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Abstract. For each pointclass Γ ⊆ P (2ω) define U [Γ] as the collection
of all X ⊆ 2ω such that the preimage f−1(X) belongs to Γ for each
continuous f : 2ω → 2ω. We study the properties of and possible rela-
tionships among the classes U [Γ], where Γ ranges over the σ-algebras
(l), (m), the completely Ramsey sets, and the sets with the Baire prop-
erty. We also prove some results about cardinal coefficients of U [Γ] for
the general case of Marczewski-Burstin representable σ-algebras Γ. We
finish by posing some unsolved problems.

1. Preface

In the early 1970’s Fred Galvin and Karel Prikry in [11] defined two
subcollections of the Ramsey sets that form σ-algebras; the Ramsey sets do
not ([9]). At first, both collections were called the completely Ramsey sets.
The article [11] is concerned with the collection that later became known as
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the uniformly completely Ramsey sets, while Silver in [22] studied the other
σ-algebra which is still referred to as the class of completely Ramsey sets.

Definition 1.1. A set X ⊆ 2ω is
1. Ramsey if there exists A ∈ [ω]ω such that [A]ω ⊆ X or [A]ω ∩X = ∅;
2. completely Ramsey (CR) if for every A ∈ [ω]ω and s ∈ [ω]<ω such

that max(s) < min(A), there exists B ∈ [A]ω such that [s,B] ⊆ X or
[s,B] ∩X = ∅, where [s,B] = {x ∈ [ω]ω : s ⊂ x ⊆ s ∪B};

3. uniformly completely Ramsey (UCR) if for every continuous function
f : 2ω → 2ω, f−1(X) is Ramsey, and

4. uniformly completely Ramsey null (UCR0) if every subset of X belongs
to UCR.

Darji in [10] showed that “Ramsey” may be replaced by “completely
Ramsey” in the definition of UCR. Thus UCR is the closure of CR under
continuous preimage. It is interesting to consider the general case. So
suppose that Γ is a pointclass over 2ω. Let us define

U [Γ] = {X ⊆ 2ω : ∀ f : 2ω→2ω
f cont.

(f−1(X) ∈ Γ)},

and let H[Γ] denote the hereditary ideal associated with Γ. Notice that
the “operator” U [·] is idempotent: U [U [Γ]] = U [Γ]. Moreover, if Γ is a
σ-algebra, then so is U [Γ]. We can express our previous notions in this
language as follows:

Observation 1.2. U [CR] = UCR and H[U [CR]] = UCR0.

Let us define also the Borel variant of the “operator” U [·].
UB[Γ] = {X ⊆ 2ω : ∀ f : 2ω→2ω

f Borel
(f−1(X) ∈ Γ)}.

Although the study of U [Γ] is the primary focus of this paper, it will occa-
sionally be useful to consider the smaller class UB[Γ] for two reasons: either
because we can prove a stronger result about the smaller class, or because
we can only prove a weaker result about the smaller class. Other than that
however, we will restrict our attention to U [Γ].

2. Notation

Our notation for the most part is standard (see [16]). We consider as
the base space the Cantor space 2ω, although some of our investigations
can also be considered in the space R. By ω↑ω, ω↑<ω, ω↑≤ω, and [ω]ω we
denote, respectively, the strictly increasing functions from ωω, the strictly
increasing functions from

⋃
n∈ω ω

n, the sum ω↑ω ∪ ω↑<ω, and the infinite
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subsets of ω. We will often think of ω↑≤ω and [ω]ω as subsets of 2ω, and
in those cases will conflate a sequence s ∈ ω↑≤ω with φ(ran (s)), and s ⊆ ω
with φ(s), where φ : ω → 2 is the characteristic function.

Let Lebesgue denote the collection of all Lebesgue measurable sets, Baire
the collection of all sets with the Baire property, N the σ-ideal of sets with
Lebesgue measure zero, and M the σ-ideal of meager sets.

