
Journal of Convex Analysis

Volume 9 (2002), No. 2, 327–338
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In the present paper we derive criteria for upper Lipschitz/Hőlder continuity of the set of minimal points
of a given subset A ⊂ Y of a normed space Y when A is subjected to perturbations. To this aim we
introduce the rate of containment of A, a real-valued function of one real variable, which measures the
depart from minimality as a function of the distance from the minimal point set. The main requirement
we impose is that for small arguments the rate of containment is a sufficiently fast growing function. The
obtained results are applied to parametric vector optimization problems to derive conditions for upper
Hőlder continuity of the performance multifunction.
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1. Introduction

Rate of convergence and Lipschitz type properties of solutions to perturbed optimization
problems are fundamental topics of stability analysis in scalar optimization. The list of
contributors to the subject is long and contains for instance [24], [14], [16], [26], [17], [27],
[19], [20], [28], and many others. In vector optimization the results on Lipschitz continuity
of solutions are scarce and concern mainly some special classes of problems, for linear case
see eg.[10], [11], [12], for convex case see eg. [9], [13].

In the present paper we investigate upper Hőlder continuity of the set of minimal points
Min(A|K) with respect to cone K ⊂ Y of a given subset A ⊂ Y of a normed space Y
when A is subjected to perturbations. We express perturbations by a certain multivalued
mapping Γ , defined on a space of perturbations U , with Γ(u0) = A , and consider the
family of problems (Pu) of findingMin(Γ(u)|K) . Upper Hőlder property at u0 ensures that
the distance of a solution of perturbed problem (Pu) to the set of solutions of unperturbed
problem (Pu0) can be estimated via the distance of perturbation ‖u− u0‖ raised to some
power q . Hence, upper Hőlder property is of interest when it is impossible or too dificult
to deal with the original problem and one wants to know the magnitude of the error
made by accepting a solution of perturbed problem as a solution of the original problem.
For instance, numerical representations of problems lead to perturbations due to finite
precision. The upper Lipschitz property (upper Hőlder property with q = 1) has already
appeared in investigation of stability of different problems, see eg [21], [22].

In Section 3 we introduce the rate of containment of a set A with respect to K, which is a
function of one variable and measures the depart from minimality as a function of the dis-
tance from the minimal point set. This is a nondecreasing function, in general nonconvex,
even for convex sets. In Section 4 our main result is Theorem 4.2 which gives conditions
for upper Hőlder continuity of minimal point multifunction M(u) = Min(Γ(u)|K) at a
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given point u0 . The essential requirement of Theorem 4.2 is that the rate of containment
of the set Γ(u0) is a sufficiently fast growing function for arguments close to zero. In
Section 5 we apply the obtained results to vector optimization problems. In Theorem 5.5
we give conditions assuring upper Hőlder continuity of the performance mulifunction of
parametric vector optimization problems. These conditions are expressed with the help
of the notion of strong minimal solution which can be viewed as a generalization of the
notion of φ−local minimizer as defined by Attouch and Wets ([2],[3]).

Throughout the paper we assume that (Y, ‖·‖) is a normed space and K is a closed convex
pointed cone in Y . Let A ⊂ Y be a subset of Y . We say that y ∈ A is a minimal point of
A with respect to K if (y−K)∩A = {y} . By Min(A|K) we denote the set of all minimal
points of A with respect to K . We say that the domination property, (DP ) , holds for A
if A ⊂ Min(A|K) +K .

2. Containment Property

By B(a, r) we denote the open ball of radius r and centre a , B(0, 1) = B . For any subset A
of Y and any y ∈ Y we have d(y, A) = infa∈A ‖y−a‖ and B(A, ε) = {y ∈ Y | d(y, A) < ε} .
Definition 2.1 ([6])(Containment property). We say that the containment prop-
erty (CP ) holds for a subset A ⊂ Y of Y if for every ε > 0 there exists δ > 0 such
that

[A \B(Min(A|K), ε)] +B(0, δ) ⊂ Min(A|K) +K . (1)

If Min(A|K) is closed, (CP ) implies (DP ) . Properties of (CP ) are investigated in [6],
[7] .

