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1. Introduction

Functionals which can be written in supremal form

F (u,B) = µ - sup
{

f
(

x, u(x)
)

: x ∈ B
}

(1)

received much attention in the last years (see References). In the applications they de-
scribe optimization problems whose criteria select solutions which minimize a given quan-
tity in the worst possible situation. This is for instance the case of criteria like the
maximum stress in elasticity, the maximum loss in economy, the maximum pressure in
problems from fluidodynamics.

In order to apply the direct methods of the calculus of variations to this class of functionals,
a first problem to be solved is the identification of qualitative conditions on the supremand
f which imply the lower semicontinuity with respect to a convergence weak enough to
provide the compactness in a large number of situations, say the weak* L∞ convergence.
This was already solved by Barron and Liu in [3] where they showed that a functional of
the form (1) is weakly* L∞ sequentially lower semicontinuous if and only if the function
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f is level convex, that is for every t ∈ R the level set
{

s ∈ Rn : f(x, s) ≤ t
}

is convex for
µ - a.e. x.

The problem we attack in the present paper is to characterize in a supremal form (1)
all mappings F (u,B) which fulfill certain intrinsic properties. A similar problem was
considered by Buttazzo and Dal Maso in [5] for the case of integral functionals

F (u,B) =

∫

B

f
(

x, u(x)
)

dµ. (2)

We want to stress the fact that in the integral case (2) the assumption that the mappings
F (u, ·) are additive plays a crucial rÝole. On the contrary, in the supremal case (1) addi-
tivity can no longer be reasonably assumed, and it must be replaced by the more natural
assumption

F (u,A ∪B) = F (u,A) ∨ F (u,B). (3)

Our main result (Theorem 3.2) is that assumption (3), together with a lower semicon-
tinuity hypothesis, implies for a mapping F (u,B) the supremal representation formula
(1) for a suitable supremand function f . A key tool in the proof is a result by Barron,
Cardaliaguet and Jensen (see [1]) where a result analogous to the Radon-Nikodym theo-
rem for measures is proved. The argument leading to the supremal representation can be
concluded due to a new form of Moreau-Yosida transform which is suitable for this class
of functionals.

2. Preliminary results

Let (Ω,F , µ) be a measure space, with µ non-negative and σ-finite. We denote for brevity
by L∞

n the space L∞
µ (Ω;Rn), by Bn the Borel σ-field of Rn, and by µ - sup the µ-essential

supremum.

Definition 2.1. A function f : Ω×Rn →]−∞,+∞] is said to be:

(a) a supremand if f is F ⊗ Bn-measurable;

(b) a normal supremand if f is F ⊗ Bn-measurable and f(x, ·) is lower semicontinuous
on Rn for µ - a.e. x ∈ Ω;

(c) a level convex normal supremand if f is a normal supremand such that for µ - a.e.
x ∈ Ω and for every t ∈ R the level set {s ∈ Rn : f(x, s) ≤ t} is convex.

Remark 2.2. We prefer to use here the terminology level convex instead of quasiconvex,
as was used in [1], [2], [3]. We want indeed to avoid every possible confusion with the
Morrey quasiconvexity, which is a concept quite different and also very commonly used
in the calculus of variations (see for instance Dacorogna [8] for further details).

We consider functionals F : L∞
n × F → R; our goal is to show that under suitable

conditions they can be written in a supremal form

F (u,B) = µ - sup
{

f
(

x, u(x)
)

: x ∈ B
}

(4)

for a suitable supremand f . We first show that if a representation in the form (4) exists
then it is unique.
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Proposition 2.3. Let f and g be two supremands. Then the inequality

µ - sup
{

f
(

x, u(x)
)

: x ∈ B
}

≤ µ - sup
{

g
(

x, u(x)
)

: x ∈ B
}

(5)

for every u ∈ L∞
n and B ∈ Bn implies that for µ - a.e. x ∈ Ω we have

f(x, s) ≤ g(x, s) ∀s ∈ Rn .