If T ⊆ ω↑<ω and σ ∈ ω↑<ω, then succ T (σ) = {τ ∈ T : σ ⊆
τ and length (τ) = length (σ) + 1}. If I and J are two σ-ideals, then
we write I ⊥ J iff there exists X ∈ I such that 2ω \X ∈ J . For example,
we have M⊥ N . To avoid trivial cases we always assume that a σ-algebra
A contains the Borel subsets of 2ω. In this case the σ-algebra U [A], and
hence the σ-ideal H[U [A]], contain all singletons.

3. Definitions

Definition 3.1. A set X in a topological space is
1. always of the first category (AFC) if it is meager relative to every

perfect set;
2. universally meager (UM or AFC) if it does not contain a continuous

and one-to-one image of a set of second category (see [13], [14], or [23]);
3. meager additive (M∗) if M +X is meager for every meager set M (see

[4]).

It was proved in [23] that a set X is universally meager if and only if
each Borel isomorphic image of X in R is meager, and that a product of two
universally meager sets is universally meager. Notice also that UM ⊆ AFC.

Suppose that F is an arbitrary family of nonempty subsets of a set X . The
following collections of sets were considered in many papers (for example
see [1], [2], or [21]).

S(F) = {X ⊆ X : ∀P∈F ∃Q∈F (Q ⊆ P ∩X) or (Q ⊆ P \X)},

and
S0(F) = {X ⊆ X : ∀P∈F ∃Q∈F (Q ⊆ P \X)}.

We will assume throughout that X = 2ω.

Definition 3.2. A pair (A, I) (where A is a σ-algebra and I is a σ-ideal)
has a Marczewski-Burstin representation (MB representation) if there exists
a family of sets F such that A = S(F) and I = S0(F). In this case we let A0
denote the ideal S0(F). We call the MB representation inner if F ⊆ S(F).
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Definition 3.3.
1. A nonempty tree T ⊆ 2<ω is called perfect if ∀σ∈T ∃τ,τ ′∈T (τ ⊥
τ ′ and σ ⊆ τ ∩ τ ′);

2. a nonempty tree T ⊆ ω<ω is called superperfect if ∀σ∈T ∃τ∈T (σ ⊆
τ and |succ T (τ)| = ℵ0), and

3. a nonemtpy tree T ⊆ ω<ω is called Laver if ∀σ∈T (stem (T ) ⊆ σ ⇒
|succ T (σ)| = ℵ0).

We let (`), (m), and (s) denote, respectively, the σ-algebras S(FL),
S(FM), and S(FS), where FL = {[T ] : T ⊆ ω↑<ω is a Laver tree},
FM = {[T ] : T ⊆ ω↑<ω is a superperfect tree}, and FS = {[T ] : T ⊆
2<ω is a perfect tree}. (The fact that (`) and (m) are countably additive is
well-known. See [18] for example.)

Let us notice that (A,H[A]) has an inner MB representation whenever
A ∈ {Lebesgue,Baire, CR, (`), (m), (s)}. Indeed, for all but the first two
classes this follows immediately from the definition. The pairs (Lebesgue,N )
and (Baire,M) have inner MB representations for F equal to, respectively,
the family of positive measure perfect sets (see [8]), and the family of all
non-meager Gδ sets (see [7]).

4. Measure and category

This section is devoted to the case of two classical σ-algebras: Baire and
Lebesgue. Let us start with the following:

Theorem 4.1. The following are equivalent for any set X.
1. X is a universal measure zero set.
2. X ∈ H[UB[Lebesgue]].

Proof. Assume that X is a universal measure zero set, f : 2ω → 2ω is
Borel, and define X1 = {y ∈ 2ω : f−1(y) 6∈ N}. Since |X1| ≤ ℵ0, we have
that f−1(X1) is Borel. Consider the measure µ vanishing on singletons and
defined on the Borel subsets of 2ω given by:

µ(B) = λ(f−1(B \X1)),

where λ denotes as usual Lebesgue measure. Then since X has universal
measure zero, we conclude that there is a Borel set B ⊆ 2ω such that
µ(B) = 0 and X ⊆ B. Hence f−1(X) \ f−1(X ∩ X1) ⊆ f−1(B \ X1) and
it follows that λ(f−1(X \X1)) ≤ λ(f−1(B \X1)) = µ(B) = 0. Therefore,
f−1(X) is Lebesgue measurable since |X ∩ X1| ≤ ℵ0. The proof of the
opposite case follows from the classical result that any two Borel measures
on the Cantor set vanishing on singletons are Borel isomorphic (see Theorem
17.41 in [16]).
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We do not know whether the theorem is still true with H[U [Lebesgue]] in
place of H[UB[Lebesgue]].