The following proposition gives a purely topological proof of the equivalent form of con-
dition (1) for cones with nonempty interior .

Proposition 2.2. Let K be a closed convex pointed cone in Y , intK 6= ∅ , and A ⊂ Y a
subset of Y . The following are equivalent:

(i) (CP ) holds for A

(ii) for each ε > 0 there exists δ > 0 such that each y ∈ A \ B(Min(A|K), ε) can be
represented as

y = η + k , where η ∈ Min(A|K) , k +B(0, δ) ⊂ K . (2)

Proof. (i) → (ii) . For any 0−neighbourhood O , define

KO = {k ∈ K | k +O ⊂ K} .

Clearly, we have intK =
⋃

O∈N KO . We show that for any 0−neighbourhood Q there
exists a 0−neighbourhood O such that

(Min(A|K) +K)Q ⊂ Min(A|K) +KO , (3)

where (Min(A|K)+K)Q = {y ∈ Y | y+Q ⊂ Min(A|K)+K} . Indeed, let a ∈ (Min(A|K)+
K)Q , i.e., a+Q ⊂ Min(A|K) +K . Since 0 ∈ cl(−K) , for any 0−neighbourhood Q there
exists a 0−neighbourhood O such that Q∩ (−KO) 6= ∅ . Thus, there exists q ∈ Q∩ (−KO)
such that a+ q ∈ Min(A|K) +K , and consequently a ∈ Min(A|K) +KO .
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Suppose now that (CP ) holds for A , ie for each 0−neighbourhood W there exists a
0−neighbourhood Q such that for any y ∈ A \ (Min(A|K) +W )

y ∈ (Min(A|K) +K)Q ,

and by (3) , for some 0−neighbourhood O , y ∈ Min(A|K) +KO .

(ii) → (i) . Obvious.

3. Rate of Containment

Denote
A(ε) = A \B(Min(A|K), ε) .

Definition 3.1 (Rate of containment). The function µ : Y → R defined as

µ(y) = sup
δ ≥ 0 :

y = η + k,
η ∈ Min(A|K),
k + δB ⊂ K

δ . (4)

is the rate of containment of y with respect to A and K .

The rate of containment of a set A with respect to K is the function δ : R+ → R
defined as

δ(ε) = inf
y∈A(ε)

µ(y) .

We have {y ∈ Y | µ(y) > −∞} = Min(A|K) +K . For y ∈ Min(A|K), it is µ(y) = 0 . For
y 6∈ Min(A|K, the value µ(y) gives the maximal radius r such that k + rB ⊂ K, where
k ∈ y − [Min(A|K) ∩ (y − K)] ⊂ K . In this sense, µ(y) can be viewed as a measure of
depart from minimality of y . Consequently, δ(ε) is the minimal depart from minimality
over all y ∈ A whose distance from Min(A|K) is not smaller than ε . If intK = ∅ , then
µ(y) = 0 for any y ∈ Min(A|K) +K .

If Min(A|K) is closed, then (DP ) holds for A if and only if δ(ε) ≥ 0 for ε > 0 .

Now we define an auxiliary function for K. The function cont : K → R+ , defined as

cont(k) = sup{r | k + rB ⊂ K}

is called the cone containment function. The function cont is positively homogeneous,
i.e., cont(λk) = λ cont(k) for λ ≥ 0, suplinear, i.e., cont(k1+k2) ≥ cont(k1)+cont(k2), for
k1, k2 ∈ K , and hence cont is concave on K. Thus, we can rewrite the rate of containment
δ as follows

δ(ε) = inf
y∈A(ε)

sup
η∈Min(A|K)∩(y−K)

cont(y − η) .

In Proposition below we give conditions for the supremum in the definition of µ to be
attained. These conditions allow us to express containment property (CP ) through the
rate of containment ( see Proposition 3.4).
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Proposition 3.2. Let Y = (Y, ‖ · ‖) be a normed space. Let K be a closed convex pointed
cone in Y , intK 6= ∅ , and let A ⊂ Y be a subset of Y .

