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Abstract. Sufficient optimality criteria are derived for a control prob-
lem under generalized invexity. A Mond-Weir type dual to the control
problem is proposed and various duality theorems are validated under
generalized invexity assumptions on functionals appearing in the prob-
lems. It is pointed out that these results can be applied to the control
problem with free boundary conditions and have linkage with results
for nonlinear programming problems in the presence of inequality and
equality constraints already established in the literature.

1. Introduction

Optimal control models are very prominent amongst constrained opti-
mization models because of their occurrences in a variety of popular con-
texts, notably, advertising investment, production and inventory, epidemic,
control of a rocket etc. The planning of a river system, where it is required
to make the best use of the water, can also be modelled as an optimal
control problem. Optimal control models are also potentially applicable to
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economic planning, and to the world models of the “Limits to Growth”
kind.

Necessary optimality conditions for existence of extremal solution for a
variational problem in the presence of inequality and equality constraints
were obtained by Valentine [8]. Using Valentine’s results, Berkovitz [2]
obtained corresponding Fritz John type necessary optimality conditions for
a control problem. Mond and Hanson [5] pointed out that if the optimal
solution for the problem is normal, then the Fritz John type optimality
conditions reduce to Karush-Kuhn-Tucker conditions. Using these Karush-
Kuhn-Tucker optimality conditions, Mond and Hanson [5] presented Wolfe
type dual and established weak, strong and converse duality theorems under
convexity conditions. Abraham and Buie [1] studied duality for continuous
programming and optimal control from a unified point of view. Later Mond
and Smart [6] proved that for invex functions, the necessary conditions of
Berkovitz [2] together with normality conditions, are sufficient for optimality
and also derived some duality results under invexity.

In this paper, it is shown that for generalized invexity assumptions on
functionals, the necessary conditions [2] in the control problems are also
sufficient. As an application of Berkovitz’s [2] optimality conditions with
normality, a Mond-Weir [7] type dual to the control problem is constructed
and under generalized invexity of functionals, various duality results are
derived. It is indicated that these duality results are applicable to the
control problem with free boundary conditions and also related to those for
nonlinear programming problems already existing in the literature.

2. Control problem and related preliminaries

Let Rn denotes an n-dimensional Euclidean space, I = [a, b] be a real
interval and f : I × Rn × Rm → R be a continuously differentiable with
respect to each of its arguments. For the function f(t, x, u), where x : I →
Rn is differentiable with its derivative

:
x and u : I → Rm is the smooth

function, denote the partial derivatives of f by ft, fx and fu, where

ft :
∂f

∂t
, fx =

(
∂f

∂x1 , . . . ,
∂f

∂xn

)T
, fu =

(
∂f

∂u1 , . . . ,
∂f

∂um

)T
,

x =
(
x1, . . . , xn

)T and u =
(
u1, . . . , um

)T
.

For an m-dimensional vector function g(t, x, u), the gradient with respect
to x is
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gx =


∂g1

∂x1 , . . . ,
∂gp

∂xn
...

...
...

∂g1

∂xn
, . . . ,

∂gp

∂xn

 , an n× p matrix of first order derivatives.

Here u(t) is the control variable and x(t) is the state variable, u is related
to x via the state equation

:
x = h(t, x, u). Gradients with respect to u are

defined analogously.
A control problem is to transfer the state vector from an initial state

x(a) = α to a final state x(b) = β so as to minimize a functional, subject
to constraints on the control and state variables. A control problem can be
stated formally as,

Problem (CP) (Primal): Minimize
x∈X,u∈U

∫ b

a
f(t, x, u)dt,

subject to

x(a) = α, x(b) = β, (1)

h(t, x, u) =
:
x, t ∈ I, (2)

g(t, x, u) ≤ 0, t ∈ I, (3)

(i) f is as before, g : I × Rn × Rm → Rp and h : I × Rn × Rm → Rn
are continuously differentiable functions with respect to each of its
arguments.

(ii) X is the space of continuously differentiable state functions x : I → Rn
such that x(a) = α, x(b) = β, equipped with the norm ‖x‖ = ‖x‖∞ +
‖Dx‖∞, and u is the space of piecewise continuous control functions
u : I → Rm has the uniform norm ‖ · ‖∞, and

(iii) The differential equation (2) for x with the initial conditions ex-
pressed as x(t) = x(a) +

∫ t
a h(s, x(s), u(s))ds, t ∈ I, may be writ-

ten as Dx = H(x, u), where the map: X × U → C(I,Rn), C(I,Rn)
being the space of continuous functions from I → Rn, defined by
H(x, u)(t) = h(t, x(t), u(t)).