Proof. Let {Ωk} be a sequence in F such that Ωk ↑ Ω and µ(Ωk) < +∞, and for every
integer k set

fk = f ∧ k , gk = g ∧ k .

In order to achieve the proof it is clearly enough to show that for every k ∈ N and for
µ - a.e. x ∈ Ωk we have

fk(x, s) ≤ gk(x, s) for all s ∈ Rn with |s| ≤ k. (6)

For every k ∈ N, ε > 0, x ∈ Ω we set

Sε
k = {(x, s) ∈ Ωk ×Rn : |s| ≤ k, fk(x, s) > gk(x, s) + ε}

Sε
k(x) = {s ∈ Rn : (x, s) ∈ Sε

k}
Ωε

k = {x ∈ Ω: Sε
k(x) 6= ∅} .

Since f and g are F ⊗ Bn-measurable, the set Sε
k belongs to F ⊗ Bn, thus the Aumann

measurable selection theorem (see [7] Theorems III.22 and III.23, and [5] Theorem 2.1)
applies and we have that Ωε

k ∈ F and that there exists an F -measurable selection uε
k :

Ωε
k → Rn such that

uε
k(x) ∈ Sε

k(x) for every x ∈ Ωε
k .

Setting uε
k(x) = 0 on Ω \ Ωε

k we obtain that uε
k ∈ L∞

n , |uε
k| ≤ k, and

fk
(

x, uε
k(x)

)

> gk
(

x, uε
k(x)

)

+ ε for every x ∈ Ωε
k . (7)

Hence
gk
(

x, uε
k(x)

)

< k for every x ∈ Ωε
k (8)

so that
gk
(

x, uε
k(x)

)

= g
(

x, uε
k(x)

)

for every x ∈ Ωε
k . (9)

From (7), (8), (9) we obtain for every x ∈ Ωε
k

g
(

x, uε
k(x)

)

+ ε = gk
(

x, uε
k(x)

)

+ ε < fk
(

x, uε
k(x)

)

≤ f
(

x, uε
k(x)

)

(10)

and taking the µ - sup in Ωε
k

µ - sup
{

g
(

x, uε
k(x)

)

+ ε : x ∈ Ωε
k

}

≤ µ - sup
{

f
(

x, uε
k(x)

)

: x ∈ Ωε
k

}

≤ µ - sup
{

g
(

x, uε
k(x)

)

: x ∈ Ωε
k

}

,

where the last inequality follows from assumption (5). Therefore, since by (8) and (9)
the function g

(

x, uε
k(x)

)

is bounded from above, we deduce that µ(Ωε
k) = 0. Setting

Nk =
⋃

{Ωε
k : ε > 0} we then have µ(Nk) = 0 and

fk(x, s) ≤ gk(x, s)

for every x ∈ Ωk \Nk and for every s ∈ Rn with |s| ≤ k, which proves (6).



228 E. Acerbi, G. Buttazzo, F. Prinari / The Class of Functionals ...

Corollary 2.4. Let f and g be two supremands such that

µ - sup
{

f
(

x, u(x)
)

: x ∈ B
}

= µ - sup
{

g
(

x, u(x)
)

: x ∈ B
}

for every u ∈ L∞
n and B ∈ Bn. Then f and g are equivalent, in the sense that for µ - a.e.

x ∈ Ω we have
f(x, s) = g(x, s) ∀s ∈ Rn .

A key tool we shall use is a modification of the Moreau-Yosida transform (Pasch-Hausdorff
envelope, according to the terminology of [9], Chapter 9). More precisely, the following
approximation result holds.

Proposition 2.5. Let (X, d) be a metric space, let F : X → [0,+∞] be a lower semicon-
tinuous function, and let L : R → R be an increasing function such that

L(0) = 0 , L(t) > 0 for every t > 0 . (11)

If we set for every λ > 0

Fλ(x) = inf
{

F (y) ∨ λL
(

d(x, y)
)

: y ∈ X
}

(12)

then we have
F (x) = sup

{

Fλ(x) : λ > 0
}

for every x ∈ X .