Under one of the following conditions:

(i) Min(A|K) is weakly compact,

(ii) Min(A|K) is bounded weakly closed, and K has a weakly compact base,

for any y ∈ Min(A|K)+K , there exists a representation y = ηy+ky , with ηy ∈ Min(A|K) ,
and ky + µ(y)B ⊂ K .

Proof. Let y ∈ Min(A|K)+K . For any α > 0 , one can find a representation y = ηα+kα ,
ηα ∈ Min(A|K) , kα ∈ K , kα + cont(kα)B ⊂ K , satisfying

cont(kα) ≤ µ(y) and cont(kα) > µ(y)− α .

We start by proving that under any one of the conditions (i) , (ii) an element y can be
represented in the form

y = η0 + k0 , (5)

where η0 ∈ Min(A|K) , k0 ∈ K , η0 = limα ηα , k0 = limα kα .

In the case (i) , since Min(A|K) is weakly compact, there exists a weakly convergent
subnet of the net {ηα} . Without loss of generality we can assume that the net {ηα}
weakly converges to some η0 ∈ Min(A|K) . Since K is closed and convex, the net {kα} ,
kα = y − ηα , converges weakly to k0 ∈ K , and y = η0 + k0 .

To prove (5) in the case (ii) suppose that Θ is a weakly compact base of K , kα = λαθα ,
λα ≥ 0 , and {θα} ⊂ Θ contains a weakly convergent subnet. Without loss of generality
we can assume that {θα} converges weakly to some θ0 ∈ Θ . Since Min(A|K) is bounded
and ‖θ‖ ≥ M0 for all θ ∈ Θ we get

M1 ≥ ‖y − ηα‖ = λα‖θα‖ ≥ M0λα ,

for some positive constants M0 , M1 . This implies that {λα} is bounded, and thus the
net {kα} contains a convergent subnet, i.e., we can assume that {kα} weakly converges to
some k0 = λ0θ0 ∈ K . In consequence, by the weak closedness of Min(A|K) , ηα = y − kα
converges weakly to some η0 ∈ Min(A|K) and we get a representation y = η0 + k0 .

To complete the proof we show that k0 + µ(y)B ⊂ K . On the contrary, if it were k0 +
µ(y)b 6∈ K , for some b0 ∈ B , by separation arguments it would be

f(k0 + µ(y)b0) < 0 < f(k) for k ∈ K ,

for some f ∈ K∗ , K∗ = {f ∈ Y ∗ | f(k) ≥ 0} . By the weak convergence of {kα} to k0 ,
and {(cont(kα)− µ(y))b0} to zero we would have

f(kα + cont(kα)b0) = f(k0 + µ(y)b0) + f(kα − k0) + f([cont(kα)− µ(y)]b0) < 0 ,

which would contradict the fact that kα + cont(kα)B ⊂ K .

In the example below we calculate µ(y) for y from the closed unit ball.
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Example 3.3. Let Y = R2 , and A = clB , and K = {(y1, y2) ∈ R2 | y1 ≥ 0 y2 ≥ 0} .
Clearly, (DP ) and (CP ) holds for A , and

Min(A|K) = {(η1, η2) ∈ A | η2 = −
√

1− η21 , −1 ≤ η1 ≤ 0} .

For any y ∈ A, put Min(A|K)y = Min(A|K) ∩ (y − K) . For any representation of 0 in
the form 0 = η+ kη , where η ∈ Min(A|K) , kη ∈ K , we have η = (η1, η2) ∈ Min(A|K)0 =
Min(A|K) ,

cont(kη) = min{−η1,
√

1− η21} =

{ √

1− η21 for −1 ≤ η1 ≤ −1/
√
2

−η1 for −1/
√
2 ≤ η1 ≤ 0

.

and µ(0) = sup{−1≤η1≤0} cont(kη) = 1/
√
2 . For y = (y1, y2) ∈ A , with y2 ≥ 0 ,

Min(A|K)y = {(η1, η2) ∈ Min(A|K) | η2 = −
√

1− η21, −1 ≤ η1 ≤ min{0, y1}} ,

and
µ(y) = max

{−1≤η1≤min{0,y1}}
min{y1 − η1, y2 +

√

1− η1} .

