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We show that in any uniformly convex Banach space the functions f(x) = ‖x‖r with r ∈ (1,∞) are
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1. Introduction

Let X be a uniformly convex Banach space, X∗ its dual and f : X → R a convex
continuous function. For x ∈ X, let ∂f(x) be the subdifferential of f at x, i.e.,

∂f(x) = {ξ ∈ X∗ : f(y)− f(x) ≥ 〈ξ, y − x〉, for all y ∈ X}.

Following [19], we define Df : X ×X → R as

Df (x, y) = f(x)− f(y)− inf {〈ξ, x− y〉 : ξ ∈ ∂f(y)}. (1.1)

The function Df , called the Bregman distance associated with f , is always well defined
because ∂f(x) is nonempty and bounded, for all x ∈ X (see, e.g., [22]), so that the infimum
in (1.1) cannot be −∞. It is easy to check that Df (x, y) ≥ 0 and that Df (x, x) = 0, for
all x, y ∈ X. If f is strictly convex then Df (x, y) = 0 only when x = y.

For t ∈ [0,∞) and z ∈ X let

U(z, t) = {x ∈ X : ‖x− z‖ = t}.

Following [5], we define νf : X × [0,∞) → [0,∞) as

νf (z, t) = inf {Df (x, z) : x ∈ U(z, t)}. (1.2)
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and call it the modulus of total convexity of f. The function f is said to be totally convex if
νf (z, t) > 0, for all z ∈ X and all t ∈ (0,∞). Totally convex functions are strictly convex,
but there exist strictly convex functions which are not totally convex (see [5]). Total
convexity is a weaker condition than uniform convexity, i.e., uniformly convex functions
are totally convex (see [5]). However, there are functions which are totally convex without
being uniformly convex (see [7]).

Total convexity turns out to be a key property in the convergence analysis of the proximal
point method with generalized distances for minimizing convex functions as well as in a
large class of projection type algorithms for solving variational inequality problems. In
these methods the role given to the Euclidean distance by Rockafellar [24], J. von Neu-
mann [21] and Cimmino [11], respectively, is taken over by a Bregman distance associated
with an auxiliary totally convex function f (cf. [8], [10], [15], [17], [20], [4], [6]). We should
mention that in Banach spaces which are not Hilbertian the proximal point method with
Bregman distances leads to simpler and easier to compute iterative formulae than the one
with the metric distance induced by the norm of the Banach space (see [6]). Also, a ple-
tora of examples shows that projection type algorithms with Bregman distances behave
better from a computational point of view than their metric distance counterparts. Total
convexity is also required in the convergence analysis of the methods for solving stochastic
convex feasibility problems and for finding common fixed points of measurable families
of operators in Banach spaces studied in [5] and [7]. It is therefore relevant to identify
totally convex functions which may be used as auxiliary functions in the algorithms men-
tioned above. In finite dimensional spaces there is a large pool of known totally convex
functions since, as shown in [7], any strictly convex function with closed domain is totally
convex. In Banach spaces of infinite dimension identifying totally convex functions is a
challenging problem. This happens because, in an infinite dimensional context, we need
to find totally convex functions designed in such a way that specific algorithms like the
proximal point method with Bregman distances and/or the projection type algorithms to
be effectively and efficiently computable. It was already shown in [5] that the function
f(x) = ‖x‖pp in Lp or `p is totally convex when p ∈ (1,+∞). This result was improved in
[18] by showing total convexity of f(x) = ‖x‖rp with r > 1 in Lp or `p for p ∈ (1,+∞).
In [6] the total convexity of the functions f(x) = ‖x‖r with r ≥ 2 was proved in any
uniformly convex and uniformly smooth Banach space.

In the current work we show that, in any uniformly convex Banach space, the function
f(x) = ‖x‖r with r > 1 is totally convex and, necessarily, a Bregman function when
X is smooth. This leads to implementability in uniformly convex and smooth Banach
spaces not only of the proximal point method discussed in [6], but also to the possibility
of numerically solving a large class of stochastic convex feasibility problems as those
presented in Section 4.

2. Total convexity of the powers of the norm

In this section we prove that the function f(x) = ‖x‖r with r > 1 is totally convex in any
uniformly convex Banach space X. We remark that f is always convex but, unless X is
smooth, f is not differentiable and, therefore, ∂f is a point-to-set operator, i.e., it is not
necessarily single valued (see, e.g., [14]). In that follows, we denote by δX : [0, 2] → [0, 1]
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the modulus of uniform convexity of the space X, that is,

δX(t) =

{

inf
{

1− 1
2
‖x+ y‖ : ‖x‖ = 1 = ‖y‖ , ‖x− y‖ ≥ t

}

, if t > 0,

0, if t = 0.