Following Craven [3], the control problem can be expressed as,

(ECP) : Minimize
x∈X,u∈U

F (x, u)

subject to

Dx = H(x, u),

−G(x, u) ∈ S,
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Where G is function from X × U into C(I,Rp) given by G(x, u)(t) =
g(t, x(t), u(t)) from x ∈ X, u ∈ U , and t ∈ I; S is the convex cone of
functions in C(I,Rp) whose components are non-negative; thus S has inte-
rior points.

Necessary optimality conditions for existence of extremal solution for a
variational problem subject to both equality and inequality constraints was
given by Valentine [8]. Invoking Valentine’s [8] results, Berkovitz [2] ob-
tained corresponding necessary optimality conditions for the above control
problem (CP). Here we mention the Fritz John optimality conditions de-
rived by Craven [3] in the form of the following proposition which will be
required in the sequel.

Proposition 1 (Necessary optimality conditions). If (x̄, ū) ∈ X × U an
optimal solution of (CP) and the Fréchet derivatives Q′ = (D −
Hx(x, u),−Hu(x, u)) is surjective, then there exist Lagrange multipliers
λ0 ∈ R, and piecewise smooth functions λ : I → Rp and µ : I → Rn sat-
isfying, for all t ∈ I,

λ0fx(t, x̄, ū) + λ(t)T gx(t, x̄, ū) + µ(t)Thx(t, x̄, ū) +
:
µ(t) = 0,

λ0fu(t, x̄, ū) + λ(t)T gu(t, x̄, ū) + µ(t)Thu(t, x̄, ū) = 0,

λ(t)T g(t, x̄, ū) = 0,

(λ0, λ(t)) ≥ 0,

(λ0, λ(t), µ(t)) 6= 0.

The above conditions will become Karush-Kuhn-Tucker conditions if
λ0 > 0. Therefore, if we assume that the optimal solutions (x̄, ū)is nor-
mal, then without any loss of generality, we can set λ0 = 1. Thus from the
above we have the Karush-Kuhn- Tucker type optimality conditions

fx(t, x̄, ū) + λ(t)T gx(t, x̄, ū) + µ(t)Thx(t, x̄, ū) +
:
µ(t) = 0, t ∈ I, (4)

fu(t, x̄, ū) + λ(t)T gu(t, x̄, ū) + µ(t)Thu(t, x̄, ū) = 0, t ∈ I, (5)

λ(t)T g(t, x̄, ū) = 0, t ∈ I, (6)

λ(t) ≥ 0, t ∈ I. (7)

Using these optimality conditions, Mond and Hanson [5] constructed fol-
lowing Wolfe type dual.

Problem (CD) (Dual) :

Maximize
∫ b

a

{
f(t, x, u) + λ(t)T g(t, x, u) + µ(t)T

(
h(t, x, u)− :

x
)}
dt

subject to
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fx(t, x, u) + λ(t)T gx(t, x̄, ū) + µ(t)Thx(t, x, u) +
:
µ(t) = 0, t ∈ I,

fu(t, x, u) + λ(t)T gu(t, x̄, ū) + µ(t)Thu(t, x, u) = 0, t ∈ I,
λ(t) ≥ 0, t ∈ I .

In [5], [CP] and (CD) are shown to be a dual pair if f, g and h are all
convex in x and u. Subsequently, Mond and Smart [6] extended this duality
by introducing the following invexity requirement.

Definition 1 (Invex [6]). If there exists vector function η(t, x, x̄) ∈ Rn with
η = 0 at t if x(t) = x̄(t), and there exists vector function ξ(t, u, ū) ∈ Rm
such that for scalar function Φ(t, x,

:
x, u), the functional

Φ(x,
:
x, u) =

∫ b

a
φ(t, x,

:
x, u)dt

satisfies

Φ(x,
:
x, u)− φ(x̄,

:
x̄, ū)

≥
∫ b

a

[
ηTφx

(
t,
:
x̄, x̄, ū

)
+
(
dn

dt

)T
φ :x(t, x̄,

:
x̄, ū) + ξTφu(t, x̄,

:
x̄, ū)

]
dt

then φ is said to be invex at x,
:
x and u on I with respect to η and ξ.