For any y = (y1, y2) ∈ A , y2 < 0 ,

Min(A|K)y = {(η1, η2) ∈ Min(A|K) | η2 = −
√

1− η21, −
√

1− y22 ≤ η1 ≤ min{0, y1}} ,

and

µ(y) = max
{−
√

1−y22≤η1≤min{0,y1}}
min{y1 − η1, y2 +

√

1− η21} .

Let
dom δ = {ε ∈ R | δ(ε) < +∞} .

The following properties of the rate of containment are direct consequences of the defini-
tion.

1. The rate of containment δ : R+ → R is nondecreasing. Indeed, let ε1, ε2 ∈ domδ ,
ε1 > ε2 > 0 . Then A(ε1) ⊂ A(ε2) , and consequently δ(ε1) = infy∈A(ε1) µ(y) ≥ δ(ε2) .

2. Assume that there exists at least one η ∈ Min(A|K) which is not an isolated point of
A . Suppose that one of the conditions hold:
(i) Min(A|K) is weakly compact,
(ii) Min(A|K) is bounded and weakly closed, and K has a weakly compact base.
Then limε→0 δ(ε) = 0 . Indeed, suppose that

+∞ > δ(εn) = inf
y∈A(εn)

µ(y) > c

for some εn → 0 and c > 0 . Hence, for each n and y ∈ A(εn) it is µ(y) > c . By
assumption, one can choose yn ∈ A(εn), yn → η ∈ Min(A|K) . Since µ(yn) > c, there
exists a representation yn = ηn + kn, ηn ∈ Min(A|K), kn + cB ∈ K . By (i) or (ii),
η = η0 + k0, where limn ηn = η0 ∈ Min(A|K), limn kn = k0 ∈ K (for details see
the proof of Proposition 3.2 above). Consequently, k0 = 0 , but on the other hand,
k0 + c/2B ⊂ K, which is a contradiction. This proves the assertion.
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3. Let A ⊂ Y be a subset of Y . Let K ⊂ Y be a closed convex cone in Y , intK 6= ∅ .
Then, (CP ) holds for A if and only if δ(ε) > 0 for ε > 0 . The "only if" part follows
directly from Proposition 2.2. To prove the "if" part take any ε > 0 . We have
δ(ε) = c > 0 , and consequently, µ(y) ≥ c, for any y ∈ A(ε), which means that there
exists a representation y = ηy+ky , ηy ∈ Min(A|K), ky+cB ⊂ K . Thus, (CP ) holds.

4. Let A ⊂ Y be a convex subset of Y . Under one of the conditions:
(i) Min(A|K) is weakly compact,
(ii) Min(A|K) is weakly bounded, and K has a weakly compact base

we have

δ(ε) = inf
y∈Aeq(ε)

µ(y) = inf
y∈Aβ(ε)

µ(y) ,

where Aeq(ε) = {y ∈A | d(y,Min(A|K)) = ε}, and Aβ = {y ∈A | β > d(y,Min(A|K))
≥ ε}.

Proposition 3.4. Let K ⊂ Y be a closed convex cone in Y , intK 6= ∅ . Let A be a
nonempty subset of Y and let (CP ) holds for A . Under one of the following conditions:

- Min(A|K) is weakly compact,

- Min(A|K) is bounded and weakly closed, and K has a weakly compact base,

for any ε > 0 we have

(i) A(ε) + δ(ε)B ⊂ Min(A|K) +K ,

(ii) each y ∈ A(ε) can be represented in the form y = ηy + ky , where ηy ∈ Min(A|K) ,
ky + δ(ε) ·B ⊂ K .

Proof. (ii) . Follows directly from Proposition 3.2 .

(i) . Follows from (ii) .

4. Upper Hőlder Continuity of Minimal Points

Let U = (U, ‖ · ‖) be a normed space and let Γ : U → Y be a multivalued mapping.