Recall that X is called uniformly convex if δX(t) > 0, for all t > 0. Also, X is called
smooth if the function x → ‖x‖ is differentiable at each point x 6= 0.

Theorem 2.1. If X is uniformly convex, then f(x) = ‖x‖r is totally convex, for all
r ∈ (1,+∞).

Proof. Define the function Φ : X → P(X∗) by

Φ(x) =
1

r
∂f(x).

Note that Φ is exactly the duality mapping of weight tr−1 on the space X. Therefore,
there exists a positive real number K such that the following inequality, established in
[25, Theorem 1], holds for all r > 1:

〈ξ − η, x− y〉 ≥ K {max [‖x‖, ‖y‖]}r δX
(

‖x− y‖
2max [‖x‖, ‖y‖]

)

, (2.1)

whenever x, y ∈ X with ‖x‖ + ‖y‖ 6= 0, ξ ∈ Φ(x) and η ∈ Φ(y). Fix z ∈ X, t ∈ (0,∞),
take x ∈ U(z, t) and let y = x− z. Then ‖y‖ = t and

Df (x, z) = Df (y + z, z) = ‖z + y‖r − ‖z‖r − r · inf {〈ξ, y〉 : ξ ∈ Φ(z)} , (2.2)

in view of (1.1) and the definition of Φ. Define ϕ : [0,∞) → [0,∞) as

ϕ(τ) =
‖z + τy‖r

r
.

Then, we have
‖z + y‖r − ‖z‖r = r[ϕ(1)− ϕ(0)]. (2.3)

Our proof is based on the next result:

Claim 2.2. If, for each τ ∈ [0, 1], we choose a point ξ(τ) ∈ Φ(z+ τy), then the following
integral exists and

1
∫

0

〈ξ(τ), y〉 dτ = ϕ(1)− ϕ(0). (2.4)

We proceed to establish the claim. To this end, we observe that, if g : X → R is a convex
continuous function, then the function ψ : R → R defined by

ψ(τ) = g(u+ τv)

for arbitrarily fixed u, v ∈ X is convex and continuous too. Therefore, ψ is locally Lipschitz
[13, Proposition 2.2.6] and, according to Rademacher’s Theorem [22, p. 11], it is almost
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everywhere differentiable. Consequently, if ξ is a selector of the point-to-set mapping ∂ψ,
then ξ(τ) = ψ′(τ), for almost all τ ∈ R. Hence, for all a, b ∈ R, with a ≤ b, we have

ψ(b)− ψ(a) =

b
∫

a

ψ′(τ) dτ =

b
∫

a

〈ξ(τ), v〉 dτ, (2.5)

for any choice of ξ(τ) ∈ ∂ψ(τ). Now, we apply (2.5) to the case of ψ = ϕ, g(x) = ‖x‖r/r,
u = z and v = y, and we conclude that (2.4) holds, in view of the definition of Φ. The
claim is established.

Now we use Claim 2.2 in order to complete the proof of the theorem. Fix a selector
τ → ξ(τ) of the point-to-set mapping τ → Φ(z + τy). Application of Claim 2.2 combined
with (2.3) implies

‖z + y‖r − ‖z‖r = r

1
∫

0

〈ξ(τ), y〉 dτ.

Therefore, for any η ∈ Φ(z), we have

‖z + y‖r−‖z‖r−r〈η, y〉 = r





1
∫

0

〈ξ(τ), y〉 dτ − 〈η, y〉





= r

1
∫

0

〈ξ(τ)− η, y〉 dτ =r

1
∫

0

1

τ
〈ξ(τ)− η, τy〉 dτ.

(2.6)

Since, for any τ ∈ [0, 1], ξ(τ) ∈ Φ(z + τy), and τy = (z + τy)− z, we conclude from (2.6)
and (2.1) that

‖z + y‖r − ‖z‖r − r〈η, y〉

≥ rK

1
∫

0

{max [‖z + τy‖, ‖z‖]}r

τ
δX

(

‖τy‖
2max [‖z + τy‖, ‖z‖]

)

dτ,

for all η ∈ Φ(z), where the last integral exists because δX is nondecreasing. Taking infimum
over η ∈ Φ(z) in the left hand side of the last inequality and using (2.2), we get