Proof. Fix an element x ∈ X; by taking y = x in the definition of Fλ(x) we obtain the
inequality

Fλ(x) ≤ F (x) .

Let now t < F (x); since F is lower semicontinuous there exists δ > 0 such that

t < inf{F (y) : y ∈ X, d(x, y) < δ} ,

and using (11) there also exists a number λ > 0 such that λL(δ) > t. For every y ∈ X
with d(x, y) < δ we have

F (y) ∨ λL
(

d(x, y)
)

≥ F (y) > t

whereas for every y ∈ X with d(x, y) ≥ δ we have

F (y) ∨ λL
(

d(x, y)
)

≥ λL(δ) > t .

Thus Fλ(x) ≥ t and, since t was arbitrary, the inequality

F (x) ≤ sup
{

Fλ(x) : λ > 0
}

is proved.

Proposition 2.6. In the case L(t) = t the functional Fλ defined in (12) satisfies the
condition

Fλ(x) ≤ Fλ(y) + λd(x, y) for every x, y ∈ X . (13)

Therefore Fλ turns out to be λ-Lipschitz continuous whenever F is not identically +∞.
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Proof. Take x, y ∈ X and ε > 0, and let w ∈ X be such that

Fλ(y) ≥ F (w) ∨ λd(y, w)− ε .

Since for every a, b, c ∈ R
a ∨ b ≤ a ∨ c+ |b− c| ,

we have

Fλ(x) ≤ F (w) ∨ λd(x,w)

≤ F (w) ∨ λd(y, w) + λ|d(x,w)− d(y, w)|
≤ Fλ(y) + ε+ λd(x, y) ,

which immediately gives (13).

We finally need the following Radon-Nikodym type result, recently obtained by Barron,
Cardaliaguet, Jensen in [1].

Theorem 2.7. Let (Ω,F , µ) be a measure space with µ non-negative and σ-finite. Let
F : F → R be a mapping such that

(a) F
(

∞
⋃

i=1

Ai

)

=
∞
∨

i=1

F (Ai) whenever Ai ∈ F ,

(b) F (A) = F (B) for every A,B ∈ F such that µ(A4B) = 0.

Then there exists a µ-measurable function f : Ω → R such that

F (A) = µ - sup{f(x) : x ∈ A} .

Remark 2.8. The previous statement slightly differs from the original one of [1], since our
F may take infinite values, but we can reduce our case to the original one by considering
the functional

G(A) = arctanF (A) .

3. The representation result

In this section we show that any mapping F : L∞
n × F → R satisfying a certain set of

assumptions may actually be written as a supremal functional

F (u,B) = µ - sup
{

f
(

x, u(x)
)

: x ∈ B
}

(14)

for a suitable normal supremand f . The mappings F we consider satisfy the conditions:

(locality) F (u,A) = F (v,B) for all u, v ∈ L∞
n and A,B ∈ F with u = v µ - a.e. (15)

on B and µ(A4B) = 0;

(supremality) F (u,
∞
⋃

n=1

Ai) =
∞
∨

n=1

F (u,Ai) for all u ∈ L∞
n and Ai ∈ F ; (16)

(lower semicontinuity) for every B ∈ F the mapping F (·, B) is strongly lower (17)

semicontinuous in L∞
n (B).
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Remark 3.1. It is easy to see that the supremality condition (16) is equivalent to the
following one:

(18)



















i) (monotonicity) F (u,A)≤ F (u,B) for all u ∈L∞
n and A,B ∈F with A⊂B;

ii) (supremality on disjoint sets) F (u,
∞
⋃

n=1

Ai) =
∞
∨

n=1

F (u,Ai) for all u ∈ L∞
n

and Ai ∈ F with Ai ∩ Aj = ∅ when i 6= j.

Indeed the implication (16) ⇒ (18) is straightforward. For the opposite implication, given

u ∈ L∞
n and Ai ∈ F for every i ∈ N, set Ei = Ai \ (

⋃

j<i

Aj): then

F (u,
∞
⋃

i=1

Ai) = F (u,
∞
⋃

i=1

Ei) =
∞
∨

i=1

F (u,Ei) ≤
∞
∨

i=1

F (u,Ai) .