In this section we investigate the multivalued mapping M : U → Y defined as

M(u) = Min(Γ(u)|K) ,

where Γ : U → Y is a given multivalued mapping. M is called the minimal point
multivalued mapping. As defined in Section 5 the performance multivalued mapping
of a given parametric vector optimization problem is a minimal point multivalued mapping
M for some Γ.

A multivalued mapping F : U → Y is said to be upper Lipschitz at u0 with constant L
(see eg [21, 22, 23]) if there exists a neighbourhood U0 of u0 such that F (u) ⊂ F (u0) +
L‖u− u0‖B for u ∈ U0 . This property has been used in [21, 23] to investigate behaviour
of parametric generalized equations.

Definition 4.1. Let F : U → Y be a multivalued mapping. We say that F is:

- upper Hőlder at u0 with order q and constant L if there exists a neighbourhood
U0 of u0 such that F (u) ⊂ F (u0) + L‖u− u0‖qB for u ∈ U0 ,
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- lower Hőlder at u0 with order q and constant L if there exists a neighbourhood
U0 of u0 such that F (u0) ⊂ F (u) + L‖u− u0‖qB for u ∈ U0 ,

- lower Lipschitz at u0 with constant L if F is lower Hőlder at u0 with order q = 1
and constant L ,

Following [4], we say that F is Lipschitz around u0 with constant L if there exists a
neighbourhood U0 of u0 such that F (u1) ⊂ F (u2) +L‖u1 − u2‖B for u1, u2 ∈ U0 . We say
that F is Hőlder around u0 with order q and constant L if there exists a neighbourhood
U0 of u0 such that F (u1) ⊂ F (u2) + L‖u1 − u2‖qB for u1, u2 ∈ U0 .

Lipschitzian/Hőlderian continuity of F around u0 implies that F is lower and upper
Lipschitz/Hőlder at u0, but not conversely.

In the theorem below we give sufficient conditions for upper Hőlder continuity of minimal
point multifunction M .

Theorem 4.2. Let Y = (Y, ‖ · ‖) and U = (U, ‖ · ‖) be normed spaces. Let K ⊂ Y be
a closed convex pointed cone in Y , intK 6= ∅ . Let Γ : U → Y be a multivalued mapping
which is upper Hőlder with order `1 and constant L1 and lower Hőlder with order `2 and
constant L2 at u0 .

Suppose that one of the following conditions hold:

(i) Min(Γ(u0)|K) is weakly compact,

(ii) Min(Γ(u0)|K) is bounded and weakly closed, and K has a weakly compact base.

If the rate of containment δ of Γ(u0) satisfies the condition δ(ε) ≥ c · εp , with c > 0 , then

M(u) ⊂ M(u0) + (L1 +

(

L1 + L2

c

) 1
p

)‖u− u0‖min{`1,min{`1,`2}
p

} ·B .

for all u in some neighbourhood of u0 .

Proof. By the upper Hőlder continuity of Γ ,

Γ(u) ⊂ Γ(u0) + L1‖u− u0‖`1 ·B
⊂ [M(u0) + L1 · ‖u− u0‖`1 ·B +

(

L1+L2
c

) 1
p · ‖u− u0‖

min{`1,`2}
p ·B]∪

∪[(Γ(u0) \ (M(u0) +
(

L1+L2
c

) 1
p ‖u− u0‖

min{`1,`2}
p ·B)) + L1 · ‖u− u0‖`1 ·B] ,

for u in a neighbourhood U0 of u0 . By the lower Hőlder continuity of Γ, there exists a
neighbourhood U1 of u0 such that Γ(u0) ⊂ Γ(u) + L2‖u− u0‖`2B for u ∈ U1 .

