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Abstract. Motivated by Gupta [9] and Garcia-Huidobro, Gupta, Man-
asevich [5], the solvability of multi-point boundary value problems con-
sisting of higher-order differential equations and multi-point boundary
conditions are studied in this paper, respectively. Results show us that
known theorems are complemented and improved. Numerical examples
are presented to demonstrate the main theorems.

1. Introduction

In [13], [14], [15], [16], Liu and Yu studied the solvability of multi-point
boundary value problem at resonance consisting of the second-order differ-
ential equation

x′′(t) = f
(
t, x(t), x′(t)

)
+ e(t), 0 < t < 1, (1)
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and one of the following boundary value conditions

x′(0) = 0, x′(1) =
l∑

i=1

βix
′(ηi), (11)

x(0) = 0, x′(1) =
l∑

i=1

βix
′(ηi), (12)

where 0 < ηi < 1, and βi ∈ R and f is continuous and e ∈ L1[0, 1]. The
following results were proved.

Theorem LY1 ([14, Theorem 3.8]). Suppose
∑l

i=1 βi = 1 and
∑l

i=1 βiηi

�= 1 and
(L1) There is M > 0 such that for each x ∈ D(L) if |x(t)| > M for all

t ∈ [0, 1] one has
l∑

i=1

βi

∫ 1

ηi

(
f
(
t, x(t), x′(t)

)
+ e(t)

)
dt �= 0.

(L2) There is M∗ > 0 such that

d
l∑

i=1

βi

∫ 1

ηi

(f(t, d, 0) + e(t)) dt > 0

for all |d| > M∗ or

d
l∑

i=1

βi

∫ 1

ηi

(f(t, d, 0) + e(t)) dt < 0

for all |d| > M∗.
(L3) There exist functions a, b, c, r ∈ L1[0, 1] and θ ∈ [0, 1) such that

|f(t, x, y)| ≤ a(t)|x| + b(t)|y| + c(t)|x|θ + r(t)

or
|f(t, x, y)| ≤ a(t)|x| + b(t)|y| + c(t)|y|θ + r(t).

Then problem (1) and (11) has at least one solution if ‖a‖1 + ‖b‖1 < 1/2.

Theorem LY2 ([14, Theorem 3.6]). Suppose
∑l

i=1 βi = 1 and
∑l

i=1 βiηi

�= 1, (L3) holds and
(L4) There is M > 0 such that for each x ∈ D(L) if |x′(t)| > M for all

t ∈ [0, 1] one has
l∑

i=1

βi

∫ 1

ηi

(
f
(
t, x(t), x′(t)

)
+ e(t)

)
dt �= 0.
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(L5) There is M∗ > 0 such that

d

l∑
i=1

βi

∫ 1

ηi

(f(t, dt, d) + e(t)) dt > 0

for all |d| > M∗ or

d
l∑

i=1

βi

∫ 1

ηi

(f(t, dt, d) + e(t)) dt < 0

for all |d| > M∗.
Then problem (1) and (12) has at least one solution if ‖a‖1 + ‖b‖1 < 1/2.

Consider problem⎧⎪⎪⎨
⎪⎪⎩

x′′(t) = −θ[x′(t)]3 + p(t)x′(t) + q(t)x(t) + r(t), 0 < t < 1,

x′(0) = x′(1) −
m∑

i=1

βix
′(ηi) = 0,

(∗)

where θ > 0,
∑l

i=1 βi = 1 and
∑l

i=1 βiηi = 1, and problem⎧⎪⎨
⎪⎩

x′′(t) =
1
2
x′(t) +

1
4
x(t) + r(t), 0 < t < 1,

x(0) = x′(1) +
1
2
x′ − 2

3
4
x′ = 0.

(∗∗)

It is easy to see that problem (∗) and problem (∗∗) can not be solved by
Theorems LY1 and LY2 since

f(t, x, y) = −θy3 + p(t)y + q(t)x + r(t)

in problem (∗) and f does not satisfy (L3), and

f(t, x, y) =
1
2
y +

1
4
x + r(t)

in problem (∗∗) and ‖a‖1 +‖b‖1 < 1/2 does not hold. Furthermore, it is not
easy to test the conditions (L1) and (L4) in Theorem LY1 and Theorem LY2,
respectively. We also find that the solvability of problem (1) and (11) and
problem (1) and (12) were not settled when

∑l
i=1 βi = 1 and

∑l
i=1 βiηi = 1,

for example, see problem (∗∗).
In recent paper [9], Gupta studied the solvability of the following non-

resonance problem⎧⎪⎪⎨
⎪⎪⎩

[φ (x′(t))]′ = f (t, x(t), x′(t)) + e(t), t ∈ (0, 1),

x(0) = 0, φ (x′(1)) =
m∑

i=1

αiφ
(
x′(ξi)

)
,

(2)
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where φ is an odd increasing homeomorphism from R on to R and
∑m

i=1 αi

�= 1. We find that the case where
∑m

i= αi = 1 is not considered in [9]. If∑m
i=1 αi �= 1, Gupta proved the following theorem:

Theorem G ([9, Theorem 3.1]). Assume that there is functions p, q, r ∈
L1[0, 1] such that

|f(t, x, y)| ≤ p(t)|x| + q(t)|y| + r(t).

Then problem (2) has at least one solution if ‖p‖1 + ‖q‖1 + τ < 1, where

τ = min

{ ∑m−2
i=1 (αi)+∑m−2

i=1 (αi)− + 1
,

∑m−2
i=1 (αi)− + 1∑m−2

i=1 (αi)+

}
.

In paper [5], the authors studied the following problem⎧⎪⎪⎨
⎪⎪⎩

[φ (x′(t))]′ = f (t, x(t), x′(t)) , t ∈ (0, 1),

x′(0) = 0, θ (x′(1)) =
m∑

i=1

αiθ
(
x′(ξi)

)
,

(3)

which contains the problem⎧⎪⎪⎨
⎪⎪⎩

[φ (x′(t))]′ = f (t, x(t), x′(t)) , t ∈ (0, 1),

x′(0) = 0, φ (x′(1)) =
m∑

i=1

αiφ
(
x′(ξi)

) (3′)

as special case, where φ and θ are two odd increasing homeomorphism from
R onto R with φ(0) = θ(0) = 0, αi ∈ R and ξi ∈ (0, 1) for i = 1, . . . ,m,
f is a continuous function. They established the existence results for prob-
lem (3) under one of the following assumptions:

(G1) 0 ≤ ∑m
i=1 αi ≤ 1, there are non-negative functions d1(t) and d2(t) and

r(t) such that

|f(t, u, v)| ≤ d1(t)φ(|u|) + d2(t)φ(|v|) + r(t) for t ∈ [0, 1], u, v ∈ R,

and there are constants M > 0, A,B ≥ 0 and a u0 > 0 such that for
all u with |u| > u0, all t ∈ [0, 1] and all v ∈ R one has

|f(t, u, v)| ≥ Mφ(|u|) − Aφ(|v|) − B.