The opposite inequality is a consequence of the monotonicity condition (18) i).

The main result of this paper is the following.

Theorem 3.2. Let F : L∞
n × F → R be a mapping satisfying (15)–(17). Then there

exists a normal supremand f such that the representation formula (14) holds. Moreover,
this supremand f is unique.

Proof. The proof will be achieved in several steps.

Step 1. By considering the mapping

(u,B) 7→ 1

2
+

1

π
arctanF (u,B) ,

we may assume that F takes its values in the bounded interval [0, 1].

Step 2. For every λ > 0 we consider the approximating functional Fλ given by

Fλ(u,B) = inf
{

F (v,B) ∨ λ‖u− v‖L∞
n (B) : v ∈ L∞

n (B)
}

.

It is easy to check that the mappings Fλ still satisfy assumptions (15) – (17). In fact (15)
is trivial; in order to prove property (16), due to Remark 3.1, we will prove the equivalent
condition (18). Condition (18) i) is trivial, so we only prove condition (18) ii).

Let u ∈ L∞
n and Ai ∈ F with Ai ∩ Aj = ∅ for every i 6= j; setting A =

⋃∞
i=1 Ai we have

F (v, A) ∨ λ‖u− v‖L∞
n (A) ≥ F (v, Ai) ∨ λ‖u− v‖L∞

n (Ai)

for every v ∈ L∞
n , so

Fλ(u,A) ≥ Fλ(u,Ai) ∀i ∈ N :

this implies

Fλ(u,A) ≥
∞
∨

i=1

F (u,Ai). (19)
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On the other hand, for every ε > 0 there exists vi,ε ∈ L∞
n (Ai) such that

λ‖u− vi,ε‖L∞
n (Ai) ∨ F (vi,ε,Ai) ≤ Fλ(u,Ai) + ε ;

remark that

λ‖vi,ε‖L∞
n (Ai) ≤ λ‖u‖L∞

n (Ai) + λ‖u− vi,ε‖L∞
n (Ai) ≤ λ‖u‖L∞

n (Ai) + Fλ(u,Ai) + ε ,

thus if we define zε = vi,ε in Ai we have zε ∈ L∞
n (A) and

λ‖u− zε‖L∞
n (A) ∨ F (zε, A) =

∞
∨

i=1

(

λ‖u− zε‖L∞
n (Ai) ∨ F (zε, Ai)

)

≤
∞
∨

i=1

(

Fλ(u,Ai) + ε
)

=
∞
∨

i=1

Fλ(u,Ai) + ε ,

whence

Fλ(u,A) ≤
∞
∨

i=1

F (u,Ai) + ε

for every ε > 0. Together with (19) this implies condition (18) ii).

The lower semicontinuity (17) follows from the fact that, by Proposition 2.6, the func-
tionals Fλ are λ-Lipschitz continuous, that is

Fλ(u,B) ≤ Fλ(v,B) + λ‖u− v‖L∞
n (B) for every u, v ∈ L∞

n , B ∈ F . (20)

Step 3. For every λ > 0 and u ∈ L∞
n the set function Fλ(u, ·) satisfies the assumptions of

Theorem 2.7, so that

Fλ(u,B) = µ - sup
{

hλ,u(x) : x ∈ B
}

for every B ∈ F (21)

for a suitable measurable function hλ,u.

More precisely, following the proof of Theorem 3.5 in [1], for every u ∈ L∞
n and for every

λ > 0, one may construct the measure

νλ,u(A) = inf

{

∞
∑

i=1

Fλ(u,Ai)µ(Ai) :
∞
⋃

i=1

Ai = A, Ai ∈ F

}

. (22)

This is showed in [1] to be a non-negative measure which is absolutely continuous with
respect to µ and so, for every λ > 0 and u ∈ L∞

n , there exists a measurable function
hλ,u : Ω → [0,+∞] such that

νλ,u(A) =

∫

A

hλ,udµ

and that (21) holds.