Df (x, z) ≥ rK

1
∫

0

{max [‖z + τy‖, ‖z‖]}r

τ
δX

(

‖τy‖
2max [‖z + τy‖, ‖z‖]

)

dτ. (2.7)

Clearly, max [‖z + τy‖, ‖z‖] ≤ ‖z‖+ τ‖y‖. Using again the fact that δX is monotone, we
deduce that

δX

(

‖τy‖
2max [‖z + τy‖, ‖z‖]

)

≥ δX

(

‖τy‖
2 (‖z‖+ τ‖y‖)

)

= δX

(

τt

2 (‖z‖+ τt)

)

, (2.8)
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because ‖y‖ = t. Now, we claim that

max [‖z + τy‖, ‖z‖] ≥ τ

2
‖y‖ .

This is clearly the case if ‖z‖ ≥ τ
2
‖y‖ . Otherwise, we have ‖z‖ < τ

2
‖y‖ and, therefore,

‖z + τy‖ ≥ |τ | · ‖y‖ − ‖z‖

≥ τ ‖y‖ − τ

2
‖y‖ =

τ

2
‖y‖ ,

(2.9)

and the result also holds. Replacing (2.8) and (2.9) in (2.7) we have that, for all x ∈
U(z, t),

Df (x, z) ≥ rK

(

t

2

)r
1

∫

0

τ r−1δX

(

τt

2 (‖z‖+ τt)

)

dτ.

Taking infimum over x ∈ U(z, t) in the left hand side of the last inequality and using (1.2)
we obtain

νf (z, t) ≥ rK

(

t

2

)r
1

∫

0

τ r−1δX

(

τt

2 (‖z‖+ τt)

)

dτ > 0, (2.10)

where the last inequality holds because X is uniformly convex. This completes the proof.

Remark 2.3. The total convexity of the function f(x) = ‖x‖r is guaranteed by Theorem
2.1 for r > 1 in uniformly convex Banach spaces. For r ≥ 2, the function f(x) = ‖x‖r is
totally convex even if X is only locally uniformly convex, that is, if for each x ∈ U(0, 1),
the function µX(x, ·) : [0, 2] → [0, 1] defined by

µX(x, t) =

{

inf
{

1− 1
2
‖x+ y‖ : ‖y‖ = 1, ‖x− y‖ ≥ t

}

, if t > 0,

0, if t = 0,

is positive for t > 0. Recall that X is locally uniformly convex if and only if the function
x → ‖x‖2 is locally uniformly strictly convex (cf. [12, Proposition 2.11, p. 50]). Observe
that, for r ≥ 2, we have f(x) = φ(h(x)), where φ : [0,∞) → [0,∞) is the convex
nondecreasing differentiable function φ(t) = tr/2 and h : X → R is given by h(x) = ‖x‖2.
Using [19, Proposition 3], we deduce that, in this case,

Df (x, y) = Dφ(h(x), h(y)) + φ′(h(y))Dh(x, y).

Hence,
Df (x, y) ≥ φ′(h(y))Dh(x, y).

This implies

νf (y, t) ≥
r

2
‖y‖r−2 νh(y, t) ≥

r

2
‖y‖r−2∆h(y, t),

where ∆h(y, t) stands for the modulus of uniformly strict convexity of h as defined in [12,
p. 50]. Since, as noted above, when X is locally uniformly convex the function h is locally
uniformly strictly convex, it results that ∆h(y, t) > 0 for all t > 0. Therefore, whenever
y ∈ X and y 6= 0, we have νf (y, t) > 0 for all t > 0. If y = 0, then Df (x, y) = ‖x‖r and,
thus, νf (y, t) = tr which is positive whenever t > 0.
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Theorem 2.1 leads to the following result which is of special interest in the sequel.

Corollary 2.4. If X is uniformly convex then, for each r ∈ (1,+∞), the function f(x) =
‖x‖r has the following properties:

(i) For any α ≥ 0 and for any y ∈ X, the set

Rf
α(y) = {x ∈ X : Df (y, x) ≤ α} , (2.11)

is bounded;

(ii) [Sequential consistency] For any two sequences
{

xk
}

k∈N and
{

yk
}

k∈N in X such that
the first is bounded,

lim
k→∞

Df (y
k, xk) = 0 =⇒ lim

k→∞

∥

∥xk − yk
∥

∥ = 0. (2.12)

Proof. (i) Suppose, by contradiction, that for some α ≥ 0 and for some y ∈ X, there
exists a unbounded sequence

{

xk
}

k∈N in Rf
α(y). Note that, for each nonnegative integer

k, there exists some ξk ∈ ∂f(xk), such that

α ≥ Df (y, x
k) = f(y)− f

(

xk
)