(G2) 0 ≤ ∑m
i=1 αi ≤ 1, for any K > 0, there are non-negative functions

b1(t) and b2(t) so that

|f(t, u, v)| ≤ b1(t) + b2(t)φ(|v|) for t ∈ [0, 1], |u| ≤ K, v ∈ R.

It is easy to see that the cases where
∑m

i=1 αi < 0 or
∑m

i=1 αi > 1 were not
considered in [5].

For problem (3′), the authors proved the following theorem.
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Theorem GH ([5, Theorem 11]). Suppose that the following conditions
are satisfied:
(G1) There are non-negative functions d1, d2, r ∈ L1[0, 1] such that

|f(t, u, v)| ≤ d1(t)φ(|u|) + d2(t)φ(|v|) + r(t) for t ∈ [0, 1], u, v ∈ R.

(G2) There is d > 0 such that for all x ∈ C1[0, 1] with |x(t)| > d for all
t ∈ [0, 1] it holds that∫ 1

0
f
(
t, x(t), x′(t)

)
dt −

m∑
i=1

αi

∫ ξi

0
f
(
t, x(t), x′(t)

)
dt �= 0.

(G3) For every R > 0 there is |ρ| > R such that F (ρ)F (−ρ) < 0, where

F (ρ) =
∫ 1

0
f(t, ρ, 0)dt −

m∑
i=1

αi

∫ ξi

0
f(t, ρ, 0)dt.

(G4) ‖d2‖ < 1 and

lim
z→∞ sup

Γ(z)
z

< 1,

where

Γ(z) = φ

( ‖d1‖
1 − ‖d2‖φ(z) +

‖r‖
1 − ‖d2‖

)
.

Then problem (3′) has at least one solution x ∈ C1[0, 1].

To the best of our knowledge, there has been no other paper concerned
with the existence of solutions of multi-point boundary value problems for
higher-order differential equations with p-Laplacian at resonance, though
there was a considerable number of papers concerned with the existence
of positive solutions or solutions of second-order differential equations with
p-Laplacian at non-resonance cases [4], [7], [8], [10], [11], [12] or concerned
with the solvability of boundary value problems for higher-order differential
equations without p-Laplacian at non-resonance cases or resonance case [1],
[2], [3], [17], [18], [19], [20].

Following notations and abstract existence theorem by Mawhin [21], [22]
will be used in this paper.

Let X and Y be Banach spaces, L : D(L) ⊂ X → Y be a Fredholm
operator of index zero, P : X → X, Q : Y → Y be projectors such that

Im P = Ker L, Ker Q = Im L, X = Ker L⊕Ker P, Y = Im L⊕Im Q.

It follows that
L|D(L)∩Ker P : D(L) ∩ Ker P → Im L

is invertible, we denote the inverse of that map by Kp.
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If Ω is an open bounded subset of X, D(L) ∩ Ω̄ �= ∅, map N : → Y will
be called L-compact on Ω̄ if QN(Ω̄) is bounded and Kp(I − Q)N : Ω̄ → X
is compact.

Theorem M ([21], [22]). Let L be a Fredholm operator of index zero and
let N be L-compact on Ω. Assume that the following conditions are satisfied:

(i) Lx �= λNx for every (x, λ) ∈ [(D(L) \ Ker L) ∩ ∂Ω] × (0, 1);
(ii) Nx /∈ Im L for every x ∈ Ker L ∩ ∂Ω;
(iii) deg

(∧QN
∣∣
Ker L

,Ω ∩ Ker L, 0
) �= 0, where ∧ : Y/ Im L → Ker L is the

isomorphism.
Then the equation Lx = Nx has at least one solution in D(L) ∩ Ω̄.

Theorem M is reported to be the most classical method to approach
the boundary value problems at resonance case for second order or higher
order differential equations. In this method, one decomposes the space as
the direct sum of subspace, one of which is Ker L, and then to work with
the corresponding projections on these spaces. For instance see papers [4],
[7], [13], [14], [15], [16] for BVP of second order differential equations and
[17], [18], [19], [20] for higher order differential equations and the references
therein. There is no paper concerned with the solvability of multi-point BVP
for higher order differential equations with p-Laplacian since the methods
used in [4], [7], [13], [14], [15], [16], [17], [18], [19], [20] can not be copied to
discuss these kinds of problems.

Motivated and inspired by papers [5], [9], [13], [14], [15], [16] and the
reason mentioned above, we are concerned with the following higher-order
differential equation with p-Laplacian[

φ
(
x(n−1)(t)

)]′
= f

(
t, x(t), x′(t), . . . , x(n−1)(t)

)
, 0 < t < 1, (4)

subjected to one of the following multi-point boundary value conditions⎧⎪⎨
⎪⎩

x(i)(0) = 0 for i = 0, 1, . . . , n − 2,

φ
(
x(n−1)(1)

) − l∑
i=1

βiφ
(
x(n−1)(ηi)

)
= 0, (5)⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x(i)(0) = 0 for i = 0, 1, . . . , n − 3,
x(n−1)(0) = 0,

φ
(
x(n−1)(1)

) − l∑
i=1

βiφ
(
x(n−1)(ηi)

)
= 0, (6)

where n ≥ 2, 0 < ηi < 1, βi ∈ R for all i = 1, . . . , l and f is Caratheodory
functions, and φ is an odd increasing homeomorphism from R onto R with
φ(0) = 0, whose inverse is written by φ−1.
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The purpose of this paper is to establish the existence results, by using a
transformation, for the solutions of BVP (4)–(5) in the case

∑l
i=1 βi = 1 and

BVP (4)–(6), respectively. Our results generalize and complement those in
[5], [9], [13], [14], [15], [16]. Problem (∗) and problem (∗∗) can be solved
by theorems in this paper. Even when φ(x) = x, we do not require the
assumptions

∑l
i=1 βi = 1 and

∑l
i=1 βiηi �= 1.