In [6] Mond and Smart proved weak, strong and converse duality theorems
under the invexity of

∫ b
a fdt,

∫ b
a λ

T gdt, for λ(t) ∈ Rp with λ(t) ≥ 0, t ∈ I
and

∫ b
a µ

Thdt for any µ(t) ∈ Rn, t ∈ I.

3. Generalized invexity

In this section, we extend the notion of invexity for a functional given in
[6] to a large class of functionals, as these will be required for subsequent
analysis.

Definition 2. For a scalar function φ(t, x,
:
x, u) the functional Φ(x,

:
x, u) =∫ b

a φ(t, x,
:
x, u)dt is said to be pseudoinvex at x,

:
x and u if there exist vector

function η(t, x, x̄) ∈ Rn with η = 0 at t if x(t) = x̄(t) and ξ(t, u, ū) ∈ Rm
such that for all (x,

:
x, u) 6= (x̄,

:
x̄, ū)∫ b

a

[
ηTφx(t, x̄,

:
x̄, ū) +

(
dη

dt

)T
φ :x(t, x̄,

:
x̄, ū) + ξTφu(t, x̄,

:
x̄, ū)

]
dt ≥ 0

⇒ Φ(x,
:
x, u) ≥ Φ(x̄,

:
x̄, ū).
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Definition 3 (Strictly Pseudoinvex). The functional Φ is said to be strictly
pseudoinvex, if there exist vector functions η(t, x, x̄) ∈ Rn with η = 0 at t if
x(t) = x̄(t) and ξ(t, u, ū) ∈ Rm such that∫ b

a

[
ηTφx(t, x̄,

:
x̄, ū) +

(
dη

dt

)T
φ :x(t, x̄,

:
x̄, ū) + ξTφu(t, x̄,

:
x̄, ū)

]
dt ≥ 0

⇒ Φ(x,
:
x, u) > Φ(x̄,

:
x̄, ū).

Definition 4 (Quasi-invex). The functional Φ is said to be quasi-invex, if
there exist vector functions η(t, x, x̄) ∈ Rn with η = 0 at t if x(t) = x̄(t) and
ξ(t, u, ū) ∈ Rm such that

Φ(x,
:
x, u) ≤ Φ(x̄,

:
x̄, ū)

⇒
∫ b

a

[
ηTφx(t, x̄,

:
x̄, ū) +

(
dη

dt

)T
φ :x(t, x̄,

:
x̄, ū) + ξTφu(t, x̄,

:
x̄, ū)

]
dt ≤ 0.

4. Sufficiency of optimality conditions

It can be proved that for generalized invex functionals, the Karush-Kuhn-
Tucker optimality conditions given in Section 2 are sufficient for optimality.

Theorem 1. If there exists (x̄, ū, λ̄, µ̄) such that the conditions (4)–
(7) hold with (x̄, ū) feasible for (CP) and

∫ b
a fdt is pseudoinvex and∫ b

a

(
λ̄T g + µ̄T (h− :

x)
)
dt is quasi-invex with respect to the same η and ξ,

then (x̄, ū) is an optimal solution of (CP).

Proof. Assume that (x̄, ū) is not optimal for (CP). Then there exists
(x, u) 6= (x̄, ū), i.e., (x, u) feasible for (CP), such that

∫ b
a f(t, x, u)dt <∫ b

a f(t, x̄, ū)dt.
This, because of pseudoinvexity of

∫ b
a fdt with respect to the same η and

ξ, it follows that ∫ b

a

[
ηT fx(t, x̄, ū) + ξT fu(t, x̄, ū)

]
dt < 0.

Using (4) and (5), this yields

0 <

b∫
a

[
ηT
(
λ̄T (t)gx(t, x̄, ū) + µ̄(t)Thx(t, x̄, ū) +

:
µ̄(t)

)
+ ξT

(
λ̄T (t)T gu(t, x̄, ū) + µ̄(t)Thu(t, x̄, ū)

) ]
dt
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=

b∫
a

ηT
(
λ̄(t)T gx(t, x̄, ū) + µ̄(t)Thx(t, x̄, ū)

)
dt+

b∫
a

ηT
:
µ̄(t)dt

+

b∫
a

ξT
(
λ̄(t)T gu(t, x̄, ū) + µ̄(t)Thu(t, x̄, ū)

)
dt

=

b∫
a

[
ηT
(
λ̄T (t)gx(t, x̄, ū) + µ̄(t)Thx(t, x̄, ū)