The situation in the “Baire” case is much harder. Let us cite the following
result (see [24, Theorem 1.2]) which completely solves the Baire case and
strongly improves our previous results on this topic:

Theorem 4.2. H[UB[Baire]] = UM.

5. σ-Fields associated with tree forcings

Definition 5.1 (see [6]). A pointclass Γ over a topological space X is said
to be topologically reasonable (over X ) if it is closed under preimages by
continuous functions from X to X , and has the property that X ∩ Q ∈ Γ
for every X ∈ Γ and every closed Q ⊆ X .

We begin with the following easy proposition.

Proposition 5.2. Suppose that Γ is a pointclass over 2ω that contains the
Borel sets and is closed under finite intersections. Then U [Γ] is topologically
reasonable over 2ω.

Proof. U [Γ] is obviously closed under continuous preimage. So suppose
that X ∈ U [Γ] and Q ⊆ 2ω is closed. Suppose also that f : 2ω → 2ω is a
continuous function. Then f−1(X ∩Q) = f−1(X)∩ f−1(Q). But f−1(Q) is
Borel and thus belongs to Γ.

Corollary 5.3. Any class among UCR, U [(`)], U [(m)], and U [Baire] is
topologically reasonable over 2ω.

Proof. Each of the σ-algebras CR, (`), (m), and Baire contains the Borel
sets.

The following result from [6] is crucial in our proofs of the relations from
Figure 1:

Lemma 5.4. Let Γ be a topologically reasonable pointclass. Then one has
the following implications:

1. Γ ⊆ (`) =⇒ Γ ⊆ (m) =⇒ Γ ⊆ (s), and
2. Γ ⊆ Baire =⇒ Γ ⊆ (m).
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Therefore we have as an immediate consequence the diagram in Figure 1
which is a “uniform” version of the diagram following Corollary 3.5 of [6].

Let us prove for example:

Corollary 5.5. U [(`)] ⊆ U [(m)].

Proof. It suffices to show that U [(`)] ⊆ (m). Since the class U [(`)] is
topologically reasonable by Corollary 5.3 and by the implication Γ ⊆ (`) =⇒
Γ ⊆ (m) from Lemma 5.4, we conclude that U [(`)] ⊆ (m).

We can prove the other implications shown in Figure 1 and Figure 2 by
the same method (except the inclusion UM ⊆ H[U [Baire]] which follows
immediately from Theorem 4.2.)

U [Baire]

- - -
U [(m)]U [(`)]UCR (s)

?

Figure 1. Uniform classes

Assuming the Continuum Hypothesis, all of the classes from Figure 2
contain a set of size 2ω, namely a Sierpiński set. Let us recall the definition.

Definition 5.6. A set X is Sierpiński if X has cardinality continuum and
the intersection of X with any set from N is countable.

Example 5.7 (CH). Every Sierpiński set belongs to any class from Fig-
ure 2.

Proof. Under the Continuum Hypothesis, there exists a Sierpiński set, and
every Sierpiński set is UCR0 (see [10]) and UM (see [13]).

The next two examples show, modulo the Continuum Hypothesis, that
the inclusions indicated in Figure 2 are the only ones possible.
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H[U [Baire]]UM

?

-

- - -UCR0 H[U [(`)]] H[U [(m)]] (s)0

Figure 2. Hereditary classes

Example 5.8 (CH). There exists a set X ⊆ 2ω such that X belongs to
UM but X does not belong to H[U [(`)]].