This paper is organized as follows. In Section 2.1, the existence results
for solutions of BVP (4)–(5) are established. We will present the existence
results for solutions of BVP (4)–(6) in Section 2.2. Results show us that
known theorems are complemented and improved.

2. Main results

To obtain solutions of BVP (4)–(5) and BVP (4)–(6), let x1(t) = x(t),
x2(t) = φ

(
x(n−1)(t)

)
. Then BVP (4)–(5) becomes⎧⎨

⎩
x

(n−1)
1 (t) = φ−1 (x2(t)) , 0 < t < 1,

x′
2(t) = f

(
t, x1(t), . . . , x

(n−2)
1 (t), φ−1 (x2(t))

)
, 0 < t < 1,⎧⎪⎪⎨

⎪⎪⎩
x

(i)
1 (0) = 0, i = 0, . . . , n − 2,

x2(1) −
l∑

i=1

βix2(ηi) = 0,

(7)

and BVP (4)–(6) becomes{
x

(n−1)
1 (t) = φ−1 (x2(t)) , 0 < t < 1,

x′
2(t) = f

(
t, x1(t), . . . , x

(n−2)
1 (t), φ−1 (x2(t))

)
, 0 < t < 1,⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x
(i)
1 (0) = 0, i = 0, . . . , n − 3,

x2(0) = 0,

x2(1) −
l∑

i=1

βix2(ηi) = 0.

(8)

It is easy to show that if (x1, x2) ∈ Cn−1[0, 1] × C1[0, 1] is a solution of
BVP (7) or BVP (8), then x1 is a solution of BVP (4)–(5) or BVP (4)–(6),
respectively.

Let X = Cn−2[0, 1] × C0[0, 1] be endowed with the norm

‖x‖ =
∥∥(x1, x2)T

∥∥
= max

{
max
0≤t≤1

|x1(t)|, . . . , max
0≤t≤1

∣∣∣x(n−2)
1 (t)

∣∣∣ , max
0≤t≤1

|x2(t)|,
}
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for x = (x1, x2) ∈ X, then X is a Banach space. Let Y = C0[0, 1]×C0[0, 1]×
R

n be endowed with the norm∥∥∥(y1(t), y2(t), a0, . . . , an−1)
T
∥∥∥ = max {‖(y1, y2)‖, |a0|, . . . , |an−1|}

for y = (y1, y2, a0, . . . , an−1) ∈ Y , then Y is a Banach space. Set D(L1) =
D(L2) = Cn−1[0, 1] × C1[0, 1].

Define the line operator L1 : D(L1) ∩ X → Y in D(L1) by

L1

(
x1(t)
x2(t)

)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

x
(n−1)
1 (t)
x′

2(t)
x1(0)

...
x

(n−2)
1 (0)

x2(1) −
∑l

i=1 βix2(ηi)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

for (x1, x2) ∈ D(L1),

the linear operator L2 : D(L2) ∩ X → Y in D(L2) by

L2

(
x1(t)
x2(t)

)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x
(n−1)
1 (t)
x′

2(t)
x1(0)

...
x

(n−3)
1 (0)
x2(0)

x2(1) −
∑l

i=1 βix2(ηi)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

for (x1, x2) ∈ D(L2).

Define the nonlinear operator N : X → Y by

N

(
x1(t)
x2(t)

)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

φ−1 (x2(t))
f
(
t, x1(t), . . . , x

(n−2)
1 (t), φ−1 (x2(t))

)
0
...
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

for (x1, x2)T ∈ X.

It is easy to see that (x1, x2) ∈ D(L1) is a solution of (7) if and only if
(x1, x2) is a solution of operator equation L(x1, x2)T = N(x1, x2)T in D(L1).
(x1, x2) ∈ D(L2) is a solution of (8) if and only if (x1, x2) is a solution of
operator equation L(x1, x2)T = N(x1, x2)T in D(L2).
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2.1. Existence results for BVP (4)–(5).

In this subsection, the existence results for BVP (4)–(5) will be estab-
lished. Since the case when

∑l
i=1 βi �= 1 was considered in [9], we will study

the case when
∑l

i=1 βi = 1. The corresponding linear problem of BVP (7)
is ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x
(n−1)
1 (t) = 0, 0 < t < 1,

x′
2(t) = 0, 0 < t < 1,

x
(i)
1 (0) = 0 for i = 0, 1, . . . , n − 2,

x2(1) −
l∑

i=1

βix2(ηi) = 0.

Lemma 2.1. The following results hold.

(i) Ker L1 =
{

(x1(t), x2(t))
T = (0, c)T , t ∈ [0, 1], c ∈ R

}
.

(ii) Im L1 =

{
(y1, y2, a0, . . . , an−1) ∈ Y,

∫ 1

0
y2(s)ds −

l∑
i=1

βi

∫ ηi

0
y2(s)ds = an−1

}
.

(iii) L1 is a Fredholm operator of index zero;

(iv) There exists a positive integer k so that 1 −
l∑

i=1

βiη
k �= 0.

(v) There are projectors P : X → X and Q : Y → Y such that Ker L1 =
Im P , Ker Q = Im L1, X = Ker L1⊕Im P and Y = Im L1⊕Ker Q.
Furthermore, let Ω ⊂ X be an open bounded subset with Ω̄∩D(L1) �= ∅,
then N is L1-compact on Ω̄.

Proof. The proofs of (i)–(v) are similar to those of lemmas in [13], [14],
[15], [16] and are omitted. We write down the projectors P : X → X and
Q : Y → Y and the generalized inverse Kp : Im L → D(L) ∩ Im P . Let
x = (x1, x2) ∈ X and y = (y1, y2, a1, . . . , an) ∈ Y , we have

Px(t) = (0, x2(0)) ,

Qy(t) =

(
0,

∫ 1
0 y2(s)ds −∑l

i=1 βi

∫ ηi

0 y2(s)ds − an−1

Δ
tk−1, 0, . . . , 0

)
,

Kpy(t) =
(∫ t

0

(t − s)n−2

(n − 2)!
y1(s)ds,

∫ t

0
y2(s)ds

)
,
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where

Δ =
1
k

(
1 −

l∑
i=1

ηk
i

)
.

The inverse isomorphism of ∧ : Ker L1 → Y/ Im L1 is ∧−1 : Y/ Im L1 →
Ker L1 given by ∧−1(0, ctk−1, 0, . . . , 0) = (0, c). The proof is complete.

