by:

Ω4 = {(x1, x2, x3, x4) ∈ R4|x2
1 + x2

2 + x2
3 + x2

4 ≤ R2}.
We are thus led to a new problem in a five dimensional space by using
Φ defined in (13). In fact, Φ satisfies the following conditions leading in
particular the normal derivative constant on ∂Ω4.

∆4Φ = Φt, Φ > 0 in Ω4, t > 0, (15)

Φ = 0 on ∂Ω4, t > 0, (16)
∂Φ
∂ñ

= −c(t) on ∂Ω4, t > 0, (17)

Φ(x, 0) = g(|x|), x ∈ Ω4. (18)

In (15), ∆4 denotes the Laplacian in R4 and ñ appearing in (17) is an
outward normal vector to the boundary ∂Ω4, defined by

ñ = (ñ1, ñ2, ñ3, ñ4) ∈ R4, with

ñ1 = n1,

ñk =
n2

y
xk, k = 2, 3, 4.

(19)

As a second step, our aim is to prove that there exists a linear dependence

between some auxiliary function hi,j and its normal derivative
∂hi,j
∂n

, where
the function h,ij is defined by

hi,j = xjΦ,i − xiΦ,j , i, j = 1, 2. (20)

We note that for simplicity sake, the subscripts in (20) will be omitted for
the rest of the paper.

These functions h satisfy the following conditions

∆h = ht in Ω, t > 0, (21)
∂h

∂n
+Kh = 0 on ∂Ω, t > 0, (22)

where K denotes the mean curvature of the boundary ∂Ω. This last differ-
ential equality (22) results from the following lemma (see [15]).
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Lemma 2.1. Let v(x, t) ∈ C2(Ω̄× (0, T )) satisfy the boundary conditions

v(x, t) = Ψ(t), x ∈ ∂Ω, t ∈ (0, T ), (23)
∂v

∂n
= γ(t), x ∈ ∂Ω, t ∈ (0, T ). (24)

Then we have

vn
∂h(v)
∂n

= (xinj − xjni)vnvnn
= h(v)vnn, x ∈ ∂Ω, t ∈ (0, T ). (25)

In (24)–(25), vn and vnn stand respectively for first and second derivatives
with respect to the outward normal vector n. Now in view of the initial
condition (18), we obtain

h(x, 0) = 0, x ∈ Ω4. (26)

Combining the conditions (21) and (22) together and using a classical for-
mula of Green, we find∫

Ω4

|∇h|2dx = −
∫

Ω4

hhtdx +
∫
∂Ω4

h
∂h

∂n
ds

= −1
2

∫
Ω4

(h2)tdx−
∫
∂Ω4

Kh2ds, (27)

where K stands for positive mean curvature of the boundary ∂Ω4.
Therefore we deduce that

1
2

∫
Ω4

(h2)tdx ≤ 0. (28)

Consequently, the integral of h2 over Ω4 is decreasing in t and in view of
(26), we obtain

h = 0 in Ω4, (29)

or

Φ = Φ(r, t), (30)

and Ω4 is an N -ball in R4.
We conclude that the over-determined problem (1)–(3), (5) admits a so-

lution if and only if Ω4 is an N -ball in R4, so if and only if

Ω4 = {(x1, x2, x3, x4) ∈ R4|x1
2 + x2

2 + x3
2 + x4

2 ≤ R2 = const}, (31)

or equivalently

Ω = {(x, y) ∈ R2|x2 + y2 ≤ R2, y > 0}. (32)

The second problem to be considered corresponds to the parameter α = 2,
in this case we are concerned with the following problem
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∆u = ut in Ω× (0,∞), (33)

u(x, y, t) = 0 on ∂Ω× (0,∞), (34)

u(x, y, 0) = xyg(
√
x2 + y2), (x, y) ∈ Ω, (35)

∂u

∂n
= −xyc(t) on Γ > 0, t > 0. (36)

With a similar reasoning as above, we set

u(x, y, t) = xyv(x, y, t), (37)

and this function v defined in (37) satisfies

∆v + 2
(
vx
x

+
vy
y

)
= vt, v > 0 in Ω, (38)

v(x, y, t) = 0 on Γ, t > 0, (39)
∂v

∂n
= −c(t) on Γ, t > 0, (40)

v(x, y, 0) = g(
√
x2 + y2), (x, y) ∈ Ω. (41)

Moreover, on the two other sides of the boundary ∂Ω the normal derivative
of v is equal to zero. With a similar manner as above, we define Φ =
Φ(x, y, t), where x = (x1, x2, x3), y = (y1, y2, y3), by

Φ(x, y, t) = v(x, y, t), (x, y) ∈ Ω, t > 0, (42)

with 
x =

√
x2

1 + x2
2 + x2

3,

y =
√
y2

1 + y2
2 + y2

3,

t = t.