Proof. Assume the Continuum Hypothesis. Let X ⊆ 2ω be such that
X ∈M∗ and X 6∈ (`)0 (Theorem 3.6 from [17]). Modifying the proof of the
Proposition 3.4 from [17], we can obtainM∗ ⊆ UM, and it is easily verified
that H[U [(`)]] ⊆ (`)0.

Definition 5.9. A set X is Luzin if X has cardinality continuum and the
intersection of X with any set from M is countable.

Example 5.10 (CH). Every Luzin set belongs to any class in the lower
row of the diagram in Figure 2, and belongs to no class in the upper row.

Proof. The Continuum Hypothesis implies there is a Luzin set, and ev-
ery Luzin is UCR0 by Theorem 9 of [10], and is not AFC so can’t be in
H[U [Baire]].

6. A separation theorem for MB representable algebras

Lemma 6.1. If A has an inner MB representation and add (A0) = κ, then
add (U [A]) = κ.

Proof. Assume the hypotheses, write A = S(F), and fix γ < κ. First we
show that Y =

⋃
α<γ Yα ∈ A whenever Yα ∈ A for all α < γ. Notice that

this claim was proved in [21] (see Theorem 2.2) for the case κ = ω0. For
the sake of completeness we include the proof for the general case. Suppose
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that P ∈ F and that there exist α < γ and Q ∈ F such that Q ⊆ Yα ∩ P .
Then Q ⊆ Y ∩ P ⊆ X.

On the other hand, suppose that no member of F lies in Yα ∩ P for any
α < γ. The MB representation is inner so P ∈ A, and this implies that
Yα ∩ P ∈ A0. It follows that there is some Q ∈ F such that Q ⊆ P and
Q ⊆ P \ (Y ∩ P ) ⊆ 2ω \X, whence Y ∈ A.

Suppose {Xα : α < γ} ⊆ U [A] and f is continuous. Then

f−1

(⋃
α<γ

Xα

)
=
⋃
α<γ

f−1 (Xα)

and f−1 (Xα) ∈ A for all α < γ. It follows that
⋃
α<γ Xα ∈ U [A].

Now let us formulate the main theorem which is a useful tool to obtain
counterexamples in this setting.

Theorem 6.2. Suppose that F and G are collections of uncountable Borel
sets, and put A = S(F) and B = S(G). Assume that

1. add (A0) = add (B0) = c;
2. Σ1

1 ⊆ B, and
3. for every continuous function f : 2ω → 2ω and for every P ∈ G there

exists Q ∈ G such that Q ⊆ P and f(Q) ∈ A0.
Then there exists X ∈ U [B] \ A.

Proof. At first notice that since |F| ≤ c and ∀P∈F (|P | = c), we may
conclude that A0 = H[A]. Fix enumerations (Lα : α < c) of all elements of
F , and ((M,f)α : α < c) of all pairs (M,f) where M ∈ G and f : 2ω → 2ω

is continuous.
At stage ψ < c, suppose that we have constructed sequences {Xα : α < ψ}

and {Yα : α < ψ} such that

X0 ⊆ X1 ⊆ · · · ⊆ Xα ⊆ · · · and
Y0 ⊆ Y1 ⊆ · · · ⊆ Yα ⊆ · · · ,

where Xα and Yα are disjoint subsets of 2ω and belong to U [B]∩A0. Define
X∗ψ =

⋃
α<ψXα, and Y ∗ψ =

⋃
α<ψ Yα. By Lemma 6.1 and our assumption

that add (A0) = c, X∗ψ and Y ∗ψ are again in U [B] ∩ A0.
Write (M,f)ψ = (M̂, f̂) and notice that f̂−1(Y ∗ψ ) ∈ B. This implies there

is some Nψ ∈ G such that Nψ ⊆ f̂−1(Y ∗ψ ) or Nψ ∩ f̂−1(Y ∗ψ ) = ∅. The
continuous image of a Borel set is Σ1

1, and considering (3) in the hypotheses
we may assume without loss of generality that f̂(Nψ) ∈ Σ1

1∩A0 ⊆ U [B]∩A0.
Thus f̂−1(Nψ) ⊆ Y ∗ψ or f̂−1(Nψ) ∩ Y ∗ψ = ∅. Set

X ′ψ = X∗ψ ∪ (f̂(Nψ) \ Y ∗ψ ),
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and put Y ′ψ = Y ∗ψ . Notice that X∗ψ, Y ∗ψ , and f̂(Nψ) \ Y ∗ψ all belong to
U [B] ∩ A0, hence so do X ′ψ and Y ′ψ.