Step 4. Set for every λ > 0

fλ(x, s) = hλ,s(x) for every x ∈ Ω, s ∈ Rn .
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The function fλ(x, s) is non-negative, measurable with respect to x and λ-Lipschitz con-
tinuous with respect to s. Indeed, from (20) and (22) it follows that

νλ,s(A) ≤ νλ,t(A) + λ|t− s|µ(A) ,

so that
∫

A

fλ(x, s)dµ(x) ≤
∫

A

fλ(x, t)dµ(x) + λ

∫

A

|t− s|dµ

for every A ∈ F , which implies

fλ(x, s) ≤ fλ(x, t) + λ|t− s|

for µ - a.e. x ∈ Ω and for every s, t ∈ Rn.

Now we shall prove that

Fλ(u,B) = µ - sup
{

fλ
(

x, u(x)
)

: x ∈ B
}

(23)

for every B ∈ F and for every u ∈ L∞
n . If u is a simple function, that is

u =
N
∑

i=1

ci1Bi
with Bi ∈ F ,

N
⋃

i=1

Bi = Ω, Bi ∩Bj = ∅, ci ∈ Rn ,

then using the conditions (15) and (16) satisfied by Fλ we obtain for every B ∈ F

Fλ(u,B) = Fλ

(

u,
N
⋃

i=1

(B ∩Bi)
)

=
N
∨

i=1

Fλ

(
N
∑

i=1

ci1Bi
, B ∩Bi

)

=
N
∨

i=1

Fλ(ci, B ∩Bi) =
N
∨

i=1

µ - sup
{

fλ(x, ci) : x ∈ B ∩Bi

}

=
N
∨

i=1

µ - sup
{

fλ
(

x, u(x)
)

: x ∈ B ∩Bi

}

= µ - sup
{

fλ
(

x, u(x)
)

: x ∈ B
}

.

If u ∈ L∞
n , there exists a sequence {uk}k∈N of simple functions such that ‖uk−u‖L∞

n
→ 0.

Using the λ-Lipschitz continuity of Fλ and of fλ(x, ·), we have

Fλ(u,B) = lim
k→∞

Fλ(uk, B)

= lim
k→∞

µ - sup
{

fλ
(

x, uk(x)
)

: x ∈ B
}

= µ - sup
{

fλ
(

x, u(x)
)

: x ∈ B
}

.

Step 5. Remark that if λ ≤ ν then fλ(x, s) ≤ fν(x, s) for µ - a.e. x ∈ Ω and for every
s ∈ Rn.

Therefore, if we define

f(x, s) = sup
{

fλ(x, s) : λ > 0
}

,
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the function f turns out to be F ⊗ Bn-measurable and lower semicontinous on Rn, and
so f is a normal supremand. By Proposition 2.5 and (23), we finally obtain

F (u,B) = sup
{

Fλ(u,B) : λ > 0
}

= sup
{

f
(

x, u(x)
)

: x ∈ B
}

for every B ∈ F , which concludes the proof of the existence of a normal supremand f for
which (14) holds. The uniqueness of f easily follows from Corollary 2.4.

Remark 3.3. A careful inspection of the proofs of the results above shows that the
euclidean space Rn can be replaced by any separable metric space (X, d). Indeed, in this
case we still have that the class of measurable functions defined on Ω and with countable
values in X is dense in L∞

µ (Ω;X). Moreover, it is easy to see that all arguments still hold
if instead of L∞

µ (Ω;X) we consider the larger space L0
µ(Ω;X) of all measurable functions

from Ω into X, endowed with the uniform convergence

uk → u uniformly in L0
µ(Ω;X) ⇐⇒ µ - sup

{

d
(

uk(x), u(x)
)

: x ∈ Ω
}

→ 0.

Now we show by a counterexample that the representation result of Theorem 3.2 may fail
if we drop the lower semicontinuity assumption (17). The example is similar to the one
constructed in [5] for the case of functionals defined on Lp (see also [4], Section 2.5).