Now suppose the following:

(A1) There exist continuous function e(t) and nonnegative continuous func-
tions gi(t, x) (i = 0, 1, . . . , n − 1) such that f satisfies

|f (t, x0, x1, . . . , xn−1)| ≤ e(t) +
n−1∑
i=0

gi(t, xi),

for all t ∈ [0, 1] and (x0, x1, . . . , xn−1) ∈ R
n and

lim
|x|→∞

sup
t∈[0,1]

|gi(t, x)|
φ(|x|) = ri, for i = 0, 1, . . . , n − 1

with ∞ > ri ≥ 0 for i = 0, 1, . . . , n − 1;
(A2) There exists i0 ∈ {1, . . . , l} such that βi ≥ 0 for i = 1, . . . , i0 and

βi < 0 for all i = i0 + 1, . . . , l.
(A3) There exists a constant M > 0 such that

f
(
t, x0, . . . , xn−2, φ

−1(xn−1)
)

> 0

for all xi ≥ 0 (i = 0, . . . , n − 2) and φ−1(xn−1) > M or

f
(
t, x0, . . . , xn−2, φ

−1(xn−1)
)

< 0

for all xi ≤ 0 (i = 0, . . . , n − 2) and φ−1(xn−1) < −M .

Theorem 2.1. Assume (A1), (A2) and (A3) hold. Then BVP (4)–(5) has
at least one solution provided

n−1∑
i=1

ri < 1. (9)

Proof. We note that if (x1, x2) is a solution of (7), then x1 is a solution of
BVP (4)–(5). It suffices to obtain a solution (x1, x2) of BVP (7). To apply
Theorem M, we will do the following steps.
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Step 1. Let Ω1 = {x ∈ D(L1) \ Ker L1, L1x = λNx for some λ ∈ (0, 1)}.
We prove that Ω1 is bounded. For x ∈ Ω1, we get{

x
(n−1)
1 (t) = λφ−1 (x2(t)) , 0 < t < t < 1,

x′
2(t) = λf

(
t, x1(t), . . . , x

(n−2)
1 (t), φ−1 (x2(t))

)
, 0 < t < 1,⎧⎪⎪⎨

⎪⎪⎩
x

(i)
1 (0) = 0, i = 0, . . . , n − 2,

x2(1) −
l∑

i=1

βix2(ηi) = 0.
(10)

If φ−1 (x2(t)) > M for all t ∈ [0, 1], then

x
(i)
1 (t) = λ

∫ t

0

(t − s)n−i−2

(n − i − 2)!
φ−1 (x2(s)) ds ≥ 0, i = 0, . . . , n − 2.

Thus from (A3) we get

f
(
t, x1(t), . . . , x

(n−2)
1 (t), φ−1 (x2(t))

)
> 0 for all t ∈ [0, 1].

Hence x2(t) is increasing on [0, 1]. So we get from (A2) that

x2(1) =
l∑

i=1

βix2(ηi) <

l∑
i=1

βix2(ηi0) = x2(ηi0) < x2(1),

a contradiction. Similar discussion shows us that φ−1 (x2(t)) < −M induces
a contradiction. Then there is t0 ∈ [0, 1] so that φ−1(|x2(t0)|) ≤ M . It
follows from (10) that

x′
2(t) = λf

(
t, x1(t), . . . , x

(n−2)
1 (t), φ−1 (x2(t))

)
, 0 < t < 1.

Integrating it from t0 to t, we get from (A1) that

|x2(t)| =
∣∣∣∣x2(t0) + λ

∫ t

t0

f
(
s, x1(s), . . . , x

(n−2)
1 (s), φ−1 (x2(s))

)
ds

∣∣∣∣
≤ φ(M) +

∫ 1

0

∣∣∣f (
s, x1(s), . . . , x

(n−2)
1 (s), φ−1 (x2(s))

)∣∣∣ ds

≤ φ(M) +
∫ 1

0
|e(s)|ds +

n−2∑
i=0

∫ 1

0

∣∣∣gi

(
s, x

(i)
1 (s)

)∣∣∣ ds

+
∫ 1

0

∣∣gn−1

(
s, φ−1 (x2(s))

)∣∣ ds.

It is easy to get

‖x(i)
1 ‖ ≤ ‖x(n−1)‖ ≤ φ−1(‖x2‖) for i = 0, . . . , n − 1.
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It follows from (9) that there is ε > 0 so that

n−1∑
i=0

(ri + ε) < 1.

For this ε, we get δ > 0 so that

|gi(t, x)| ≤ (ri + ε)φ(|x|) for all t ∈ [0, 1], |x| ≥ δ, i = 0, . . . , n − 1.

Let, for i = 0, 1, . . . , n − 2,

Δ1,i =
{

t ∈ [0, 1], |x(i)(t)| ≤ δ
}

, Δ2,i =
{

t ∈ [0, 1], |x(i)(t)| > δ
}

,

gδ,i = max
t∈[0,1],|x|≤δ

|gi(t, x)|,

and

Δ1,n−1 =
{
t ∈ [0, 1], φ−1(|x2(t)|) ≤ δ

}
,

Δ2,n−1 =
{
t ∈ [0, 1], φ−1(|x(i)(t)|) > δ

}
,

gδ,n−1 = max
t∈[0,1], φ−1(|x|)≤δ

∣∣gi

(
t, φ−1(x)

)∣∣ .
So

|x2(t)| ≤φ(M) +
∫ 1

0
|e(s)|ds +

n−2∑
i=0

∫
Δ1,i

∣∣∣gi

(
s, x

(i)
1 (s)

)∣∣∣ ds

+
n−2∑
i=0

∫
Δ2,i

∣∣∣gi

(
s, x

(i)
1 (s)

)∣∣∣ ds

+
∫

Δ1,n−1

∣∣gn−1

(
s, φ−1 (x2(s))

)∣∣ ds

+
∫

Δ1,n−1

∣∣gn−1

(
s, φ−1 (x2(s))

)∣∣ ds

≤φ(M) +
∫ 1

0
|e(s)|ds +

n−2∑
i=0

gδ,i +
n−2∑
i=0

(ri + ε)
∫ 1

0
φ
(∣∣∣x(i)(s)

∣∣∣) ds

+ gδ,n−1 + (rn−1 + ε)
∫ 1

0
φ
(
φ−1 (|x2(s)|)

)
ds

≤φ(M) +
∫ 1

0
|e(s)|ds +

n−1∑
i=0

gδ,i

+
n−2∑
i=0

(ri + ε)φ
(
φ−1 (‖x2‖∞)

)
+ (rn−1 + ε)‖x2‖∞
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≤φ(M) +
∫ 1

0
|e(s)|ds +

n−1∑
i=0

gδ,i

+
n−2∑
i=0

(ri + ε)‖x2‖∞ + (rn−1 + ε)‖x2‖∞.