(43)

The corresponding domain is Ω6 defined in R6 by

Ω6 = (44)

{(x1, x2, x3, y1, y2, y3)∈R6 |x1
2+x2

2+x3
2+y1

2+y2
2+y3

2≤R2}.

In this case, the function Φ defined in (42) satisfies the following conditions
(analogous to those for α = 1).

∆6Φ = Φt, Φ > 0 in Ω6, t > 0, (45)

Φ = 0 on ∂Ω6, t > 0, (46)
∂Φ
∂ñ

= −c(t) on ∂Ω6, t > 0, (47)

Φ(x, 0) = g(|x|), x ∈ Ω6, (48)
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where ∆6 in (45) denotes the Laplacian of Φ in R6 and ñ stands for the unit
outward normal vector to the boundary ∂Ω6, defined by

ñ = (ñ1, ñ2, ñ3, ñ4, ñ5, ñ6) ∈ R6, with


ñ1 =

n1

x
xk, k = 1, 2, 3,

ñk =
n2

y
yk, k = 4, 5, 6.

(49)

Now using the same auxiliary function h defined in (20), we obtain the
following transformed over-determined problem in h

∆h = ht in Ω6, t >, 0, (50)
∂h

∂n
+Kh = 0 on ∂Ω6, t > 0, (51)

h(x, y, 0) = 0, (x, y) ∈ Ω6, t > 0, (52)

where the condition (51) results from Lemma 2.1.
Applying the first classical formula of Green (or the monotonicity of h2

with respect to t) or using the standard uniqueness theorem for parabolic
equations [16], we claim that

Φ(x, y, t) = Φ(r, t)

and Ω6 is an N -ball in R6.

Ω6 = {(x1, x2, x3, y1, y2, y3) ∈ R6 |x1
2 + x2

2 + x3
2 + y1

2 + y2
2 + y3

2

≤ R2 = const}, (53)

if and only if

Ω = {(x, y) ∈ R2|x2 + y2 ≤ R2, x > 0, y > 0.} (54)

3. An initial parabolic problem in R3

This section is devoted to the following initial boundary value problem

∆u = ut in Ω, t > 0, (55)

u(x, t) = 0 on Γ0, t > 0, (56)

u(x, t) = 1 on Γ1, t > 0, (57)

u(x, 0) = g(|x|) in Ω, (58)
∂u

∂x3
= 0 on ξ0 ∪ ξ1, t > 0, (59)

∂u

∂n
= γi(t) on Γi, i = 0, 1, t > 0, (60)
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where x = (x1, x2, x3), |x| =
√
x2

1 + x2
2 + x2

3 and Ω = Ω0 \ Ω̄1 is a tubular
region defined in R3 with

Ωi={(r cos θ, r sin θ, x3) ∈ R3| 0 < r < ri(θ, x3), 0≤θ<2π, 0 < x3 < 1},
i = 0, 1, (61)

where (r, θ, x3) are cylindrical coordinates and 0 < r1(θ, x3) < r0(θ, x3) are
two bounded functions of class C2, 2π periodic in θ. We assume furthermore
that

∂u

∂x3
(x, 0) = G(|x|) in Ω, (62)

where G is a function of class C2 satisfying G = 0 on ξ0 ∪ ξ1.
The boundary ∂Ω is composed of two free components

Γi = {(r cos θ, r sin θ, x3) ∈ R3| r = ri(θ, x3), 0 ≤ θ < 2π, 0 ≤ x3 ≤ 1},
i = 0, 1, (63)

and two fixed components

ξi = {(r cos θ, r sin θ, i) ∈ R3| r1(θ, i) ≤ r ≤ r0(θ, i), 0 ≤ θ ≤ 2π},
i = 0, 1. (64)

This domain is in fact two co-axial free cylinders between the planes x3 = 0
and x3 = 1. Next, we consider a classical solution u(x1, x2, x3, t) of the
initial parabolic problem (55)–(60), ∂u/∂n stands for the exterior normal
derivative of u and γ0(t), γ1(t) are two positive functions of t.