Take any

y ∈ Γ(u) ∩ [(Γ(u0) \ (M(u0) +

(

L1 + L2

c

) 1
p

‖u− u0‖
min{`1,`2}

p ·B)) + L1‖u− u0‖`1 ·B] ,

where u ∈ U0 ∩ U1 . We have y = γ + b1 , where γ ∈ Γ(u0) \ (M(u0) +
(

L1+L2
c

) 1
p ‖u −

u0‖
min{`1,`2}

p ·B) , b1 ∈ L1‖u− u0‖`1 ·B .
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In view of (i), and (ii), by Proposition 3.4 , any z ∈ Γ(u0) \ [M(u0) + ε · B] , ε > 0 , can
be represented in the form z = ηz + kz , ηz ∈ Min(Γ(u0)|K) , kz + δ(ε) ·B ⊂ K . Hence,

γ = ηγ + kγ , ηγ ∈ M(u0) , kγ + δ(

(

L1 + L2

c

) 1
p

‖u− u0‖
min{`1,`2}

p ) ·B ⊂ K .

By the lower Hőlder continuity of Γ ,

ηγ = γ1 + b2 , γ1 ∈ Γ(u) , b2 ∈ L2‖u− u0‖`2 ·B ,

and consequently, since δ(ε) ≥ c · εp ,

y − γ1 = γ + b1 − ηγ + b2 = ηγ + kγ + b1 − ηγ + b2
⊂ kγ + (L1 + L2)‖u− u0‖min{`1,`2} ·B
⊂ kγ + δ(

(

L1+L2
c

) 1
p ‖u− u0‖

min{`1,`2}
p ) ·B ⊂ K .

(6)

This proves that for u ∈ U0 ∩ U1we have

M(u) ∩ [(Γ(u0) \ (M(u0) +

(

L1 + L2

c

) 1
p

L‖u− u0‖
min{`1,`2}

p ·B)) + L1‖u− u0‖`1 ·B] = ∅ .

Hence,

M(u) ⊂ M(u0) + L1 · ‖u− u0‖`1 ·B +
(

L1+L2
c

) 1
p · ‖u− u0‖

min{`1,`2}
p ·B

⊂ M(u0) + (L1 +
(

L1+L2
c

) 1
p )‖u− u0‖min{`1,min{`1,`2}

p
} ·B ,

for u ∈ U0 ∩ U1 , which completes the proof.

Corollary 4.3. Let Y = (Y, ‖ · ‖) and U = (U, ‖ · ‖) be normed spaces. Let K ⊂ Y be a
closed convex pointed cone in Y , intK 6= ∅ . Let Γ : U → Y be a Lipschitz multivalued
mapping around u0 with constant L .

Suppose that one of the following conditions hold:

(i) Min(Γ(u0)|K) is weakly compact,

(ii) Min(Γ(u0)|K) is bounded and weakly closed, and K has a weakly compact base.

If the rate of containment δ of Γ(u0) , satisfies the condition δ(ε) ≥ c · ε , with c > 0 , then

the minimal point multivalued mapping M is upper Lipschitz at u0 with constant (2+c)L
c

.

Corollary 4.4. Let Y = (Y, ‖ · ‖) and U = (U, ‖ · ‖) be normed spaces. Let K ⊂ Y be
a closed convex pointed cone in Y , intK 6= ∅ . Let Γ : U → Y be a Hőlder multivalued
mapping with order q and constant L around u0 .

Suppose that one of the following conditions hold:

(i) Min(Γ(u0)|K) is weakly compact,

(ii) Min(Γ(u0)|K) is bounded and weakly closed, and K has a weakly compact base.

If the rate of containment δ of Γ(u0) , satisfies the condition δ(ε) ≥ c · εp , with p > 1
and c > 0 , then the minimal point multivalued mapping M is upper Hőlder at u0 with

constant
(

L+
(

2L
c

)1/p
)

and order `
p
.
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In the Introduction we indicated some situations where upper Hőlder continuity has a
natural significance. One more example of such a situation comes from parametric vector
optimization. Theorem 6.4 of [6] and Theorem 6.2 of [7], reveal the importance of upper
type continuities of the performance multivalued mapping (see Section 5) in deriving
criteria for continuity of solutions to parametric vector optimization problems. We should
mention here that Hőlder continuity of the minimal point multivalued mapping M around
a given point u0, which is also of interest, constitutes the subject of a separate study.