Hence

‖x2‖∞ ≤ φ(M)+
∫ 1

0
|e(s)|ds+

n−1∑
i=0

gδ,i+
n−2∑
i=0

(ri+ε)‖x2‖∞+(rn−1+ε)‖x2‖∞.

We get(
1 −

n−1∑
i=0

(ri + ε)

)
‖x2(s)‖∞ ≤ φ(M) +

∫ 1

0
|e(s)|ds +

n−1∑
i=0

gδ,i.

By the definition of ε, we get there is constant M1 > 0 so that ‖x2‖∞ ≤ M1.
Now, we see that

‖x(i)
1 ‖∞ ≤ φ−1(‖x2‖∞) ≤ φ−1(M1) for i = 1, . . . , n − 2.

This implies that there is B > 0 so that ‖(x1, x2)‖ ≤ B. Hence Ω1 is
bounded. This completes the Step 1.
Step 2. Let Ω2 = {x ∈ Ker L : Nx ∈ Im L}. For x ∈ Ω2, then x(t) = (0, a)
for some a ∈ R. Nx =

(
φ−1(a), f

(
t, 0, . . . , 0, φ−1(a)

)
, 0, . . . , 0

) ∈ Im L
implies that there are functions u1, u2 so that{

u
(n−1)
1 (t) = φ−1(a), 0 < t < 1,

u′
2(t) = f

(
t, 0, . . . , 0, φ−1(a)

)
, 0 < t < 1,⎧⎪⎪⎨

⎪⎪⎩
u

(i)
1 (0) = 0, i = 0, . . . , n − 2,

u2(1) −
l∑

i=1

βiu2(ηi) = 0,

Case 1. If φ−1(a) > M , we know from (A3) that x′
2(t) =

f
(
t, 0, . . . , 0, φ−1(a)

)
> 0, then x2 is increasing on [0, 1]. It follows that

u2(1) =
l∑

i=1

βiu2(ηi) <

l∑
i=1

βiu2(ηi0) = u2(ηi0) < u2(1),

a contradiction.
Case 2. If φ−1)(a) < −M , similar argument induces a contradiction. It

follows from above discussion that Ω2 is bounded.
Step 3. Let

Ω3 = {x ∈ Ker L : λ sgn (Δ) ∧ x + (1 − λ)QNx = 0, λ ∈ [0, 1]} ,
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where ∧ is the isomorphism given in the proof of Lemma 2.1. We will prove
that Ω3 is bounded. For x ∈ Ω3, then x(t) = (0, a). It follows from the
definition of ∧ and

QN(0, a)

=

(
0,

∫ 1
0 f

(
t, 0, . . . , 0, φ−1(a)

)
dt−∑l

i=1 βi

∫ ηi

0 f
(
t, 0, . . . , 0, φ−1(a)

)
dt

Δ
tk−1,

0, . . . , 0

)

that

sgn (Δ)Δλa = − (1 − λ)

(∫ 1

0
f
(
t, 0, . . . , 0, φ−1(a)

)
dt

−
l∑

i=1

βi

∫ ηi

0
f
(
t, 0, . . . , 0, φ−1(a)

)
dt

)

= − (1 − λ)
l∑

i=1

βi

∫ 1

ηi

f
(
t, 0, . . . , 0, φ−1(a)

)
dt.

This implies

sgn (Δ)Δλa2 = −(1 − λ)
l∑

i=1

βi

∫ 1

ηi

af
(
t, 0, . . . , 0, φ−1(a)

)
dt.

If λ = 1, then a = 0.
If λ ∈ [0, 1) and φ−1(a) > M , then f

(
t, 0, . . . , 0, φ−1(a)

)
> 0. Hence

sgn (Δ)Δλa = −(1 − λ)
l∑

i=1

βi

∫ 1

ηi

af
(
t, 0, . . . , 0, φ−1(a)

)
dt

≤ −(1 − λ)
l∑

i=1

βi

∫ 1

ηi0

af
(
t, 0, . . . , 0, φ−1(a)

)
dt

= −(1 − λ)
∫ 1

ηi0

af
(
t, 0, . . . , 0, φ−1(a)

)
dt < 0,

a contradiction.
If λ ∈ [0, 1) and φ−1(a) < −M , then sgn (Δ)Δa2 < 0, a contradiction.

From above argument, we see that Ω3 is bounded.
In the following, we shall show that all conditions of Theorem GM are

satisfied. Set Ω be a open bounded subset containing 0 of X such that
Ω ⊃ ⋃3

i=1 Ω̄i. By Lemma 2.1, L1 is a Fredholm operator of index zero and
N is L1-compact on Ω̄. By the definition of Ω, we have Ω ⊃ Ω̄1 and Ω ⊃ Ω̄2,
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thus L1x �= λNx for x ∈ (D(L1) \Ker L1)∩ ∂Ω and λ ∈ (0, 1); Nx /∈ Im L1

for x ∈ Ker L1 ∩ ∂Ω.
Step 4. We prove deg (QN |Ker L1 , Ω∩Ker L1, 0) �= 0. In fact, let H(x, λ) =
±λ sgn (Δ)∧x+(1−λ)QNx. According the definition of Ω, we know Ω ⊃ Ω̄3,
thus H(x, λ) �= 0 for x ∈ ∂Ω∩Ker L1, thus by homotopy property of degree,

deg (QN |Ker L1,Ω ∩ Ker L1, 0) = deg (H(·, 0),Ω ∩ Ker L1, 0)

= deg (H(·, 1),Ω ∩ Ker L1, 0) = deg (±∧,Ω ∩ Ker L1, 0) �= 0.

Thus by Theorem M, L1x = Nx has at least one solution (x1, x2) in D(L1)∩
Ω̄, then x1 is a solution of BVP (4)–(5). The proof is completed.

Similarly to the proof of Theorem 2.1, we can prove the following theorem:

Theorem 2.1′. Suppose
∑l

i=1 βi �= 1. Assume (A1) holds. Then BVP
(4)–(5) has at least one solution provided (9) holds.

