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Abstract. In this paper we present a new method of determining
Koebe domains. We apply this method by giving a new proof of
the well-known theorem of A. W. Goodman concerning the Koebe do-
main for the class T of typically real functions. We applied also the
method to determine Koebe sets for classes of the special type, i.e.
for TM,g = {f ∈ T : f(∆) ⊂ Mg(∆)}, g ∈ T ∩ S, M > 1, where
∆ = {z ∈ C : |z| < 1} and T , S stand for the classes of typically real
functions and univalent functions respectively. In particular, we find
the Koebe domains for the class TM of all typically real and bounded
functions, and for the class T (M) of all typically real functions with
ranges in a given strip.

1. Introduction

A function f analytic in the unit disk ∆ = {z ∈ C : |z| < 1} is said to
be typically real if it satisfies the condition Im z Im f(z) ≥ 0, z ∈ ∆. Let
T denote the class of typically real functions f with normalization f(0) =
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f ′(0)− 1 = 0 (see for example [5]). Let S be the class of functions analytic
and univalent in ∆ with the same normalization as in T .

The following classes were considered in [3]

TM,g = {f ∈ T : f ≺Mg}, g ∈ T ∩ S, M > 1. (1)

Recall that a function h is subordinated to a univalent function H, written
h ≺ H, if h(0) = H(0) and h(∆) ⊂ H(∆). Choosing

g1(z) = z and g2(z) =
1
2

log
1 + z

1− z
, z ∈ ∆,

with the principal branch of logarithm, we obtain two important subclasses
of T . Namely,

TM,g1 = {f ∈ T : |f(z)| < M, z ∈ ∆}
and

TM,g2 =
{
f ∈ T : | Im f(z)| < M

π

4
, z ∈ ∆

}
,

which are briefly denoted by TM and T (M)) respectively.
The relation

TM,g =
{
Mg

(
h(z)
M

)
: h ∈ TM

}
, (2)

which was established in [3], provides the formula connecting different
classes of type TM,g as follows:

TM,f =
{
Mf

(
g−1

(
h(z)
M

))
: h ∈ TM,g

}
. (3)

For this reason, instead of researching a class TM,f one can consider a
class TM,g. We apply this idea in order to obtain results in various classes
TM,g as a consequence of related results in T (M). Investigating T (M) is
possible thanks to the integral formula for this class. Moreover, extremal
points as well as supporting points are known in T (M) (see, [4]).

The main aim of this paper is to determine the Koebe set (usually called
the Koebe domain) for TM,g. Recall that for a given A ⊂ T , the Koebe set
is defined by

⋂
f∈A f(∆) and is denoted by KA.

From (3) it follows that

Lemma 1. Let f, g ∈ T ∩ S. A set D is the Koebe domain for TM,g iff
M · f(g−1(D/M)) is the Koebe domain for TM,f .

Proof.

w ∈ KTM,f ⇐⇒ w ∈
⋂

F∈TM,f
F (∆)
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⇐⇒ w ∈
⋂

G∈TM,g
Mf

(
g−1

(
G(∆)
M

))

⇐⇒ ∀G∈TM,g w ∈Mf

(
g−1

(
G(∆)
M

))
⇐⇒ ∀G∈TM,g Mg

(
f−1

( w
M

))
∈ G(∆)

⇐⇒ Mg
(
f−1

( w
M

))
∈ KTM,f .

2. The Koebe domain for the class T

In 1977 Goodman determined the Koebe domain for T .
Let

r(θ) =
π sin θ

4θ(π − θ)
, θ ∈ (0, π) . (4)

Theorem A ([1]). The Koebe domain for the class T is a bounded domain,
symmetric with respect to both axes of the complex plane. Its boundary in
the upper half plane is given by the polar equation

%(θ) =

r(θ) for θ ∈ (0, π),
1
4

for θ = 0 or θ = π.

A new proof of Theorem A. Let f ∈ T omit two values %eiθ and %e−iθ,
where % > 0, θ ∈ (0, π). A function

f(z)− %eiθ

f(z)− %e−iθ

is analytic in ∆ and omits the points 0 and 1. Hence a function

h(z) =
1
i

log
f(z)− %eiθ

f(z)− %e−iθ
, (5)

with the branch of logarithm chosen in such a way that h(0) = 2θ, is also
analytic in ∆.