−
〈

ξk, y − xk
〉

= f(y)− f
(

xk
)

+
〈

ξk, xk
〉

−
〈

ξk, y
〉

= f(y)− f
(

xk
)

+ r
∥

∥xk
∥

∥

r −
〈

ξk, y
〉

≥ ‖y‖r −
∥

∥xk
∥

∥

r
+ r

∥

∥xk
∥

∥

r − r ‖y‖ ·
∥

∥xk
∥

∥

r−1

= ‖y‖r +
∥

∥xk
∥

∥

r−1 [
(r − 1)

∥

∥xk
∥

∥− r ‖y‖
]

,

where the second equality holds because of Asplund’s Theorem (see [12, p. 25]) which
ensures that ∂f(x) is exactly the duality mapping of weight θ(t) = rtr−1. Letting here
k → ∞ leads to a contradiction.

(ii) We start by observing that, in our circumstances, the inequality (2.10) still holds.
Thus, if C is a bounded subset of X and if z ∈ C, then for any real number t > 0 we have

νf (z, t) ≥ rK

(

t

2

)r
1

∫

0

τ r−1δX

(

τt

2 (‖z‖+ τt)

)

dτ

≥ rK

(

t

2

)r
1

∫

0

τ r−1δX

(

τt

2 (M + τt)

)

dτ > 0,

whenever M is a upper bound of the set C. By taking here the infimum with respect to
z ∈ C, we get

inf {νf (z, t) : z ∈ C} > 0, (2.13)

whenever t > 0 and C is a bounded subset of X.

Now, suppose by contradiction that the sequential consistency condition does not hold.
Then, there exist a bounded sequence

{

xk
}

k∈N and a sequence
{

yk
}

k∈N such that

lim
k→∞

Df (y
k, xk) = 0,
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but
{∥

∥xk − yk
∥

∥

}

k∈N does not converge to zero. Hence, there exists a number α > 0, a

subsequence {xjk}k∈N of
{

xk
}

k∈N and a subsequence {yjk}k∈N of
{

yk
}

k∈N such that, for

each positive integer k, we have ‖xjk − yjk‖ ≥ α. Consider the bounded set C of all terms
of

{

xk
}

k∈N . Thus, according to (2.13), we get

Df (y
jk , xjk) ≥ νf (x

jk ,
∥

∥xjk − yjk
∥

∥)

≥ νf (x
jk , α) ≥ inf {νf (z, t) : z ∈ C} > 0,

for all k ∈ N. Letting k → ∞ in this inequality leads to a contradiction.

3. Computing Bregman projections

In this section X denotes a uniformly convex and smooth Banach space. Our aim is to
show how Bregman projections with respect to the function f(x) = ‖x‖r with r ∈ (1,+∞)
onto closed hyperplanes and half spaces in X can be effectively computed. Recall that,
according to [2] and [9], when K is a closed convex subset of X, the Bregman projection
with respect to f onto K is defined by

Πf
K(x) = argmin {Df (y, x) : y ∈ K} .

Note that the minimizer Πf
K(x) of Df (·, x) over K, provided that it exists, is unique

because Df (·, x) is strictly convex as f is so. In our circumstances, existence of Πf
K(x)

follows from Corollary 2.4 combined with [1, Proposition 2.1]. The relevance of computing
Πf

K(x) when K is a closed hyperplane or half space will be made clear in Section 4 where
these results will be used for solving applied mathematical problems.

The effective computability of Πf
K(x) essentially depends on the computability of the

duality mapping Jr : X → P(X∗) with the weight function θ(t) = rtr−1, which is given
by Jr(x) = ∂f(x) – see Asplund’s Theorem [12, p. 18]. Since X is smooth, the function f
is differentiable and, therefore, Jr(x) = {f ′(x)} , for all x ∈ X. Observe that the function
θ : [0,∞) → [0,∞) is invertible and

θ−1(t) =

(

t

r

) 1
r−1

.

The function θ−1 is a weight function too and the duality mapping associated with it,
J∗
r : X∗ → P(X), is given by

J∗
r (ξ) = ∂χ(‖·‖∗)(ξ),

where

χ(t) :=

t
∫

0

θ−1(u) du = (r − 1) · r
r

1−r · t
r

r−1 .