2.2. Existence results for BVP (4)–(6).
In this subsection, we establish the existence results for BVP (4)–(6). We

do not require any restriction on βi. The corresponding linear problem of
BVP (8) is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x
(n−1)
1 (t) = 0, 0 < t < 1,

x′
2(t) = 0, 0 < t < 1,

x
(i)
1 (0) = 0 for i = 0, 1, . . . , n − 3,

x2(0) = 0,

x2(1) −
l∑

i=1

βix2(ηi) = 0.

Lemma 2.2. The following results hold.

(i) Ker L2 =
{

(x1(t), x2(t))
T = (atn−2, 0)T , t ∈ [0, 1], a ∈ R

}
.

(ii) Im L2 =

{
(y1, y2, a0, . . . , an−1) ∈ Y,

∫ 1

0
y2(s)ds −

l∑
i=1

βi

∫ ηi

0
y2(s)ds = an−1

}
.

(iii) L2 is a Fredholm operator of index zero;

(iv) There exists a positive integer k so that 1 −
l∑

i=1

βiη
k �= 0.
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(v) There are projectors P : X → X and Q : Y → Y such that Ker L2 =
Im P , Ker Q = Im L2, X = Ker L2⊕Im P and Y = Im L2⊕Ker Q.
Furthermore, let Ω ⊂ X be an open bounded subset with Ω̄∩D(L2) �= ∅,
then N is L2-compact on Ω̄.

Proof. The proofs of (i)–(v) are similar to those of Lemmas in [13], [14],
[15], [16] and are omitted. We write down the projectors P : X → X and
Q : Y → Y and the generalized inverse Kp : Im L → D(L2) ∩ Im P . Let
x = (x1, x2) ∈ X and y = (y1, y2, a1, . . . , an) ∈ Y , we have

Px(t) =

(
x(n−2)(0)
(n − 2)!

tn−2, 0

)
,

Qy(t) =

⎛
⎜⎜⎝0,

∫ 1
0 y2(s)ds −∑l

i=1 βi

∫ ηi

0
y2(s)ds − an−1

1/k
(
1 −∑l

i=1 βiη
k
i

) tk−1, 0, . . . , 0

⎞
⎟⎟⎠ ,

Kpy(t) =
(∫ t

0

(t − s)n−2

(n − 2)!
y1(s)ds,

∫ t

0
y2(s)ds

)
.

The inverse isomorphism of ∧ : Ker L2 → Y/ Im L2 is ∧−1 : Y/ Im L2 →
Ker L2 given by

∧−1(0, atk−1, 0, . . . , 0) = (atn−2, 0).

The proof is complete.

The following assumptions are used in Theorem 2.2.

(A4) There exist continuous function h (t, x0, x1, . . . , xn−1), e(t) and non-
negative continuous functions gi(t, x) (i = 0, 1, . . . , n − 1) such that f
satisfies

f (t, x0, x1, . . . , xn−1) = e(t) + h (t, x0, x1, . . . , xn−1) +
n−1∑
i=0

gi(t, xi),

and also that h satisfies

φ(xn−1)h (t, x0, x1, . . . , xn−1) ≤ 0

for all t ∈ [0, 1], (x0, x1, . . . , xn−1) ∈ R
n and gi(t, x) satisfies

lim sup
x→+∞, t∈[0,1]

|gi(t, x)|
φ(|x|) = ri ∈ [0,+∞) for i = 0, . . . , n − 1.



EXISTENCE RESULTS OF l-POINT BVP 289

(A5) There exists M > 0 such that for all x ∈ Cn−1[0, 1] with |x(n−2)(t)| >
M for all t ∈ [0, 1] and for each λ ∈ (0, 1) it holds that∫ 1

0
f

(
t, x(t), . . . , x(n−2)(t),

1
λ

x(n−1)(t)
)

dt

−
m∑

i=1

αi

∫ ηi

0
f

(
t, x(t), . . . , x(n−2)(t),

1
λ

x(n−1)(t)
)

dt �= 0.

(A6) φ satisfies that there is a constant μ > 0 such that φ(x + y) ≤
μ (φ(x) + φ(y)) for x ≥ 0, y ≥ 0. For p-Laplacian operator φp(x) =
|x|p−2x for x �= 0 and φ(0) = 0 with p > 1, since (x+y)α ≤ Cα(xα+yα),
x ≥ 0, y ≥ 0, where

Cα =

{
1, α = 1,
2α−1, α > 1

it is easy to see that φp satisfies (A6).
(A7) There exists a constant M∗ > 0 such that

a

[∫ 1

0
f
(
t, atn−2, a(n − 2)tn−3, . . . , a(n − 2)!, 0

)
dt

−
l∑

i=1

βi

∫ ηi

0
f
(
t, atn−2, a(n − 2)tn−3, . . . , a(n − 2)!, 0

)
dt

]
> 0

for all |a| > M∗ or

a

[∫ 1

0
f
(
t, atn−2, a(n − 2)tn−3, . . . , a(n − 2)!, 0

)
dt

−
l∑

i=1

βi

∫ ηi

0
f
(
t, atn−2, a(n − 2)tn−3, . . . , a(n − 2)!, 0

)
dt

]
< 0

for all |a| > M∗.

Theorem 2.2. Assume (A2), (A4), (A5), (A6), and (A7) hold. Then BVP
(4)–(6) has at least one solution provided

μ

n−2∑
i=0

ri + rn−1 <
1
2
. (11)

Proof. Since (x1, x2) is a solution of (8) implies that x1 is a solution of BVP
(4)–(6). It suffices to obtain a solution of BVP (8). To apply Theorem M,
we will do the following steps.
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Step 1. Let Ω1 = {x ∈ D(L2) \ Ker L2, L2x = λNx for some λ ∈ (0, 1)}.
We prove that Ω1 is bounded. For x ∈ Ω1, we get{

x
(n−1)
1 (t) = λφ−1 (x2(t)) , 0 < t < t < 1,

x′
2(t) = λf

(
t, x1(t), . . . , x

(n−2)
1 (t), φ−1 (x2(t))

)
, 0 < t < 1,⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x
(i)
1 (0) = 0, i = 0, . . . , n − 3,

x2(0) = 0,

x2(1) −
l∑

i=1

βix2(ηi) = 0.