)
−
(
dη

dt

)T
µ̄(t)

+ ξT
(
λ̄T (t)gu(t, x̄, ū) + µ̄(t)Thu(t, x̄, ū)

) ]
dt+ ηµ(t)|t=at=b

(by integrating by parts)

=
∫ b

a

[
ηT
(
λ̄T (t)gx(t, x̄, ū) + µ̄(t)Thx(t, x̄, ū)

)
−
(
dη

dt

)T
µ̄(t)

+ ξT
(
λ̄T (t)gu(t, x̄, ū) + µ̄(t)Thu(t, x̄, ū)

) ]
dt

(using η = 0 at t if x(t) = x̄(t)).

By quasi-invexity of
∫ b
a (λ̄g + µ̄(h− :

x))dt, this implies∫ b

a

{
λ̄(t)T g(t, x, u) + µ̄(t)T

(
h(t, x, u)− :

x
)}
dt

>

∫ b

a

{
λ̄(t)T g(t, x̄, ū) + µ̄(t)T

(
h(t, x̄, ū)−

:
x̄
)}

dt.

Using (6) and also µ̄(t)T (h(t, x̄, ū)−
:
x̄) = 0, the above inequality gives∫ b

a

{
λ̄(t)T g(t, x, u) + µ̄(t)T

(
h(t, x, u)− :

x
)}
dt > 0. (8)

Since (x, u) is feasible for (CP), g(t, x, u) ≤ 0, t ∈ I and h(t, x, u) − :
x = 0.

Hence for λ̄(t) ≥ 0, t ∈ T and µ̄(t) ∈ Rn, we have∫ b

a

{
λ̄(t)T g(t, x, u) + µ̄(t)T

(
h(t, x, u)− :

x
)}
dt ≤ 0. (9)

Consequently (8) contradicts (9). Thus (x̄, ū) is, indeed, an optimal solution
of the control problem (CP).
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5. Duality

We formulate the following dual (CD) to the primal problem (CP) in the
spirit of Mond and Weir [7].

Problem (CD) (Dual) : Maximize
∫ b

a
f(t, x, u)dt

subject to

x(a) = α, x(b) = β, (10)

fx(t, x, u) + λ(t)T gx(t, x, u) + µ(t)Thx(t, x, u) +
:
µ(t) = 0, t ∈ I, (11)

fu(t, x, u) + λ(t)T gu(t, x, u) + µ(t)Thu(t, x, u) = 0, t ∈ I, (12)∫ b

a

(
λ(t)T g(t, x, u) + µ(t)T

(
h(t, x, u)− :

x
))
dt ≥ 0, (13)

λ(t) ≥ 0, t ∈ I. (14)

Theorem 2 (Weak Duality). Let (x̄, ū) and (x, u, λ, µ) be feasible solution
for (CP) and (CD) respectively. If for all feasible (x̄, ū, x, u, λ, µ),

∫ b
a fdt is

pseudoinvex and
∫ (
λT g + µT (h− :

x)
)
dt for λ(t) ∈ Rn, λ(t) ≥ 0, t ∈ I and

µ(t) ∈ Rn is quasi-invex with respect to the same η and ξ, then

max(CP) ≥ min(CD).

Proof. Since (x̄, ū) is feasible for the problem (CP) and (x, u, λ, µ) feasible
for the problem (CD), it implies that∫ b

a

(
λ(t)T g(t, x̄, ū) + µ(t)T (h(t, x̄, ū)−

:
x̄)
)
dt

≤
∫ b

a

(
λ(t)T g(t, x, u) + µ(t)T

(
h(t, x, u)− :

x
))
dt.

This, because of quasi-invexity of
∫ b
a (λT g + µT (h− :

x))dt, implies

0 ≥
∫ b

a

{
ηT
(
λ(t)T gx(t, x, u) + µ(t)Thx(t, x, u)

)
+ ξT

(
λ(t)T gu(t, x, u) + µ(t)Thu(t, x, u)

)}
dt−

∫ b

a

(
dη

dt

)T
µ(t)dt

=
∫ b

a

{
ηT
(
λ(t)T gx(t, x, u) + µ(t)Thx(t, x, u)

)
+ ξT

(
λ(t)T gu(t, x, u) + µ(t)Thu(t, x, u)

)}
dt− µ(t)η|t=bt=a +

∫ b

a

:
µ(t)T ηdt

(by integration by parts)



SUFFICIENCY AND DUALITY IN CONTROL PROBLEMS 35

=
∫ b

a

{
ηT
(
λ(t)T gx(t, x, u) + µ(t)Thx(t, x,

:
u) +

:
µ(t)

)
+ ξT

(
λ(t)T gu(t, x, u) + µ(t)Thu(t, x, u)

)}
dt

(as fixed boundary conditions give η = 0 at t = a and t = b).