Taking into account that X is uniformly convex, we deduce that the function ‖·‖∗ is
continuously differentiable (cf. [12, Theorem 2.13, p. 52]) and, thus, J∗

r is single valued,
continuous and

J∗
r (ξ) = r

1
1−r ‖ξ‖

1
r−1
∗ (‖ · ‖∗)′(ξ),
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for all ξ ∈ X∗. Recall (cf. [12, Proposition 4.7, p. 27]) that:

J∗
r (Jr(x)) = x, (3.1)

for all x ∈ X and
Jr (J

∗
r (ξ)) = ξ, (3.2)

for all ξ ∈ X∗.

The next result shows that computing Πf
K(x) when X is uniformly convex and smooth

and K is a closed hyperplane or half space is, practically speaking, equivalent to solving
a usually nonlinear equation of the form Φ(s) = 0, where Φ : [0,∞) → R is a known
continuous function.

Theorem 3.1. Let X be a uniformly convex and smooth Banach space and let

K = {z ∈ X : 〈a, z〉 = b} , (3.3)

where a ∈ X∗\{0} and b ∈ R. For any x ∈ X and for all r ∈ (1,+∞), the following
statements hold:

(i) The equation
〈a, J∗

r (sa+ Jr(x))〉 = b (3.4)

has solutions s such that

sign(s) = sign(b− 〈a, x〉); (3.5)

(ii) The Bregman projection Πf
K(x) with respect to the function f(x) = ‖x‖r is given by

Πf
K(x) = J∗

r (sa+ Jr(x)) , (3.6)

with s ∈ R being a solution of the equation (3.4);

(iii) Formula (3.6) remains true when K is the half space {z ∈ X : 〈a, z〉 ≥ b}, x /∈ K,
and s is a nonnegative solution of (3.4).

Proof. (i) Denote
u(s) = J∗

r (sa+ Jr(x)) . (3.7)

We distinguish three cases which we discuss separately.

Case 1. Suppose that 〈a, x〉 = b. Observe that u(0) = J∗
r (Jr(x)) = x because of (3.1).

Thus, for s = 0,
〈a, u(s)〉 = 〈a, x〉 = b,

that is, s = 0 is a solution of (3.4) in this case.

Case 2. Suppose that 〈a, x〉 < b. Consider the function Φ : [0,∞) → R defined by

Φ(s) = 〈a, u(s)〉 − b.

with u(s) given by (3.7) and note that

Φ(0) = 〈a, x〉 − b < 0. (3.8)
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The function Φ is continuous on [0,∞), because J∗
r is continuous on X∗ (as noted above,

if X is uniformly convex, then J∗
r is continuous on X∗). According to [12, Proposition

4.7, p. 27], we obtain

u(s) = J∗
r (sa+ Jr(x))

= J∗
r

[

s

(

a+
1

s
Jr(x)

)]

=
χ
(

s
∥

∥a+ 1
s
Jr(x)

∥

∥

∗

)

χ
(∥

∥a+ 1
s
Jr(x)

∥

∥

∗

) · J∗
r

(

a+
1

s
Jr(x)

)

= s
r

r−1J∗
r

(

a+
1

s
Jr(x)

)

.

(3.9)

Taking into account the continuity of J∗
r , we deduce that the following limit exists and

we have

lim
s→∞

J∗
r

(

a+
1

s
Jr(x)

)

= J∗
r (a).

Hence,

lim
s→∞

Φ(s) = lim
s→∞

[

s
r

r−1

〈

a, J∗
r

(

a+
1

s
Jr(x)

)〉

− b

]

= +∞.

This, together with (3.8), shows that the continuous function Φ vanishes at some point s
in [0,∞), i.e. for some s ∈ [0,∞), the equation (3.4) is satisfied.

Case 3. Suppose that 〈a, x〉 > b. This is equivalent to 〈−a, x〉 < −b and we can apply the
reasoning done in Case 2 with −a instead of a and −b instead of b.

In any of the possible cases the equation (3.4) has solutions. This proves (i).

(ii) Suppose that K is given by (3.3). According to [1, Proposition 2.2], it is sufficient to
show that when s is a solution of (3.4), we have u(s) ∈ K and

〈f ′(x)− f ′(u(s)), z − u(s)〉 ≤ 0, (3.10)

for any z ∈ K. Note that u(s) ∈ K because of the way in which s is chosen. Also, observe
that (3.10) can be rewritten as

〈Jr(x)− Jr (u(s)) , z − u(s)〉 ≤ 0

for all z ∈ K. In turn, the last inequality is equivalent to

〈Jr(x)− Jr (J
∗
r (sa+ Jr(x))) , z − J∗

r (sa+ Jr(x))〉 ≤ 0.