(12)

Multiplying both sides of the equation

x′
2(t) = λf

(
t, x1(t), . . . , x

(n−2)
1 (t), φ−1 (x2(t))

)
, 0 < t < 1 (13)

by x2(t) and integrating it from 0 to t, we get, using (A4), that

1
2

(x2(t))
2 =

1
2

(x2(t))
2 − 1

2
(x2(0))

2

=λ

∫ t

0
f
(
s, x1(s), x′

1(s), . . . , x
(n−2)
1 (s), φ−1 (x2(s))

)
x2(s)ds

=λ

∫ t

0
h
(
s, x1(s), x′

1(s), . . . , x
(n−2)
1 (s), φ−1 (x2(s))

)
x2(s)ds

+ λ

n−2∑
i=0

∫ t

0
gi

(
s, x(i)(s)

)
x2(s)ds

+ λ

∫ t

0
gn−1

(
s, φ−1 (x2(s))

)
x2(s)ds

+ λ

∫ t

0
e(s)x2(s)ds

≤
n−2∑
i=0

∫ 1

0

∣∣∣gi

(
s, x(i)(s)

)∣∣∣ |x2(s)|ds

+
∫ 1

0

∣∣gn−1

(
s, φ−1 (x2(s))

)∣∣ |x2(s)|ds

+
∫ 1

0
|e(s)||x2(s)|ds.

Let ε > 0 satisfy that

1
2

> μ
n−2∑
i=0

(ri + ε) + (rn−1 + ε).
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For such a ε > 0, we find from (A4) that there is a constant δ > 0 such that
for every i = 0, 1, . . . , n − 1,

|gi(t, x)| < (ri + ε)φ(|x|) uniformly for t ∈ [0, 1] and |x| > δ.

Let, for i = 0, 1, . . . , n − 2,

Δ1,i =
{

t ∈ [0, 1], |x(i)(t)| ≤ δ
}

, Δ2,i =
{

t ∈ [0, 1], |x(i)(t)| > δ
}

,

gδ,i = max
t∈[0,1], |x|≤δ

|gi(t, x)|,

and

Δ1,n−1 =
{
t ∈ [0, 1], φ−1(|x2(t)| ≤ δ

}
,

Δ2,n−1 =
{
t ∈ [0, 1], φ−1(|x2(t)|) > δ

}
,

and
gδ,n−1 = max

t∈[0,1], φ−1|x2|)≤δ

∣∣gi(t, φ−1(x)
∣∣ .

Then

1
2

(x2(t))
2 ≤

n−2∑
i=0

∫
Δ1,i

∣∣∣gi

(
s, x

(i)
1 (s)

)∣∣∣ |x2(s)|ds

+
n−2∑
i=0

∫
Δ2,i

∣∣∣gi

(
s, x

(i)
1 (s)

)∣∣∣ |x2(s)|ds

+
∫

Δ1,n−1

∣∣gi

(
s, φ−1 (x2(s))

)∣∣ |x2(s)|ds

+
∫

Δ2,n−1

∣∣gi

(
s, φ−1 (x2(s))

)∣∣ |x2(s)|ds

+
∫ 1

0
|e(s)||x2(s)|ds

≤
n−2∑
i=0

gδ,i‖x2‖ +
n−2∑
i=0

(ri + ε)φ
(∥∥∥x

(i)
1

∥∥∥) ‖x2‖ + g1,n−1‖x2‖

+ (rn−1 + ε)‖x2‖2 + ‖e‖‖x2‖.
Hence

1
2
‖x2‖2 ≤

(
n−1∑
i=0

gδ,i + ‖e‖
)
‖x2‖

+
n−2∑
i=0

(ri + ε)φ
(∥∥∥x

(i)
1

∥∥∥) ‖x2‖ + (rn−1 + ε)‖x2‖2. (14)
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On the other hand, for i = 0, . . . , n − 3, we have∣∣∣x(i)
1 (t)

∣∣∣ =
∣∣∣∣x(i)

1 (0) +
∫ t

0
x

(i+1)
1 (s)ds

∣∣∣∣
≤

∫ 1

0

∣∣∣x(i+1)
1 (s)

∣∣∣ ds ≤
∫ 1

0

∣∣∣x(n−2)
1 (s)

∣∣∣ ds. (15)

Then ∥∥∥x
(i)
1

∥∥∥ ≤
∥∥∥x

(n−2)
1

∥∥∥ , i = 0, . . . , n − 2.

It follows from (12) that

x′
2(t) = λf

(
t, x(t), . . . , x(n−2)(t),

1
λ

x(n−1)(t)
)

.

Then ∫ 1

0
f

(
t, x1(t), . . . , x

(n−2)
1 (t),

1
λ

x
(n−1)
1 (t)

)
dt

−
m∑

i=1

αi

∫ ηi

0
f

(
t, x1(t), . . . , x

(n−2)
1 (t),

1
λ

x
(n−1)
2 (t)

)
dt = 0.

Hence we get from (A5) that there is t0 ∈ [0, 1] so that
∣∣∣x(n−2)

1 (t0)
∣∣∣ ≤ M .

Then we have

|x(n−2)
1 (t)| ≤

∣∣∣∣x(n−2)
1 (t0) +

∫ t

t0

x(n−1)(s)ds

∣∣∣∣
≤ M +

∥∥∥x(n−1)
∥∥∥ ≤ M + φ−1(‖x2‖). (16)

It follows from (14) that

1
2
‖x2‖2 ≤

(
n−1∑
i=0

gδ,i + ‖e‖
)
‖x2‖

+
n−2∑
i=0

(ri + ε)φ
(
M + φ−1(‖x2‖)

) ‖x2‖ + (rn−1 + ε)‖x2‖2

≤
(

n−1∑
i=0

gδ,i + ‖e‖
)
‖x2‖

+
n−2∑
i=0

(ri + ε)μ
(
φ(M)‖x2‖ + μ‖x2‖2

)
+ (rn−1 + ε)‖x2‖2.

It follows that[
1
2
−

n−2∑
i=0

μ(ri + ε) + (rn−1 + ε)

]
‖x2‖
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≤
(

n−1∑
i=0

gδ,i + ‖e‖
)
‖x2‖ +

n−2∑
i=0

(ri + ε)μφ(M)‖x2‖.

We get there is M̄ > 0 such that ‖x2‖ ≤ M̄ . It follows from (16) that∥∥∥x
(i)
1

∥∥∥ ≤ M + φ−1(‖x2‖) ≤ M + φ−1(M̄), i = 0, . . . , n − 2.