Using (11) and (12), we have∫ b

a

{
ηT fx(t, x, u) + ξT fx(t, x, u)

}
dt ≥ 0.

By pseudoinvexity
∫ b
a fdt, this gives∫ b

a
f(t, x̄, ū)dt ≥

∫ b

a
f(t, x, u)dt.

That is,

inf(CP) ≥ sup(CD).

Theorem 3 (Strong Duality). Under generalized invexity conditions of
Theorem 2, if (x̄, ū) is an optimal solution of the problem (CP) and is
also normal, then there exist piecewise smooth functions λ̄ : I → Rp and
µ̄ : I → Rn such that (x̄, ū, λ̄, µ̄) is an optimal solution of (CP) and the
corresponding objective values are equal.

Proof. Since (x̄, ū) is optimal solution for (CP) and is normal, by Propo-
sition 1, there exist piecewise smooth functions λ̄ : I → Rp and µ̄ : I → Rn
such that the condition (4)–(7) are satisfied. Since λ̄(t)T g(t, x̄, ū) = 0 and
µ̄(t)T (h(t, x̄, ū) −

:
x̄) = 0,

∫ b
a (λ̄(t)T g(t, x̄, ū) + µ̄(t)T g(t, x̄, ū))dt = 0. Thus,

this together with (4), (5) and (7) implies that (x̄, ū, λ̄, µ̄) is feasible for
(CD) and the corresponding objective values are the same as it is evident
from the formulation of the primal and dual problems. So by Theorem 2,
(x̄, ū, λ̄, µ̄) is an optimal solution for (CD).

Theorem 4 (Strict Converse Duality). Let (x̄, ū) be an optimal solution of
(CP) and also normal. If (x̂, û, λ̂, µ̂) is an optimal solution; and

∫ b
a fdt is

strictly pseudoinvex and
∫ b
a (λ̂T g+ µ̂T (h− :

x))dt is quasi-invex at (x̂, û) with
respect to the same η and ξ, then (x̄, ū) = (x̂, û), i.e., (x̂, û) is an optimal
solution of (CP).
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Proof. Assume that (x̄, ū) 6= (x̂, û).
Since (x̄, ū) is an optimal solution of (CP) at which normality condition

is met, and since conditions of Theorem 1 are satisfied, then, by Theorem 3,
there exist piecewise smooth λ̄ : I → Rp and µ̄ : I → Rn such that (x̄, ū, λ̄, µ̄)
is an optimal solution of (CD) and∫ b

a
f(t, x̄, ū)dt =

∫ b

a
f(t, x̂, û)dt. (15)

By the feasibility of (x̄, ū) for (CP) and (x̂, û, λ̂, µ̂) for (CD), it implies,∫ b

a

(
λ̂(t)T g(t, x̄, ū) + µ̂(t)T

(
h(t, x̄, ū)−

:
x̄
))

dt ≤ 0,

and ∫ b

a

(
λ̂(t)T g(t, x̂, û) + µ̂(t)T

(
h(t, x̂, û)−

:
x̂
))

dt ≥ 0.

Combining these inequalities we have∫ b

a

(
λ̂(t)T g(t, x̄, ū) + µ̂(t)T (h(t, x̄, ū))

)
dt

≤
∫ b

a

(
λ̂(t)T g(t, x̂, û) + µ̂(t)T (h(t, x̂, û))

)
dt.