According to (3.2), this amounts to

〈Jr(x)− sa− Jr(x), z − J∗
r (sa+ Jr(x))〉 ≤ 0

which is exactly
−s 〈a, z − J∗

r (sa+ Jr(x))〉 ≤ 0

for all z ∈ K. Since s is a solution of (3.4), for any z ∈ K, we get

〈a, z − J∗
r (sa+ Jr(x))〉 = 〈a, z〉 − 〈a, J∗

r (sa+ Jr(x))〉 = b− b = 0,
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and so (3.10) holds.

(iii) Assume that K is the half-space {z ∈ X : 〈a, z〉 ≥ b} . Using again Proposition 2.2
in [1], it is sufficient to prove that (3.10) holds for any z ∈ K, when x /∈ K, i.e., when
〈a, x〉 < b. Observe that

〈f ′(x)− f ′ (u(s)) , z − u(s)〉 = 〈Jr(x)− Jr (J
∗
r sa+ Jr(x)) , z − J∗

r (sa+ Jr(x))〉
= −s 〈a, z − J∗

r (sa+ Jr(x))〉 ,
(3.11)

for all z ∈ K. Since s is a nonnegative solution of equation (3.4) (which exists according
to (i)), we deduce that (3.10) is equivalent to

〈a, z − J∗
r (sa+ Jr(x))〉 ≥ 0,

which is exactly
〈a, z〉 − 〈a, u(s)〉 ≥ 0.

The last inequality holds because 〈a, z〉 ≥ b and 〈a, u(s)〉 = b.

4. Applications

In this section we show an application of the results presented above to solving a class
of linear equations in a smooth uniformly convex Banach space X. Let (Ω,A, µ) be a
complete probability space. Let K : Ω → X∗ and h : Ω → R be µ-integrable functions1.
Find x ∈ X such that

〈K(ω), x〉 = h(ω), µ-a.e., (4.1)

presuming that such a x exists. This problem appears in practice in various particular
forms. Among them we recall the following:

(a) The Fredholm integral equation of the first type (cf. [16], [23]) is the particular instance
of the problem above in which Ω is an interval, X = Lp(Ω) and h ∈ L1(Ω);

(b) The best approximation problem of the function h ∈ L1[a, b] is the problem of finding
x = {xn}n∈N ∈ X := `p such that, for almost all ω ∈ Ω := [a, b],

∞
∑

n=0

Kn(ω)x
n = h(ω),

where, for each t ∈ [a, b], we denote K(t) := {Kn(t)}n∈N ∈ `q. If h ∈ Lp[a, b] and
{Kn}n∈N is a base of Lp[a, b], then this is exactly the problem of finding the Fourier
coefficients of h with respect to the given base.

Denote Ωi = Ω× {i}, i = 1, 2. Let the set Ω∗ = Ω1 ∪ Ω2 be provided with the σ-algebra

A∗ = {(A1 × {1}) ∪ (A2 × {2}) : Ai ∈ A, i = 1, 2}

and with the measure

µ∗ [(A1 × {1}) ∪ (A2 × {2})] = 1

2
[µ(A1) + µ(A2)] .

1In what follows, measurability and integrability of functions with values in Banach spaces are in the
sense of Bochner.
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Clearly, (Ω∗,A∗, µ∗) is a complete probability space. We define the function g : Ω∗×X →
R by

g((ω, i), x) =







〈K(ω), x〉 − h(ω), if i = 1,

− [〈K(ω), x〉 − h(ω)] , if i = 2.
(4.2)

Note that g is a convex Carathéodory function, that is, for any x ∈ X, the function g(·, x)
is measurable and, for any (ω, i) ∈ Ω∗, the function g((ω, i), ·) is convex and continuous
on X. Observe that finding a solution of (4.1) is equivalent to finding x ∈ X such that

g((ω, i), x) ≤ 0, µ∗-a.e. (4.3)

Define

A(x, y) =
1

2

∫

Ω

〈K(ω), y〉 · sign [〈K(ω), x〉 − h(ω)] dµ(ω), (4.4)

for any x, y ∈ X. Note that A(x, ·) belongs to X∗. Let

C(x) =
1

2

∫

Ω

h (ω) · sign [〈K(ω), x〉 − h(ω)] dµ(ω). (4.5)

Then, for each x ∈ X, the set

H(x) = {z ∈ X; 〈A(x, ·), z〉 ≤ C(x)} (4.6)

is a well defined half space of X. With these notations we have the following result:

Theorem 4.1. Suppose that the equation (4.1) has solutions in X and that r ∈ (1,+∞).
Then, for any initial point x0 ∈ X, the sequence

{

xk
}

k∈N recursively generated in X by

xk+1 = J∗
r

(

skA(x
k, ·) + Jr(x

k)
)

, (4.7)

with sk a solution of the equation

〈

A(xk, ·), J∗
r

(

sA(xk, ·) + Jr(x
k)
)〉

= C(xk),

has the following properties:

(i)
{

xk
}

k∈N is bounded and has weak accumulation points;

(ii) The following limit exists and we have

lim
k→∞

∥

∥xk+1 − xk
∥

∥ = 0; (4.8)

(iii) The weak accumulation points of
{

xk
}

k∈N are solutions of the equation (4.1);

(iv) If the duality mapping Jr is sequentially weakly-to-weak∗ continuous, then
{

xk
}

k∈N
converges weakly to a solution of (4.1).

Proof. According to [7, Theorem 4.3] and Corollary 2.4 we deduce that, for any initial
point x0 ∈ X, the sequence

{

xk
}

k∈N recursively generated by

xk+1 = Πf

K(xk)

(

xk
)

, (4.9)
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with

K (x) :=

{

z ∈ X :

∫

Ω∗(x)

g ((ω, i) , z) dµ∗ (ω, i) ≤ 0

}

and
Ω∗ (x) = {(ω, i) ∈ Ω∗ : g ((ω, i) , x) > 0}

is bounded, has weak accumulation points and each such point is a solution of (4.3). As
noted above, solutions of (4.3) are also solutions of (4.1) and conversely. It remains to
show the following claim which implies that the sequences generated according to the
recursive rule (4.7) are exactly the sequences (4.9).

Claim 4.2. The function ψ : X ×X → R given by

ψ (z, x) =

∫

Ω∗(x)

g ((ω, i) , z) dµ∗ (ω, i)

is well defined and for the half space H(x) described in (4.6) we have

H (x) = {z ∈ X : ψ (z, x) ≤ 0} (4.10)

In order to prove the claim observe that well definedness of ψ follows from [7, Lemma
4.2]. For showing (4.10) note that

ψ(z, x) =

∫

Ω∗(x)

g ((ω, i) , z) dµ∗ (ω, i)

=

∫

Ω∗

g ((ω, i) , z) · sg [g ((ω, i) , x)] dµ∗ (ω, i)

=

∫

Ω1

g ((ω, 1) , z) · sg [g ((ω, 1) , x)] dµ∗ (ω, i)

+

∫

Ω2

g ((ω, 2) , z) · sg [g ((ω, 2) , x)] dµ∗ (ω, i) ,

where sg (t) = 1, if t > 0, and sg (t) = 0, otherwise. Hence,

ψ(z, x) =
1

2

∫

Ω

[〈K(ω), z〉 − h(ω)] · sg [〈K(ω), x〉 − h(ω)] dµ(ω)

− 1

2

∫

Ω

[〈K(ω), z〉 − h(ω)] · sg [−〈K(ω), x〉+ h(ω)] dµ(ω)

=
1

2

∫

Ω

[〈K(ω), z〉 − h(ω)] · sign [〈K(ω), x〉 − h(ω)] dµ(ω)

= A (x, z)− C (x)

and this implies that ψ(z, x) ≤ 0 if and only if A (x, z)− C (x) ≤ 0, i.e. z ∈ K(x) if and
only if z ∈ H(x).

Remarks 4.3.
(i) If X is a finite dimensional space, then Theorem 4.1 guarantees (strong) convergence

of the sequence
{

xk
}

k∈N defined by (4.7), no matter how r is chosen in (1,+∞).
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Figure 4.1: A numerical experiment

(ii) If X is one of the spaces `p with 1 < p < +∞, then the equation (4.1) is exactly the
best approximation problem and, for r = p, the sequence generated according to
(4.7) converges weakly to a solution of the problem (4.1) because, in this case, the
duality mapping Jr is sequentially weakly-to-weak∗ continuous (cf. [12, Proposition
4.14, p. 73]). For the same reason, weak convergence of

{

xk
}

k∈N holds when X is
a Hilbert space and r = 2 in which case the Bregman projections are the metric
projections.

(iii) A question whose answer we do not know is whether weak convergence of the se-
quence

{

xk
}

k∈N defined by (4.7) can be ensured under requirements less demanding
than the weak-to-weak∗ continuity of Jr.