From (5) we derive

f(z) = %
eiθ − e−iθeih(z)

1− eih(z) .
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We obtain h(z) 6= 2nπ, n ∈ Z because 1− eih(z) 6= 0. This and the equality

Im f(z) =
%

|1− eih(z)|2
(

1− e−2 Im h(z)
)

sin θ

lead to Im z Im h(z) ≥ 0, z ∈ ∆. Since h(0) = 2θ, h(z) 6= 2nπ, n ∈ Z and h
is typically real, we get 0 < h(x) < 2π for real x .

Let

H(z) = 2θ +
a · z

1− 2tz + z2 , where a = 8(π − θ) θ
π
, t = 1− 2

θ

π
.

Then H is univalent, H(0) = 2θ and H(∆) = C \ {p ∈ R : p ≤ 0 ∨ p ≥ 2π}.
From the properties of h and H we conclude that the function h is sub-
ordinated to a function H. Therefore h(z) = H(w(z)), where w(z) =
H−1(h(z)). This gives |w(z)| ≤ |z| and

2 sin θ
%

= h′(0) = H ′(0) · w′(0) = a · w′(0) ≤ a = 8(π − θ) θ
π
.

Thus

% ≥ π sin θ
4θ(π − θ)

with equality only in the case of h = H.

In the original proof of this theorem Goodman applied some properties of
the so-called universal typically real functions. The existence of their inverse
functions, which were defined on Riemann surfaces, played an essential role
here. In his method all universal functions were generated by the function

G(z) =
1
π

tan
(

πz

1 + z2

)
.

The main advantage of our new method is that one can easily obtain ex-
tremal functions which correspond to boundary points of the Koebe domain.

In fact, the boundary points of the Koebe set for T are related to functions

F (z) =
eiθ − e−iθeiH(z)

1− eiH(z) · π sin θ
4θ(π − θ)

.

One can check that functions F coincide with those found by Goodman in
[2], i.e.

G

(
z + c

1 + cz

)
−G(c)

(1− c2)G′(c)
with c =

−π + 2
√
πθ − θ2

π − 2θ
.

The method presented above may be applied to other classes that consist
of functions with real coefficients.
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3. The Koebe domain for the class TM,k

At the beginning we discuss the class TM,k with k(z) = z/(1− z)2. After
that, we shall determine the Koebe domains for the classes TM,g, where
M > 1 and g is a typically real and univalent function. Observe that

f ∈ TM,k iff f ∈ T ∧ f(∆) ⊂ C \
{
p ∈ R : p ≤ −M

4

}
. (6)

From now on we assume the branch of argument arg
(
M + 4reiθ

)
to be

in [0, 2π).

Theorem 1. A function f ∈ TM,k omits reiθ and re−iθ, θ ∈ (0, π) if and
only if there exists a function h analytic in ∆ such that

1. h(0) = 2θ, h′(0) =
2 sin θ
r

,

2. 2 arg
(
M + 4reiθ

)
< h(x) < 2π for −1 < x < 1,

3. Im z Im h(z) ≥ 0, z ∈ ∆,

4. f(z) = r
eiθ − e−iθeih(z)

1− eih(z) .

Proof.
(⇒)
Let f ∈ TM,k and f(z) 6= reiθ, f(z) 6= re−iθ for θ ∈ (0, π). Observe that
(f(z)− reiθ)/(f(z)− re−iθ) is an analytic function in ∆ and omits 0 and 1.
There exists the function

log
f(z)− reiθ

f(z)− re−iθ

which we denote by ih(z). The branch of logarithm is chosen to be h(0) =
2θ.

Hence

f(z) = r
eiθ − e−iθeih(z)

1− eih(z) and eih(z) 6= 1.

Therefore

h(z) 6= 2nπ, n ∈ Z. (7)

Moreover,

Im f(z) =
r

|1− eih(z)|2
(

1− e−2 Im h(z)
)

sin θ (8)

which leads to
Im f(z) > 0 iff Im h(z) > 0 ,
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and
Im f(z) < 0 iff Im h(z) < 0 .

Consequently, Im z Im h(z) ≥ 0, z ∈ ∆. Then h is typically real. From (7)
and h(0) = 2θ we conclude that h(x) ∈ (0, 2π) for x ∈ (−1, 1).