Because of the quasi-invexity of
∫ b
a

(
λ̂T g + µ̂Th(x− :

x)
)
dt at (x̂, û), this

yields

0 ≥
∫ b

a

{
ηT
(
λ̂(t)T gx(t, x̂, û) + µ̂(t)Thx(t, x̂, û)

)
−
(
dη

dt

)T
µ̂(t)

+ ξT
(
λ̂(t)T gu(t, x̂, û) + µ̂(t)Thu(t, x̂, û)

)}
dt

=
∫ b

a

{
ηT
(
λ̂(t)T gx(t, x̂, û) + µ̂(t)Thx(t, x̂, û) + µ̂(t)

)
+ ξT

(
λ̂(t)T gu(t, x̂, û) + µ̂(t)Thu(t, x̂, û)

)}
dt− ηT µ̂(t)|t=0

t=a

(by integration by parts)

0 ≥
b∫
a

{
ηT
(
λ̂(t)T gx(t, x̂, û) + µ̂(t)Thx(t, x̂, û) + µ̂(t)

)
+ ξT

(
λ̂(t)T gu(t, x̂, û) + µ̂(t)Thu(t, x̂, û)

)}
dt. (16)
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Because (x̂, û) is feasible for (CD), we have that

fx(t, x̂, û) + λ̂(t)T gx(t, x̂, û) + µ̂(t)hx(t, x̂, û) +
:
µ̂(t) = 0, t ∈ I,

fu(t, x̂, û) + λ̂(t)gu(t, x̂, û) + µ̂(t)hu(t, x̂, û) = 0, t ∈ I.
Using these equations in (16), we have∫ b

a

(
ηT fx(t, x̂, û) + ξT fu(t, x̂, û)

)
dt ≥ 0.

Thus, by strict pseudoinvexity of
∫ b
a fdt yield,∫ b

a
f(t, x̄, ū)dt >

∫ b

a
f(t, x̂, û)dt.

This contradicts (15). Hence (x̂, û) = (x̄, ū), i.e., (x̂, û) is an optimal solution
of (CP).

Now, we shall prove converse duality under the assumption that f , g and
h are twice continuously differentiable. The problem (CD) may be written
in minimization form as follows:

Minimize−ψ(x, u, λ, µ)
subject to

x(a) = α, x(b) = β

θ1(t, x(t), u(t), λ(t), µ(t),
:
µ(t))

= fx + λ(t)T gx + µ(t)Thx +
:
µ(t) = 0, t ∈ I,

θ2(t, x(t), u(t), λ(t), µ(t)) = fu

λ(t)T gu + µ(t)Thu = 0, t ∈ I,
with fx ≡ fx(t, x(t), u(t)), gx ≡ gx(t, x(t), u(t)), hx ≡ hx(t, x(t), u(t)), etc.

Consider θ1(·, x(·), u(·), λ(·), µ(·), :µ(·)) as defining a mapping Q1 : X×U×
V × Λ → B1, where V is the space of piecewise smooth functions λ,Λ is
the space of differentiable functions µ and B1, is a Banach Space; and also
consider θ2(·, x(·), u(·), λ(·), µ(·)) as defining a mappingQ2 : X×U×V ×Λ→
B2, where B2 is another Banach Space. In order to apply Proposition 1
or results of Valentine [8], some restrictions are needed on the equality
constraints

θ1(·) = 0 and θ2(·) = 0.

It suffices if Fréchet derivatives

Q1′ =
[
Q1
x, Q

1
u, Q

1
λ, Q

1
µ

]
and Q2′ =

[
Q2
x, Q

2
u, Q

2
λ, Q

2
µ

]
have weak∗ closed range. Denote f̄ ≡ f(t, x̄(t), ū(t)), f̄x ≡ fx(t, x̄(t), ū(t)),
etc.



38 I. HUSAIN, A. AHMED AND B. AHMAD

Theorem 5 (Converse Duality). Let (x̄, ū, λ̄, µ̄) be an optimal solution of
(CD). Assume that

(i) the Fréchet derivative Q1 and Q2 have weak closed range.
(ii) Corresponding to (5), there exists a piecewise smooth Lagrange multi-

plier β : I → Rn
with its derivative

:
β(t) ≥ 0, t ∈ I and β(a) = 0 = β(b).

(iii)
∫ b
a σ(t)TM(t)σ(t)dt = 0⇒ σ(t) = 0, where σ(t) ∈ Rn+m and

M(t) =

(
f̄xx + λ̄(t)T ḡxx + µ̄(t)T h̄xx, f̄ux + λ̄(t)T gux + µ̄(t)T h̄ux

f̄xu + λ̄(t)T gxu + µ̄(t)Thxu, fxu + λ̄(t)T guu + µ̄(t)Thuu

)
,

is a positive definite and
(iv) f̄x + λ̄(t)T gx + µ̄(t)T h̄x +

:
µ̄(t) 6= 0, f̄u + λ̄(t)T gu + µ̄(t)Thu 6= 0, t ∈ I.