For all α < ψ we have Xα, Yα ∈ A0, so
⋃
α<ψ(Xα ∪ Yα) ∈ A0 as well.

Because of this we may choose xψ 6= yψ such that xψ, yψ ∈ Lψ \
⋃
α<ψ(Xα∪

Yα). Define Xψ = X ′ψ∪{xψ} and Yψ = Y ′ψ∪{yψ}, and note that Xψ∩Yψ = ∅.
Finally, define X =

⋃
ψ<cXψ. Observe that Lα contains a point of X and

a point of Xc for every α < c, hence X /∈ A.
To see that X ∈ U [B], fix ψ < c and write (M,f)ψ = (M̂, f̂). Then

f̂(Nψ) ⊆ X ′ψ ⊆ X, or f̂(Nψ) ⊆ Y ′ψ. But this means that f̂(Nψ) ∩ X = ∅
because X ∩ Y ′ψ = ∅. Since Nψ ⊆ M̂ , we conclude that X ∈ U [B] \ A.

The foregoing discussion leads us to define two properties of MB repre-
sented algebras and ideals as follows. Suppose that A and B have inner
Marczewski-Burstin representations A = S(F) and B = S(G). Consider
the following two conditions:

(†): for all continuous f : 2ω → 2ω and for every P ∈ G, there exists
some Q ∈ G such that Q ⊆ P and f(Q) ∈ A0; and

(‡): for every continuous f : 2ω → 2ω, there exists some X ∈ A0 such
that 2ω \ f−1(X) ∈ B0.

Then (‡) implies (†) and the condition (†) is exactly the property from
Theorem 6.2. In the meantime, the condition (‡) implies the relation of
“orthogonality” of the σ-ideals A0 and B0, i.e. condition (‡) implies that
A0 ⊥ B0.

The remainder of this section is devoted to proving that condition (†)
holds for any two σ-algebras in the bottom row of Figure 2, except for the
pair UCR and U [(`)], which we cannot solve. First we show that (†) holds
when A = (m) and B = (s). Let us denote by ≤∗ the standard eventually
dominating ordering of the space ωω: f ≤∗ g ⇐⇒ ∃N<ω∀n>N (f(n) ≤
g(n)).

Lemma 6.3 ([15]). Let X ⊆ ωω be an analytic set (i.e. X ∈ Σ1
1). Then

the following are equivalent:
1. There exists a superperfect tree T such that [T ] ⊆ X.
2. X is unbounded in (ωω,≤∗).

Theorem 6.4. For every continuous f : 2ω → 2ω and every perfect tree
M , there exists a perfect tree N ⊆M such that f([N ]) ∈ (m)0.

Proof. The proof is very easy. Indeed, suppose that f : 2ω → 2ω is con-
tinuous and M is a perfect tree. If there exists y ∈ [ω]<ω such that
|f−1(y)∩ [M ]| > ℵ0 then f−1(y) contains a perfect set [N ] for some perfect
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tree N , and in that case f([N ])∩ [ω]ω = ∅ which implies that f([N ]) ∈ (m)0.
On the other hand, suppose that ∀y∈ω<ω (|f−1(y)∩ [M ]| ≤ ℵ0), then choose
a perfect tree N ⊆ M such that f([N ]) ⊆ [ω]ω. Since f([N ]) is compact it
is bounded in (ω↑ω,≤∗). Therefore f([N ]) ∈ (m)0 by Lemma 6.3.