Figure 4.2: The measure of the set of violated restrictions

Example 4.4. A detailed analysis of the proof of convergence of the algorithm given by
(4.7) shows that this is essentially a procedure of reducing at each iterative step the size
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of the set

Γk =
{

(ω, i) ∈ Ω∗ : max
[

g((ω, i), xk), 0
]

> 0
}

,

that is the size of the set of points ω at which the original equation is violated. In order
to show how the algorithm works we consider the following Fredholm equation (of the
first kind) which has the function

x̄(t) =

{

t−1/2 if t > 0,

0 if t = 0,

as a solution in L3/2 ([0, 1]) :

∫ 1

0

exp(s
√
t)x(t)dt =

2

s
(exp(s)− 1), a.e.

We compute2 the 20-th iterate xk starting from x0(t) ≡ 0.3 and taking f(x) = ‖x‖3/2 in
the space L3/2 ([0, 1]) . Figure 4.1 shows the successive approximations produced by the
algorithm. Observe that they accumulate to the curve denoted by x20(t). In fact, this
curve is a reasonably good approximation of a solution of the given equation. The size
of Γ20, measured by the L1-norm of max [g(·, x20), 0] is approximately 0.004. Figure 4.2
presents the way in which the Bregman distances Df (x

k+1, xk) (the tall bars) and the L1-
norms of max

[

g(·, xk), 0
]

(the short bars) are varying along the computational process.
Observe that they are decreasing and that after 20 steps we have Df (x

20, x19) t 0.0001.
The metric distances between successive iterates decrease too as indicated in Figure 4.2
by the black bars. The behavior of the algorithm in this particular case is typical for all
consistent equations we solved numerically in spaces Lp with p > 1: After a small number
of iterations the iterates accumulate to a function with a rather small residual (i.e., an
almost feasible function) from which further iterates very little differ for as long as the
computational process is continued. This suggests that the algorithm converges strongly
but we do not have a proof of that.

Acknowledgements. The authors gratefully acknowledge the financial support of the Israel

Science Foundation. Also, the authors wish to thank Mr. Eyal Masad from Technion-The Israel

Institute of Technology for allowing them to use a package of programs he has created and the

two anonymous referees, whose comments allowed for improvements over an earlier version of

this paper.

References

[1] Y. Alber, D. Butnariu: Convergence of Bregman projection methods for solving convex
feasibility problems in reflexive Banach spaces, Journal of Optimization Theory and Appli-
cations 92 (1997) 33–61.

[2] L. M. Bregman: The relaxation method for finding common points of convex sets and its
application to the solution of convex programming, USSR Computational Mathematics and
Mathematical Physics 7 (1967) 200–217.

2The computations were done using a package of programs written by Mr. Eyal Masad.



D. Butnariu, A. N. Iusem, E. Resmerita / Total convexity for powers of the norm 333

[3] E. F. Browder: Nonlinear operators and nonlinear equations of evolution in Banach spaces,
Proceeding of Symposia in Pure Mathematics, American Mathematical Society 18(2) (1976).

[4] R. S. Burachik, A. N. Iusem: A generalized proximal point algorithm for the variational
inequality problem in a Hilbert space, SIAM Journal on Optimization 8 (1998) 197–216.

[5] D. Butnariu, A. N. Iusem: Local moduli of convexity and their application to finding almost
common fixed points of measurable families of operators, in: Y. Censor and S. Reich (eds.)
“Recent Developments in Optimization Theory and Nonlinear Analysis”, Contemporary
Mathematics 204 (1997) 61–92.

[6] D. Butnariu, A. N. Iusem: On a proximal point method for convex optimization in Banach
spaces, Numerical Functional Analysis and Optimization 18 (1997) 723–744.

[7] D. Butnariu, A. N. Iusem, R. Burachik: Iterative methods of solving stochastic convex
feasibility problems and applications, J. of Computational Optimization and Applications
15(3) (2000) 269–307.

[8] Y. Censor, S. A. Zenios: The proximal minimization algorithm with D-functions, Journal
of Optimization Theory and Applications 73 (1992) 451–464.

[9] Y. Censor, A. Lent: An iterative row action method for interval convex programming,
Journal of Optimization Theory and Applications 34 (1981) 321–353.

[10] G. Chen, M. Teboulle: Convergence analysis of a proximal-like optimization algorithm using
Bregman functions, SIAM Journal on Optimization 3 (1993) 538–543.

[11] G. Cimmino: Calcolo approsimato per le soluzione di sistemi di equazioni lineari, La Ricerca
Scientifica, Roma, XVI, Anno IX 2 (1938) 326–333.
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