If the hypotheses of Theorem 2 are satisfied, (x̄, ū) is an optimal solution of
(CP) and the objective values of (CP) and (CD) are equal.

Proof. Since (x̄, ȳ, λ̄, µ̄) is an optimal solution of (CD), an application of
Proposition 1 shows that there exist Lagrange multipliers α ∈ R, piecewise
smooth functions β : I → Rn with β(a) = 0 = β(b) and its derivative
:
β(t) ≥ 0, t ∈ I, θ : I → Rm, and ζ : I → Rm and γ ∈ R such that

αfx + β(t)T
(
fxx + λ̄(t)T gxx + µ̄(t)Thxx

)
+ θ(t)T

(
f̄ux + λ̄(t)T gux

+ µ̄(t)Thux
)

+ γ
(
λ̄(t)T gx + µ̄(t)Thx

)
= 0, t ∈ I, (17)

αfu + β(t)T
(
fxu + λ̄(t)T gxu + µ̄(t)Thxu

)
+ θ(t)T

(
f̄uu + λ̄(t)T guu

+µ̄(t)Thuu
)

+ γ
(
λ̄(t)T gu + µ̄(t)Thu +

:
µ̄(t)

)
= 0, t ∈ I, (18)

β(t)T gx + θ(t)T gu + γg + ξ(t) = 0, t ∈ I, (19)

β(t)Thx −
:
β(t) + θ(t)Thu + γ(h− :

x) = 0, t ∈ I, (20)

γ

∫ b

a
(λ̄(t)T g + µ̄(t)T (h̄− :

x))dt = 0, (21)

λ̄(t)T ζ(t) = 0, t ∈ I, (22)

(α, ζ(t), γ) ≥ 0, t ∈ I, (23)

(α, β(t), θ(t), ζ(t), γ) 6= 0, t ∈ I. (24)

Using (11) and (12) in (17) and (18) respectively, we have

(γ − α)
(
λ̄(t)T gx + µ̄(t)Thx +

:
µ(t)

)
+ β(t)T

(
f̄xx + λ̄(t)T ḡxx

+µ̄(t)Thxx
)

+ θ(t)T
(
fxu + λ̄(t)T gxu + µ̄(t)T h̄xu

)
= 0, t ∈ I, (25)

(γ − α)
(
λ̄(t)T gu + µ̄(t)T h̄u

)
+ βT (t)T

(
f̄xx + λ̄(t)ḡxx + µ̄(t)Thxx

)
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+θ(t)T
(
f̄uu + λ̄(t)T guu + µ̄(t)Thuu

)
= 0, t ∈ I. (26)

Multiplying (19) and (20) by λ̄(t)T respectively and then adding the result-
ing equations, we have∫ b

a

{
β(t)T

(
λ(t)T gx + µ̄(t)Thx

)
+ θ(t)T

(
λ(t)T gu + µ(t)Thu

)}
dt

+γ
∫ b

a

(
λ(t)T g + µ(t)Th

)
dt+

∫ b

a
λ(t)T ζ(t)dt

=
∫ b

a
β(t)µ(t)dt = µ(t)Tβ(t)|t=bt=a −

∫ b

a
β(t)T

:
µ(t)dt

(by integration by parts).
Using β(a) = 0 = β(b), (21) and (22), this implies,∫ b

a

{
β(t)T

(
λ̄(t)T gx + µ̄(t)Thx +

:
µ̄(t)

)
+ θ(t)T

(
λ̄(t)T gu + µ̄(t)Thu

)}
dt = 0.

Equivalently, this can be written as,∫ b

a
(β(t), θ(t))T

(
λ̄(t)T ḡx + µ̄(t)Thx +

:
µ(t)

λ̄(t)T gu + µ̄(t)Thu

)
dt = 0. (27)

The equation (25) and (26) can be combined to be written in the following
matrix form,

(γ − α)

(
λ̄(t)T + µ̄(t)Thx +

:
µ(t)

λ̄(t)T gu + µ̄(t)Thu

)

+

(
fxx + λ̄(t)T + gxxµ̄(t)Thxx, fxu + λ̄(t)gxu + µ̄(t)Thxu

fxu + λ̄(t)T gxu + µ̄(t)Thxu, fuu + λ̄(t)T guu + µ̄(t)Thuu

)
(
β(t)
θ(t)

)
= 0, t ∈ I. (28)