For x ∈ (−1, 1) the function h(x) is increasing. It follows from univalence
of typically real functions in the set {z ∈ ∆: |1 + z2| > 2|z|}, see [1]. For
this reason and from f(x) > −M/4 (by (6)) it follows that

h(x) >
1
i

log
−M/4− reiθ

−M/4− re−iθ
,

or equivalently h(x) > 2 arg
(
M + 4reiθ

)
.

(⇐)
Let h be an analytic function in ∆ such that the conditions 1–4 of Theorem
1 are satisfied. With these assumptions (6) holds. Hence Im z Im f(z) ≥ 0,
z ∈ ∆, f is normalized by f(0) = f ′(0) − 1 = 0 and f(x) > −M/4 for
x ∈ (−1, 1). It means that f ∈ TM,k. By the definition of h we know that
f omits reiθ and re−iθ.

Theorem 2. The Koebe domain for the class TM,k, where k(z) =
z/(1− z)2, M > 1, is a bounded domain, symmetric with respect to the
real axis. Its boundary in the upper half plane is given by the polar equation
w = %(M, θ)eiθ, θ ∈ [0, π], where

%(M, θ) =


M

4(M − 1)
, θ = 0

r(M, θ), θ ∈ (0, π)
1
4
, θ = π,

(9)

and r = r(M, θ) is the only solution of

arg
(
M + 4reiθ

)
− 4rθ(π − θ)− π sin θ

4r(π − θ)− sin θ
= 0 (10)

in (r(θ),∞), and r(θ) is given by (4).

Proof. Let f ∈ TM,k and f(z) 6= reiθ, f(z) 6= re−iθ for θ ∈ (0, π), r > 0.
We assume r ≥ r(θ) because TM,k ⊂ T . By Theorem 1 there exists a
function h satisfying the conditions 1–4 of this theorem and hence

f(z) = r
eiθ − e−iθeih(z)

1− eih(z) .

Let
HM,θ(z) = 2θ +

a · z
1− 2tz + z2 ,
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where

a =
8(π − θ)

(
θ − arg

(
M + 4reiθ

))
π − arg (M + 4reiθ)

,

t =
π − 2θ + arg

(
M + 4reiθ

)
π − arg (M + 4reiθ)

,

θ ∈ (0, π), M > 1.

One can check that t ∈ (−1, 1). The function HM,θ is univalent,
HM,θ(0) = 2θ andHM,θ(∆) = C\

{
p ∈ R : p ≤ 2 arg

(
M + 4reiθ

)
∨ p ≥ 2π

}
.

From properties of h and HM,θ we obtain h ≺ HM,θ. Therefore

2 sin θ
r

= h′(0) ≤ H ′M,θ(0) = a.

Hence

2 sin θ
r
≤

8(π − θ)
(
θ − arg

(
M + 4reiθ

))
π − arg (M + 4reiθ)

(11)

or equivalently

θ
r − r(θ)

r − θ

π
r(θ)

− arg
(
M + 4reiθ

)
≥ 0. (12)

Let M and θ be fixed. Let us denote by g(r) the left hand side of (12).
It is easily seen that g(r(θ)) < 0. We shall prove that the equation g(r) = 0
considered for r ∈ [r(θ),∞) has only one solution.

We have

g′(r) =
sin θ

4(r − θ

π
r(θ))2|M + 4reiθ|2

(
16(1−M)r2 + 8M

(
cos θ +

sin θ
π − θ

)
r

+M
(
M − sin2 θ

(π − θ)2

))
.

Let W (r) = ar2 +br+c with a = 16(1−M), b = 8M (cos θ + sin θ/(π − θ)),
c = M

(
M − sin2 θ/(π − θ)2

)
. Since a < 0 and c > 0, the function W (r) is

zero in two points of different signs.
Let r0(θ) be a positive zero of W (r). We claim that r0(θ) > r(θ).
Indeed, if r0(θ) ≤ r(θ) were satisfied then we would obtain g′(r) < 0 for

r > r(θ). In this case it would be

0 > g(r(θ)) > lim
r→∞

g(r) = 0 ,

a contradiction.
We have actually proved that

g′(r) > 0 for r ∈ [r(θ), r0(θ)) and g′(r) < 0 for r > r0(θ).
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From limr→∞ g(r) = 0 and g′(r) < 0 for r > r0(θ) it follows that

g(r) > 0 for r > r0(θ).