Corollary 6.5. Assume Martin’s Axiom. Then U [(m)] is a proper subset
of U [(s)] = (s).

Proof. Let A = S(FM) = (m), and B = S(FS) = (s). We check the
hypotheses of Theorem 6.2. Condition (1) follows from [12], Condition (2)
is well-known, and Condition (3) is Theorem 6.4.

The case when A = (`) and B = (m) is not quite so straightforward.

Theorem 6.6. For every continuous function f : 2ω → 2ω and every su-
perperfect tree M ⊆ ω↑<ω, there exists a superperfect tree N ⊆M such that
f([N ]) ∈ (`)0.

Proof. At first notice that [M ] is homeomorphic to the Baire space ωω and
[M ] is a closed subset of the space ω↑ω. Then notice that for every Borel
B ⊆ [M ] the following conditions are equivalent:

1. B is contained in a σ-compact subset of ω↑ω.
2. B is contained in a σ-compact subset of [M ].
3. B does not contain any set of the form [M1] for some superperfect tree
M1.

This remark follows from Lemma 6.3 and from the fact that [M ] is a closed
subset of ω↑ω.

Suppose that f−1(ω↑<ω)∩ [M ] contains a set [M1] for some superperfect
tree M1. Then the proof is completed. So assume that for some superperfect
tree M1 ⊆ M we have f([M1]) ⊆ ω↑ω ≈ ωω. Therefore, without loss
of generality (by taking f |̀ [M1]) we can assume that f : ωω → ωω is a
continuous function and we are looking for a Borel set B ⊆ ωω which is
not contained in any σ-compact subset of ωω and such that f(B) does not
contain a set [L] for any Laver tree L.

Consider two cases:
Case 1: There is no Laver tree L ⊆ ω↑<ω such that [L] ⊆ f(ωω). Then

the required condition is satisfied simply by B = ωω.
Case 2: There exists a Laver tree L ⊆ ω↑<ω such that [L] ⊆ f(ωω).

“Prune” the tree L to a superperfect tree M∗ ⊆ L such that there is no Laver
tree L1 such that [L1] ⊆ [M∗]. Let us consider the set f−1

(
[M∗]

)
. Suppose

that this set is contained in some σ-compact set K ⊆ ωω. Then we have
f−1

(
[M∗]

)
⊆ K, hence [M∗] ⊆ f(K) (since [M∗] ⊆ f(ωω)). This is however
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impossible since f(K) is a σ-compact set and M∗ is a superperfect tree.
Hence f−1

(
[M∗]

)
is not contained in any σ-compact subset of ωω. Put B =

f−1
(
[M∗]

)
. Then f(B) = f

(
f−1

(
[M∗]

))
= [M∗]∩ f(ωω) = [M∗], therefore

f(B) does not contain any set [L1] for any Laver tree L1 ⊆ ω↑<ω.

Corollary 6.7. Assume Martin’s Axiom. Then U [(`)] is a proper subset of
U [(m)].

Proof. Let A = S(FL) = (`) and B = S(FM) = (m). We check the
hypotheses of Theorem 6.2. Condition (1) follows from [12], Condition (2)
is a consequence of the fact that Σ1

1 ⊆ CR, (see [19],[22]), and Condition
(3) is Theorem 6.6.

7. Open problems

1. Does H[U [Lebesgue]] = H[UB[Lebesgue]]?
2. We know ([20]) that it is consistent that no UCR0 set has size c. What

about the class H[U [(m)]]? Can we find in ZFC a set X ∈ H[U [(m)]]
of size c?

3. Does the condition (†) hold in the case A = CR = S(F) and B = (`),
where F = {[s,B] : s ∈ [ω]<ω and B ∈ [ω]ω and max(s) < min(B)}?

4. Find any set X ∈ H[U [(`)]] \ UCR0.
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ideals, Real Anal. Exchange 26(2) (2000/2001), 703–715.

[2] Bartoszewicz, A., Kotlicka, E., Relationships between continuity and abstract mea-
surability of functions, Real Anal. Exchange 31(1) (2005/2006), 73–96.
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