It follows that there is B > 0 so that ‖(x1, x2)‖ ≤ B. It follows that Ω1 is
bounded.
Step 2. Let Ω2 = {x ∈ Ker L2 : Nx ∈ Im L2}. For x ∈ Ω2, then
x(t) = (atn−2, 0) for some a ∈ R. Hence Nx =

(
0, f

(
t, atn−2, a(n −

2)tn−3, . . . , a(n − 2)!, 0
)
, 0, . . . , 0

) ∈ Im L2 implies that there are functions
u1, u2 and u3 so that{

u
(n−1)
1 (t) = 0, 0 < t < t < 1,

u′
2(t) = f

(
t, atn−2, a(n − 2)tn−3, . . . , a(n − 2)!, 0

)
, 0 < t < 1,⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u
(i)
1 (0) = 0, i = 0, . . . , n − 3,

u2(0) = 0,

u2(1) −
l∑

i=1

βiu2(ηi) = 0.

Then ∫ 1

0
f
(
t, atn−2, a(n − 2)tn−3, . . . , a(n − 2)!, 0

)
dt

−
l∑

i=1

βi

∫ ηi

0
f
(
t, atn−2, a(n − 2)tn−3, . . . , a(n − 2)!, 0

)
dt = 0.

If a > M∗, from (A7), we get

a

[ ∫ 1

0
f
(
t, atn−2, a(n − 2)tn−3, . . . , a(n − 2)!, 0

)
dt

−
l∑

i=1

βi

∫ ηi

0
f
(
t, atn−2, a(n − 2)tn−3, . . . , a(n − 2)!, 0

)
dt

]
�= 0,

a contradiction. If a < −M , the same contradiction can be induced. Hence
|a| ≤ M . This implies that Ω2 is bounded.
Step 3. If the first part of (A7) holds, let

Ω3 = {x ∈ Ker L2 : λ sgn (Δ) ∧ x + (1 − λ)QNx = 0, λ ∈ [0, 1]} .

We will prove that Ω3 is bounded. For x = (atn−2, 0) ∈ Ω3, we get

sgn (Δ)Δλna2 = −(1 − λn)a
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×
[∫ 1

0
f
(
t, atn−2, a(n − 2)tn−3, . . . , a(n − 2)!, 0

)
dt

−
l∑

i=1

βi

∫ ηi

0
f
(
t, atn−2, a(n − 2)tn−3, . . . , a(n − 2)!, 0

)
dt

]
.

If |a| > M∗, from (A7), we see that sgn (Δ)Δλna2 < 0, a contradiction. If
the second inequality of (A7) holds, let

Ω3 = {x ∈ Ker L2 : − λ sgn (Δ) ∧ x + (1 − λ)QNx = 0, λ ∈ [0, 1]} .

Similarly, we can get a contradiction. So Ω3 is bounded.
The remainder of the proof is just similar to that of the proof of Theorem

2.1 and is omitted. This completes the proof.

Remark. It is easy to see that Theorem 2.1, Theorem 2.1′ and Theorem 2.2,
by comparing them with results (Theorem LY1, Theorem LY2, Theorem G
and Theorem GH) mentioned in Section 1, complement and improve known
results in [13], [14], [15], [16] and [5], [9]. For n = 2, Garcia-Huidobro,
Gupta and Manasevich in [6] studies BVP (4)–(5) and BVP (4)–(6) in the
case

∑l
i=1 βi = 1, but all βi are required to be nonnegative. However, in

this paper, βi can be negative or positive.

3. Numerical examples

In this section, three numerical examples are studied to demonstrate the
results of the present method.

Example 3.1. Consider the multi-point boundary value problem⎧⎪⎨
⎪⎩

x′′(t) = −2[x′(t)]3 +
1
3
x′(t) +

1
7
x(t) + t + sin t, 0 < t < 1,

x′(0) = x′(1) + 0.25x′(0) − 2.6347x′
(

4
5

)
= 0,

(17)

where θ = 2, β1 = −1/4, β2 = 5/4 and η1 = 0, η2 = 4/5 with
∑l

i=1 βi = 1
and

∑l
i=1 βiηi = 1, p(t) = 1/3, q(t) = 1/7, r(t) = t + sin t. It is easy to

check that (A2), (A4), (A5), (A6), (A7) and (11) hold. Then, from Theorem
2.2, BVP (17) has at least one solution (see Figure 1. Solution of system
(17)).
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The numerical results are given in the following table.⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[
t, x (t) ,

d

dt
x (t)

]
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −4.03555183146479823 0.0

0.1 −4.03813108191880499 −0.0485337017511533950

0.2 −4.04464146918810208 −0.0785548733775790764

0.3 −4.05321116982054620 −0.0896482571754970704

0.4 −4.06192556680713768 −0.0813764828110055266

0.5 −4.06882773280340704 −0.0533473878531413315

0.6 −4.07192754328307772 −0.00529714783353834804

0.7 −4.06921407414563508 0.0629521170067943864

0.8 −4.05865091105910824 0.151819628118628896

0.9 −4.03811677587407836 0.262772291729619689

1 −4.00522717111050142 0.400000000000000188

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

–4.07

–4.06

–4.05

–4.04

–4.03

–4.02

–4.01

x

0 0.2 0.4 0.6 0.8 1

t

Figure 1. Solution of system (17)
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Example 3.2. Consider the problem⎧⎪⎪⎨
⎪⎪⎩

x′′(t) =
1
2
x′(t) +

1
4
x(t) + 2 cos t, 0 < t < 1,

x(0) = x′(1) + x′
(

1
2

)
− 2x′

(
3
4

)
= 0.

(18)

It is easy to check that (A1), (A2), (A3) and (9) hold. Then, from Theorem
2.1, BVP (18) has at least one solution (see Figure 2. Solution of system
(18)).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x

0.2 0.4 0.6 0.8 1

t

Figure 2. Solution of system (18)

Example 3.3. Consider the problem⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[|x′(t)|3x′(t)
]′ = −4 [φ (x′(t))]3 +

1
4
φ
(
x′(t)

)
+

1
5
φ (x(t)) + t2,

0 < t < 1,

x′(0) = φ (x′(1)) +
1
4
φ
(
x′(0)

) − 7
4
x′

(
4
5

)
= 0,

(19)

where φ(x) = |x|3x, θ = 4, β1 = −1/4, β2 = 7/4 and η1 = 0, η2 = 4/5,
p(t) = 1/4, q(t) = 1/5, r(t) = t2. It is easy to check that (A2), (A4), (A5),
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(A6), (A7) and (11) hold. Then, from Theorem 2.2, BVP (19) has at least
one solution (see Figure 3. Solution of system (19)).

0.4

0.6

0.8

1

x

0 0.2 0.4 0.6 0.8 1

t

Figure 3. Solution of system (19)
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