In the next theorem we formulate our main result

Theorem 3.1. We assume that Ω0 is convex with its boundary sufficiently
regular, Γ0 free and

Γ1 = {(x1, x2, x3) ∈ R3|
√
x12 + x22 = R, 0 < x3 < 1}.

Then the initial boundary parabolic problem (55)–(60) is solvable if and only
if the components Γ0 and Γ1 are two co-axial circular cylinders for which the
classical solution u(x1, x2, x3, t) is axially symmetric, i.e. u(x, t) = u(r, t)
with r =

√
x12 + x22.

In order to show this statement, we split our proof in some lemmas. First
of all, we investigate the auxiliary functions hi,j = xiu,j−xju,i already used
in the preceding sections and W which we define by

W :=
∂u

∂x3
. (65)

The following lemma gives a combination between W and the normal de-
rivative of W on the component Γ0 which extends a result of that of [14],
[17] for the elliptic case.
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Lemma 3.1. The auxiliary function defined in (65) satisfies the following
differential equation on Γ0

∂W

∂n
+ 2K0W = 0, (66)

where K0 denotes the mean curvature of Γ0.

For the proof of Lemma 3.1, we compute the normal derivative of W in
light of (5)

∂W

∂n
= (u,ini),3 − u,ini,3
= (u,in,i),3 − γ0(t)nini,3
= (u,in,i),3

= n,i

(
ni

∂

∂x3
− n3

∂

∂xi

)
un + n3ni

∂un
∂xi

= n3
∂2u

∂n2 . (67)

Since the component Γ0 is smooth enough, the differential equation (1) can
be rewritten as

unn +K0un = ut = 0. (68)

Inserting (68) into (67), we get

∂W

∂n
= −2K0n3

∂u

∂n
= −2K0n3γ0(t)

= −2K0u,3 = −2K0W, (69)

and then the desired result is achieved.
The next lemma states that u is independent of the third variable x3

which leads to the conclusion that u(x1, x2, x3, t) = u(x1, x2, t).

Lemma 3.2. Assuming that u is a classical solution of (55)–(60). Then

u(x1, x2, x3, t) = u(x1, x2, t).

For the proof of Lemma 3.2, we mention that the auxiliary function W
satisfies the following conditions

∆W = Wt in Ω, t > 0, (70)

W (x, t) = 0 on Γ1 ∪ ξ0 ∪ ξ1, (71)

W (x, 0) = 0 in Ω. (72)
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Applying the classical formula of Green, we obtain∫
Ω
|∇W |2dx = −

∫
Ω
WWtdx +

∫
Γ0

W
∂W

∂n
ds

= −1
2

∫
Ω

(W 2)tdx− 2
∫

Γ0

K0W
2ds, (73)

from which we deduce that the integral over Ω is non-positive as Γ0 is
convex. Hence, using (72) we conclude that W = 0 in Ω. We therefore
observe that, in view of Lemma 3.2, the initial parabolic problem (55)–(60)
defined in R3 can be reduced into the following 2-dimensional one

∆u = ut in ω, t > 0, (74)

u = 0 on γ̃0 = {(x1, x2) ∈ R2| r = r0(θ), 0 ≤ θ < 2π}, t > 0, (75)

u = 1 on γ̃1 = {(x1, x2) ∈ R2| r = R}, t > 0, (76)
∂u

∂n
= γ0(t) on γ̃0, (77)

with r0(θ) > R.
In (74), ω := ω0 \ ω̄1 is an annular domain where ωi for i = 0, 1 is defined

by
ωi = {(x1, x2) ∈ R2| r =

√
x12 + x22 ≤ ri(θ), 0 ≤ θ < 2π}.

Lemma 3.3. We assume that u is a solution of (74)–(77), where the do-
main ω is of class C2 and convex and its free boundary γ̃0 is of class C2+ε.
Then γ̃0 is a circle centered at the origin and the solution is radial.