Multiplying this by (β(t), θ(t))T , and then integrating we obtain

(γ − α)
∫ b

a
(β(t), θ(t))T

(
λ̄(t)T + ḡx + µ̄(t)Thx +

:
µ(t)

λ̄(t)T ḡu + µ̄(t)Thu

)
dt

+
∫ b

a
(β(t), θ(t))T

(
fxx + λ̄(t)T + gxxµ̄(t)Thxx, fxx + λ̄(t)T gxu + µ̄(t)Thxu

fxu + λ̄(t)T gxu + µ̄(t)Thxu, fuu + λ̄(t)T guu + µ̄(t)Thuu

)
(
β(t)
θ(t)

)
dt = 0. (29)

Using (27) in (29), we have
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a
(β(t), θ(t))T

(
f̄xx + λ̄(t)T gxx + µ̄(t)Thxx, fxu + λ̄(t)T gxu + µ̄(t)Thxu

fxu + λ̄(t)T gxu + µ̄(t)Thxu, fuu + λ̄(t)T guu + µ̄(t)Thuu

)
(
β(t)
θ(t)

)
dt = 0.

In view of the hypothesis (iii), this implies

σ(t) = (β(t), θ(t)) = 0⇒ β(t) = θ(t) = 0, t ∈ I. (30)

The relation (28) together with (30) yields

(γ − α)

(
λ̄(t)T gx + µ̄(t)Thx +

:
µ̄(t)

λ̄(t)T gu + µ̄(t)Thu

)
= 0, t ∈ I.

Because of the hypothesis (iv), this gives

α = γ. (31)

If α = 0, then γ = 0. Consequently using (30), (19) implies that ζ(t) = 0,
t ∈ I.

Thus (α, β(t), θ(t), ζ(t), γ) = 0, t ∈ I. This contradicts the Fritz John
condition (24). Hence γ = α > 0.

Using (30) and γ > 0 in (19), we have g(t, x̄, ū) = −ζ(t)/γ ≤ 0, t ∈ I.
Also from (20), we have h(t, x̄, ū) −

:
x̄ =

:
β(t)/γ ≥ 0. Thus, it shows that

(x̄, ū) is feasible for (CP) and the objective values of (CP) and (CD) are
equal. In view of the hypotheses of Theorem 1, the optimality of (x̄, ū) for
(CP) follows.

6. Control problem with free boundary conditions

The results validated in the preceding sections may be applied to the
control problems with free boundary conditions. If the “targets” x(a) and
x(b) are not restricted, we have

Problem (CPF) (Primal): Minimize
∫ b

a
f(t, x, u)dt

subject to

h(t, x, u) =
:
x, t ∈ I,

g(t, x, u) ≤ 0, t ∈ I.

The dual control problem now includes the transversality conditions µ(t) =
0, t = a and t = b as the new constraints. This yields
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Problem CDF (Dual): Maximize
∫ b

a
f(t, x, u)dt

subject to

µ(a) = 0, µ(b) = 0,

fx(t, x̄, ū) + λ(t)T gx(t, x̄, ū) + µ(t)Thx(t, x̄, ū) +
:
µ(t) = 0, t ∈ I,

fu(t, x̄, ū) + λ(t)T gu(t, x̄, ū) + µ(t)Thu(t, x̄, ū) = 0, t ∈ I,∫ b

a

(
λ(t)T g(t, x, u) + µ(t)T

(
h(t, x, u)− :

x(t)
))
dt ≥ 0,

λ(t)T ≥ 0, t ∈ I.
In order to prove the results, corresponding to Theorem 1 to Theorem 4,

we will have the term ηTµ(t) |t=bt=a vanished by using µ(a) = 0 and µ(b) = 0
instead of having x(a) = α and x(b) = β so that η = 0 at t = a and t = b.

7. Mathematical programming problems

If f, g and h are independent of t (without any loss of generality b−a = 1)
then the problems (CP) and (CD) reduce to the static primal and dual of
mathematical programming problems treated by Mond and Weir [7] under
generalized convexity and also under invexity by Craven and Glover [4].

Put z =
(
x
u

)
, we have

Problem (PS): Minimize f(z)
subject to

h(z) = 0,

g(z) ≤ 0.

Problem (DS): Maximize f(z)
subject to

fz(z) + λT gz(z) + µThz(z) = 0,

λT g(z) + µTh(z) ≥ 0,
λ ≥ 0.
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