5. Vector Optimization Problems

In a series of publications Attouch and Wets [1],[2], [3] developed an approach to investi-
gation of quantitative stability of variational systems as defined by Rockafellar and Wets
[25]. These authors prove Lipschitz and Hölder continuity of solutions to scalar minimiza-
tion problems under perturbations for φ−local minimizers. Given a function f : X → R
an element xf ∈ X is called a φ−local minimizer of f if f(y) ≥ f(xf ) + φ(‖y − xf‖) for
all y in some ball around xf , with φ being an admissible function, i.e. φ : R+ → R+ ,
φ(tn) → 0 implies tn → 0 .

In this section we use similar approach to investigate stability of vector optimization
problems.

Let X be a normed space. Let f : X → Y , and A0 ⊂ X . The vector optimization
problem

K −minf(x)
subject to x ∈ A0

(7)

consists in finding all x ∈ S(f, A0,K) = {x ∈ A0 | f(x) ∈ Min(f(A0)|K)} , Min(f(A0)|K)
= {y ∈ f(A0) | (y −K) ∩ f(A0) = {y}} , (see Jahn [15], Luc [18]).

Definition 5.1. The solution set S(f, A0,K) is called φ−strong or φ−dominated if for
each x ∈ A0, d(x, S(f, A0,K)) < ρ, there exists sx ∈ S(f, A0,K) such that

f(x) ≥ f(sx) + φ(‖x− sx‖) ·B , i.e., f(x)− f(sx)− φ(‖x− sx‖) ·B ∈ K ,

for some admissible function φ : R+ → R+ and ρ > 0.

Definition 5.2. The solution set S(f, A0,K) is strong of order p with constant c > 0 if
for each x ∈ A0, d(x, S(f, A0,K)) < ρ, ρ > 0, there exists sx ∈ S(f, A0,K), ‖x − sx‖ < δ,
such that

f(x) ≥ f(sx) + c‖x− sx‖p ·B , i.e., f(x)− f(sx)− c‖x− sx‖p ·B ∈ K .

Proposition 5.3. Let X = (X, ‖ · ‖) and Y = (Y, ‖ · ‖) be normed spaces. Let K ⊂ Y be
a closed convex pointed cone in Y , intK 6= ∅ , and let A0 ⊂ X be a subset of X .

Let f : X → Y be a Hőlder mapping with constant L and order q , and let f(A0) be
convex. Assume that there exists ε0 > 0 such that for any x ∈ A0

ε0 > d(f(x),Min(f(A0)|K)) implies d(x, S(f, A0,K)) < δ , (∗)

and one of the conditions hold

(i) Min(A|K) is weakly compact,
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(ii) Min(A|K) is weakly bounded, and K has a weakly compact base.

If the solution set S(f, A0,K) is strong of order p > q with constant c, the rate of con-
tainment of the set f(A0) satisfies

δ(ε) ≥ c

Lp/q
ε

p
q ,

for ε < ε0 .

Proof. Put B = f(A0) . Take any 0 < ε < ε0 , and y ∈ Bε0(ε). Hence, y = f(x), x ∈
A0, ε0 > d(f(x),Min(f(A0)|K)) ≥ ε . By (∗), d(x, S(f, A0,K)) < δ. Since the solution
set S(f, A0,K) is strong of order p, p > q, there exists sx ∈ S(f, A,K), d(x, S(f, A0,K)) <
ρ, ρ > 0, such that

f(x)− f(sx) + c‖x− sx‖p ·B ⊂ K .

By Hőlder continuity of f,

c

Lp/q
‖f(x)− f(sx)‖

p
q ≤ c‖x− sx‖p ,

and we obtain

f(x)− f(sx) +
c

Lp/q
‖f(x)− f(sx)‖

p
q ·B ⊂ f(x)− f(sx) + c‖x− sx‖p ·B ⊂ K .

Finally,

f(x)− f(sx) +
c

Lp/q
ε

p
q ·B ⊂ f(x)− f(sx) +

c

Lp/q
‖f(x)− f(sx)‖

p
q ·B ⊂ K .

By the convexity of B, δ(ε) ≥ c
Lp/q ε

p
q .