We consider Ω =]0, 1[, F the σ-field of Lebesgue measurable subsets of Ω and µ the
Lebesgue measure. We shall give an example of a functional F : L∞ × F → [0, 1] with
the following properties:

(i) F satisfies the locality condition (15);

(ii) F satisfies the supremality condition (16);

(iii) for every B ∈ F with µ(B) > 0 and u ∈ L∞ we have F (0, B) = 0 and F (u,B) ≥ 0;

(iv) F does not admit any supremal representation, that is, for every supremand f there
exist u ∈ L∞ and B ∈ F such that

F (u,B) 6= µ - sup
{

f
(

x, u(x)
)

: x ∈ B
}

.

For every u ∈ L∞, let Tu : Ω → [0, 1] be defined by

Tu(x) =

{

1 if µ
(

{y ∈ Ω: u(y) = u(x)}
)

= 0

0 otherwise,

and let F : L∞ ×F → [0, 1] be the functional defined by

F (u,B) = µ - sup
{

T
(

u(x)
)

: x ∈ B
}

.

Theorem 3.4. The functional F verifies the properties (i), (ii), (iii), (iv) listed above.

Proof. Using Theorem 3.1 of [5], we know that T is locally defined. Moreover, if |B| = 0,
then F (u,B) = −∞ for every u ∈ L∞, thus property (i) is satisfied. Properties (ii), (iii)
are very easy. Let us prove property (iv); we argue by contradiction: suppose that there
exists a supremand f such that

F (u,B) = µ - sup
{

f
(

x, u(x)
)

: x ∈ B
}

for every u ∈ L∞ and B ∈ F . Following step by step the proof of Theorem 3.1 in [5], we
obtain that F (s, B) = 1 for every B ∈ F . But, by definition of F , it is F (s, B) = 0 for
every B ∈ F , which gives the contradiction.
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Remark 3.5. It is easy to verify that the functional F above is not semicontinuous with
respect to the strong topology of L∞. In fact, for example, we may consider u(x) = x on
]0, 1[ and a sequence {uk} of simple functions that converges uniformly to u. For every
simple function

v =
N
∑

i=1

ci1Bi
with Bi ∈ F ,

N
⋃

i=1

Bi = Ω, Bi ∩Bj = ∅, ci ∈ R ,

and using (i), (ii), (iii) we obtain

F (v,Ω) =
N
∨

i=1

F (v,Bi) =
N
∨

i=1

F (ci1Bi
, Bi) =

N
∨

i=1

F (ci, Bi) = 0 ,

so F (uk,Ω) = 0 for every k ∈ N, while F (u,Ω) = 1.

4. The weak* l.s.c. case

In this section we consider mappings F : L∞
n × F → R satisfying (15), (16) and the

following condition:

(weak* lower semicontinuity) for every B ∈ F the mapping F (·, B) is weakly* (24)

lower semicontinuous in L∞
n (B).

Assumption (24) is obviously stronger than (17) and so, by Theorem 3.2, such mappings
F can actually be written as supremal functionals

F (u,B) = µ - sup
{

f
(

x, u(x)
)

: x ∈ B
}

(25)

for a suitable normal supremand f .

Theorem 4.1. Let F : L∞
n × F → R be a mapping which satisfies assumptions (15),

(16), (24), and let µ be a nonatomic measure. Then there exists a level convex normal
supremand f such that the representation formula (25) holds.

In order to prove Theorem 4.1, we state the following result (see Lemma 2.9 in [5]):

Proposition 4.2. Let (Ω,F , µ) be a measure space, where µ is a non-negative, σ-finite,
non atomic measure. Then, for every λ ∈]0, 1[ there exists a net (1Ai

)i∈I with Ai ∈ F ,
converging to the constant function λ in the weak* topology of L∞.