This and the inequalities g(r(θ)) < 0 and g′(r) > 0 for r ∈ [r(θ), r0(θ))
lead to the conclusion that for r ≥ r(θ) the equation g(r) = 0 has only
one solution which we shall denote by r(M, θ). Hence g(r) ≥ 0 holds for
[r(M, θ),∞).

For the function

FM,θ(z) = r(M, θ)
eiθ − e−iθeiHM,θ

1− eiHM,θ
, θ ∈ (0, π)

there is r(M, θ)eiθ ∈ ∂FM,θ(∆). Combining this with r ≥ r(M, θ) we deduce
that the points r(M, θ)eiθ, r(M, θ)e−iθ, θ ∈ (0, π) belong to the boundary
of KTM,k . Consequently KTM,k is a starlike set.

Let %(M, θ)eiθ, θ ∈ [0, 2π) be the polar equation of this boundary. Hence

%(M, θ) = r(M, θ), θ ∈ (0, π).

Dividing (12) by θ and taking the limit as θ tends to 0 from the right we
get

r − 1/4
r

− 4r
M + 4r

≥ 0, (13)

since

lim
θ→0+

arg
(
M + 4reiθ

)
θ

= lim
θ→0+

Im
4ireiθ

M + 4reiθ
= lim

θ→0+

4r(M cos θ + 4r)
|M + 4reiθ|2

=
4r

M + 4r
.

As a result, (12) gives r ≥M/(4(M − 1)). Hence %(M, 0) = M/(4(M − 1)).
Writing (10) in the form

r ≥
(π − arg

(
M + 4reiθ

)
) sin θ

4(π − θ)(θ − arg (M + 4reiθ))
, (14)

and taking the limit as θ tends to π from the left we obtain r ≥ 1/4.
Indeed, for f ∈ TM,k we have f(x) > −M/4 while x ∈ (−1, 1). There-

fore f for negative x takes values from (−∞, b], where b > −M/4. Thus
limθ→π− arg

(
M + 4reiθ

)
= 0.

The inequality r ≥ 1/4 means that %(M,π) = 1/4.
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We have proved that the boundary of the Koebe domain for TM,k in the
upper half plane is given in the form w = %(M, θ)eiθ, θ ∈ [0, π], where

%(M, θ) =


M

4(M − 1)
, θ = 0

r(M, θ), θ ∈ (0, π)
1
4
, θ = π.

Since Koebe domains for classes of functions with real coefficients are sym-
metric with respect to the real axis, the proof is complete.

Observe that the extremal functions in the cases of θ = 0 and θ = π are
of the form

F1(z) =
z

1− 2z
(

2
M
− 1
)

+ z2
and F2(z) =

z

(1 + z)2 .

These functions belong to TM,k and satisfy

F1(1) =
M

4(M − 1)
and F2(−1) = −1

4
.

By Lemma 1 and Theorem 2,

Corollary 1. The Koebe domain for the class TM is a bounded domain,
symmetric with respect to both axes of the complex plane. Its boundary in
the upper half plane is given by the parametric equation

w =
2%(M, θ)eiθ

2
M
%(M, θ)eiθ + 1 +

√
4
M
%(M, θ)eiθ + 1

, θ ∈ [0, π], (15)

where %(M, θ) is given by (8).

Corollary 2. The Koebe domain for the class T (M) is a bounded domain,
symmetric with respect to both axes of the complex plane. Its boundary in
the upper half plane is given by the parametric equation

w =
M

4
log
(

4
M
%(M, θ)eiθ + 1

)
, θ ∈ [0, π], (16)

where %(M, θ) is given by (9).



52 L. KOCZAN AND P. ZAPRAWA

Observe that the parametric complex equation (16) can be rewritten,
using (10), in the form

x =
M

8
log
(

1 +
8
M
%(M, θ) cos θ +

16
M2 %

2(M, θ)
)

y =
M

4
4%(M, θ)θ(π − θ)− π sin θ

4%(M, θ)(π − θ)− sin θ

, θ ∈ [0, π]. (17)
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