For the proof of Lemma 3.3, we use again the auxiliary function h. These
functions possess the following properties

h(Au+Bv) = Ah(u) +Bh(v), (78)

h(uv) = uh(v) + vh(u), (79)

where A, B are constants and u, v are at least of class C1.
Thus, we have:

h(u,t) = (h(u)),t, (80)

h(u,lu,l) = 2u,l(h(u)),l, (81)

h(u,ll) = (h(u)),ll. (82)

It follows from (78)–(82) that the following conditions are satisfied

∆h = ht in ω, t > 0, (83)

h = 0 on γ̃1, t > 0, (84)
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∂h

∂n
+ k0h = 0 on γ̃0, t > 0. (85)

This last equality results from Lemma 2.1.
In (85), k0 stands for mean curvature of γ̃0, positive. With a similar

reasoning as above, we again apply the classical formula of Green and we
obtain ∫

ω
|∇h|2dx = −

∫
ω
hhtdx +

∫
γ̃0

h
∂h

∂n
d s

= −1
2

∫
ω
(h2)tdx−

∫
γ̃0

k0h
2ds, (86)

from which we deduce that the integral of h2 over ω is decreasing in t and
therefore in view of (58), we find

∫
ω(h2)dx ≤ 0. Consequently, u = u(r).

To this end, without using maximum principles, we can conclude that in
the case of the Laplace operator the use of classical formula of Green may
be considered as an alternative proof for standard uniqueness theorem for
boundary value problems for both cases elliptic and parabolic, whenever the
solution exists.

Acknowledgement. I am indebted to Professor Dr. Catherine Bandle
from University of Basel and to Professor Antonio Greco from University
of Cagliari for their comments and suggestions. I am also grateful for the
comments and the thoroughly reading of the anonymas referee(s). Finally,
I would like to express my sincere thanks to Research Center of King Saud
University for its support.

References

[1] Brock, F., Henrot, A., A symmetry result for an overdetermined elliptic problem
using continuous rearangement abd domain derivative, Rend. Circ. Mat. Palermo (2)
51 (2002), 375–390.

[2] Dalmasso, R., Uniqueness theorems for some fourth order elliptic equations, Proc.
Amer. Math. Soc. 123 (1995), 1177-1183.

[3] Dalmasso, R., Uniqueness of positive solutions for some fourth order nonlinear equa-
tions, J. Math. Anal. Appl. 201 (1996), 152-168.

[4] Dalmasso, R., Existence and uniqueness of positive solutions of semilinear elliptic
systems, Nonlinear Anal. 39 (2000), 559-568.

[5] Friedman, A., Remarks on the maximum principle for parabolic equations and its
applications, Pacific J. Math. 8 (1958), 201–211.

[6] Greco, A., Monotonicity of solutions to some semilinear elliptic equations, Rend.
Sem. Fac. Sci. Univ. Cagliari 65(1) (1995), 17-23.

[7] Greco, A., Radial symmetry and uniqueness for an overdetermined problem, Math.
Methods Appl. Sci. 24 (2001), 103-115.



WEINSTEIN’S TECHNIQUE FOR A CLASS OF PARABOLIC PROBLEMS 247

[8] Henrot, A., Philippin, G. A., On a class of over-determined eigenvalue problems,
Math. Methods Appl. Sci. 20(11) (1997), 905–914.

[9] Hopf, E., A remark on elliptic differential equations of second order, Proc. Amer.
Math. Soc. 3 (1952), 791–793.

[10] Hopf, E., Elementare Bemerkung über die Lösung partieller Differentialgleichungen
Zweiter Ordnung von elliptischen Typus, Berliner Sitzungsber. Preuss. Akad. Wiss.
19 (1927), 147–152.

[11] Nirenberg, L., A strong maximum principle for parabolic equations, Comm. Pure
Appl. Math. 6 (1953), 167–177.

[12] Payne, L. E., Isoperimetric Inequalities, Maximum Pinciples and their Applications,
Lecture Notes, Univ. of Newcastle, 1972.

[13] Payne, L. E., Weinstein, A., Capacity, virtual mass, and generalized symmetrization,
Pacific J. Math. 2 (1952), 633–641.

[14] Philippin, G. A., Ragoub, L., On some second order and fourth order elliptic over-
determined problems, Z. Angew. Math. Phys. 46 (1995), 188–197.

[15] Philippin, G. A., Safoui, A., Some overdetermined parabolic problems, Math. Methods
Appl. Sci. 22(10) (1999), 791–799.

[16] Protter, M. H., Weinberger, H. F., Maximum Principles in Differential Equations,
Sringer-Verlag, New York, 1984.
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