Remark 4.3. If L1(Ω;µ) is separable, which happens when the σ-algebra F is generated
by a countable family {En}n∈N, then Proposition 4.2 holds with a sequence instead of a
net. As a consequence, in this case Theorem 4.1 still holds if we assume, instead of (24),
the weaker condition

(sequential weak* lower semicontinuity) for every B ∈ F the mapping F (·, B) is (26)

sequentially weakly* lower semicontinuous in L∞
n (B).
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Proof of Theorem 4.1. Let u, v ∈ L∞
n and let λ ∈ (0, 1). Then we have

F (λu+ (1− λ)v,Ω) ≤ F (u,Ω) ∨ F (v,Ω) . (27)

In fact, by Proposition 4.2, there exists a net (Ai)i∈I of elements of F such that the net
(u1Ai

)i∈I converges to λu and (v1Ω\Ai
)i∈I converges to (1− λ)v in the weak* topology of

L∞
n (Ω). Now, for every x ∈ Ω and S ∈ R2n, S = (s1, s2), we define

hλ(x, S) = f(x, λs1 + (1− λ)s2)

g(x, S) = f(x, s1) ∨ f(x, s2) .

Inequality (27) and Proposition 2.3 imply that there exists a µ - negligibile set Nλ ∈ F
such that

hλ(x, S) ≤ g(x, S) ∀x ∈ Ω \Nλ, ∀S ∈ R2n .

Therefore, if N =
⋃{

Nλ : λ ∈ Q∩]0, 1[
}

, we obtain

f(x, λs1 + (1− λ)s2) ≤ f(x, s1) ∨ f(x, s2) ∀x ∈ Ω \N, ∀S ∈ R2n, ∀λ ∈ Q∩]0, 1[ .

By Theorem 15, f(x, ·) is lower semicontinuous on Rn for µ - a.e. x ∈ Ω and so

f(x, λs1 + (1− λ)s2) ≤ f(x, s1) ∨ f(x, s2)

for every S = (s1, s2) ∈ R2n, for every λ ∈]0, 1[ and for every x ∈ Ω \ N . This implies
that for every t ∈ R the level set

{

s ∈ Rn : f(x, s) ≤ t
}

is convex. ut

Remark 4.4. If f is a level convex normal supremand and F (u,B) is a functional of the
form (25), then F satisfies the lower semicontinuity condition (24). Indeed it is sufficient
to prove that for every c ∈ R the set

Kc =
{

u ∈ L∞
n (B) : F (u,B) ≤ c

}

is closed in the weak* topology of L∞
n (B). Now, a function u belongs to Kc if and only if

f
(

x, u(x)
)

≤ c for µ - a.e. x ∈ B, which turns out to be equivalent to u(x) ∈ E(x, c) for
µ - a.e. x ∈ B, being E(x, c) =

{

s ∈ Rn : f(x, s) ≤ c
}

. Since f is a level convex normal
supremand the sets E(x, c) are closed and convex for µ - a.e. x ∈ B. Then the function

φ(x, z) = χE(x,c)(z) =

{

0 if z ∈ E(x, c)

+∞ otherwise

is F ⊗ Bn-measurable and φ(x, ·) is convex and lower semicontinuous for µ - a.e. x ∈ B.
Then the functional

G(u) =

∫

B

φ
(

x, u(x)
)

dµ =

{

0 if u ∈ Kc

+∞ otherwise

turns out to be weakly* lower semicontinuous in L∞
n (B) (see for instance Theorem 2.3.1

of [4]), which gives the weak* closedness of Kc.
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Remark 4.5. If the measure µ has some atoms, even though the functional F satisfies
(15), (16) and (24), but the normal supremand f is not necessarily a level convex function.
For example, take Ω = R, µ = δ0 and

F (u,B) = δ0 - sup
{

f
(

x, u(x)
)

: x ∈ B
}

=

{

f
(

u(0)
)

if 0 ∈ B

0 otherwise.

Then a sequence {un}n∈N converges to u in the weak* topology of L∞
n (δ0) if and only if

un(0) converges to u(0). It is now sufficient that the supremand f is lower semicontinuous
to obtain the weak* lower semicontinuity of the functional F .
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