Remark 5.4. We say that a norm ‖ · ‖ in Y is nondecreasing if for any y ∈ Y and k ∈ K
we have ‖y+k‖ ≥ ‖y‖ . If norm ‖·‖ in Y is nondecreasing, and the solution set S(f, A0,K)
is strong of order p with constant c, then ‖f(x) − f(sx)‖ ≥ c‖x − sx‖p, for any x ∈ A0,
d(x, S(f, A0,K)) < ρ, and some sx ∈ S(f, A0,K) .

Let f : X → Y , A0 ⊂ X . Let A : U → Y be a set-valued mapping defined on a normed
space U such that A(u0) = A0 . We consider parametric vector optimization problem (Pu)
of the form

K −min f(x)
subject to x ∈ A(u)

(8)

(Pu0) coincides with problem (7). The performance multivalued mapping P : U → Y
is of the form

P (u) = {y ∈ f(A(u)) | (y − f(A(u))) ∩ f(A(u)) = {y}} ,

and P (u0) = Min(f(A0)|K) . Note that the performance multivalued mapping P is a
minimal point multivalued mapping M with Γ(u) = f(A(u)) . The solution multivalued
mapping S : U → X takes the form

S(u) = {x ∈ X | f(x) ∈ P (u)} ,

and S(u0) = S(f, A0,K) .
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Theorem 5.5. Let X = (X, ‖ · ‖) , Y = (Y, ‖ · ‖) , U = (U, ‖ · ‖) be normed spaces. Let
K ⊂ Y be a closed convex pointed cone in Y , intK 6= ∅ , A0 ⊂ X a subset of X , and let
f : X → Y be a Lipschitz mapping defined on X , with constant L . Let f(A0) be convex
and condition (∗) of Proposition 5.3 hold.

Assume that the solution set S(f, A0,K) of (7) is strong of order p, p > 1, with constant
c > 0 , and one of the following conditions holds:

- Min(f(A0)|K) is weakly compact,

- Min(f(A0)|K) is bounded and weakly closed, and K has a weakly compact base.

For any parametric problem of the form (8) such that A is Hőlder around u0 with order
` and constant L1 , the performance multivalued mapping P is upper Hőlder at u0 with

order `
p
and constant

(

LL1 +
(

2LL1
c

) 1
p

)

.

Proof. For the proof it is enough to observe that f(A) : U → Y , being the image of the
Hőlder multivalued mapping A : U → X under the Lipschitz mapping f : X → Y , is a
Hőlder multivalued mapping.

Since A is Hőlder around u0 , there exists a neighbourhood U0 of u0 such that A(u1) ⊂
A(u2) + L1‖u1 − u2‖`B , for u1, u2 ∈ U0 , i.e., for each a1 ∈ A(u1) there exists a2 ∈ A(u2)
such that ‖a1 − a2‖ < L1‖u1 − u2‖` . Since f is Lipschitzian with constant L we obtain

‖f(a1)− f(a2)‖ ≤ L‖a1 − a2‖ < LL1‖u1 − u2‖` ,

for u1, u2 ∈ U0 . The conclusion follows from Corollary 4.4 and Proposition 5.3.
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[5] E. M. Bednarczuk: Berge-type theorems for vector optimization problems, Optimization 32
(1995) 373–384.

[6] E. M. Bednarczuk: Stability results for vector optimization problems in partially ordered
topological vector spaces, in: Proceedings of the First World Congress of Nonlinear Analysts,
Tampa, Florida, August 1992, V. Lakshmikantham (ed.), Walter de Gruyter, Berlin, New
York (1996) 2371–2382.

[7] E. M. Bednarczuk: An approach to well-posedness in vector optimization: consequences to
stability, Control and Cybernetics 23 (1994) 107–122.

[8] E. M. Bednarczuk, W. Song: PC points and their application to vector optimization, Pliska
Studia Mathematica Bulgarica 12 (1998) 21–30.

[9] N. Bolintineanu, A. El-Maghri: On the sensitivity of efficient points, Revue Roumaine de
Mathematiques Pures et Appliques 42 (1997) 375–382.
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