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In this paper we study, in a unified way, some alternative theorems that involve linear and sublinear
functions between finite dimensional spaces and a convex set, and we propose several generalizations of
them. These theorems are applied to obtain, under different constraint qualifications, several necessary
conditions for a point to be Pareto optimum, both Fritz John and Kuhn-Tucker type, in multiobjective
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types of constraints: inequality, equality and set constraints. In particular, these necessary conditions
are applicable to convex programs and to differentiable programs.
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1. Introduction

Alternative theorems are indispensable tools in mathematical programming since they
allow the transformation of inequality systems, of a difficult direct approach, into equality
systems.

The first alternative theorems come from the beginning of the century and from then
numerous generalizations have been proposed until today. For example, see Mangasarian
[10] for a study of the classic theorems. These deal with a finite number of linear functions
from Rn to R, and from there, the generalizations have included a finite or infinite number
of convex or with some type of generalized convexity functions and even multifunctions
and increasingly abstract spaces. See Jeyakumar [7] for a review.

These theorems are used in the optimization theory to obtain necessary conditions, in
terms of Lagrange multipliers (dual form), so that a point will be an optimum for a
mathematical programming problem. Usually a necessary condition expressed through
the incompatibility of a system of equations and inequations, formed with the directional
derivatives of the functions involved in the problem (primal form), is transformed by an
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alternative theorem in the checking of the existence of some multipliers, or what is the
same, in the checking of the compatibility of a system of equations, whose verification is
usually much more simple. Hence the great relevance of these theorems.

In this work the results obtained are not directly applied to the functions of the problem,
but to their directional derivatives, that is why, in the systems considered, the inequalities
are given by sublinear (positively homogeneous and convex) functions and the equalities,
by linear functions.

After introducing the notations in Section 2, we study, in Section 3, various generalizations
of some of the classic alternative theorems, working with linear or sublinear functions in
spaces of finite dimension and substituting the gradient by the subdifferential of the
Convex Analysis. The emphasis has been put in a unified treatment of the different
situations, including a convex set constraint and giving a differentiated treatment to the
equality constraints, which could be treated as two inequalities in some occasions, but in
others we obtain advantages from specific treatment, otherwise we would obtain trivial
or inapplicable results. The equality constraints considered are given by linear functions,
sufficient in many cases, since they are referred to derivatives in the applications.

Finally, in Section 4, the obtained alternative theorems are applied to the demonstration of
different necessary optimality conditions for multiobjective programs (in finite dimension)
with directionally differentiable functions (not necessarily differentiable neither convex).
This permits us to generalize, for example, the results of Singh [16] and of Giorgi and
Guerraggio [3], that deal with differentiable functions, and also several results on convex
programs, in particular those of Kanniappan [8] and Islam [6].

2. Notations

Let x and y be two points of Rn. Throughout this paper, we shall use the following
notations.

x ≤ y if xi ≤ yi, i = 1, . . . , n; x < y if xi < yi, i = 1, . . . , n.

Let S be a subset of Rn, as usual, clS, intS, riS, coS, affS, coneS, linS, will denote
the closure, interior, relative interior, convex hull, affine hull, generated cone and linear
span by S, respectively. B(x0, δ) is the open ball centered at x0 and radius δ > 0.

Given a point x0 ∈ S and a function f : Rn → Rp, the following multiobjective optimiza-
tion problem is considered

Min{f(x) : x ∈ S}.
It is said that x0 is to be a weak Pareto minimum if there exists no x ∈ S such that f(x) <
f(x0). The point x0 is to be a local weak Pareto minimum, written x0 ∈ LWMin(f, S),
if the previous condition is verified on S ∩ B(x0, δ), for some δ > 0. The usual notion of
Pareto minimum is also used, will be denoted Min(f, S).

The following cones (Definition 2.1) and directional derivatives (Definition 2.2) are con-
sidered.

Definition 2.1. Let S ⊂ Rn, x0 ∈ clS,

(a) The tangent cone (or contingent cone) to S at x0 is
T (S, x0) = {v ∈ Rn : ∃tk > 0, ∃xk ∈ S, xk → x0 such that tk(xk − x0) → v}.
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(b) The cone of linear directions (or radial tangent cone) is
Z(S, x0) = {v ∈ Rn : ∃δ > 0 such that x0 + tv ∈ S ∀t ∈ (0, δ]}.

(c) The cone of sequential linear directions (or sequential radial tangent cone, Penot
[12, Definition 2.3]) is
Zs(S, x0) = {v ∈ Rn : ∃tk → 0+ such that x0 + tkv ∈ S ∀k ∈ N}.

We have that Z(S, x0) ⊂ Zs(S, x0) ⊂ T (S, x0).

Let D ⊂ Rn, the polar cone to D is D∗ = {v ∈ Rn : 〈v, d〉 ≤ 0 ∀d ∈ D} and the strict
polar cone is Ds− = {v ∈ Rn : 〈v, d〉 < 0 ∀d ∈ D, d 6= 0}. If D is a subspace, then
D∗ = D⊥, orthogonal subspace to D. The normal cone to S at x0 is the polar of tangent
cone: N(S, x0) = T (S, x0)

∗. If S is a convex set, one has that N(S, x0) = (S − x0)
∗.

Definition 2.2. Let f : Rn → Rp, x0, v ∈ Rn.

(a) The Dini derivative (or directional derivative) of f at x0 in the direction v is
Df(x0, v) = lim

t→0+
[f(x0 + tv)− f(x0)]/t.

(b) The Hadamard derivative of f at x0 in the direction v is
df(x0, v) = lim

(t,u)→(0+,v)
[f(x0 + tu)− f(x0)]/t.

(c) f is Dini differentiable or directionally differentiable (resp. Hadamard differentiable)
at x0 if its Dini derivative (resp. Hadamard derivative) exists in all directions.

The following properties hold:

– If f is Fréchet differentiable at x0, with Fréchet derivative ∇f(x0), then df(x0, v) =
∇f(x0)v.

– If df(x0, v) exists, then also Df(x0, v) exists and they are equal.

– Df(x0, v) (resp. df(x0, v)) is the vector of components Dfi(x0, v) (resp. dfi(x0, v)),
i = 1, . . . , p.

Let f : Rn → R be a Dini differentiable function at x0. The concept of subdifferential is
well known (see Penot [12]).

Definition 2.3. The Dini subdifferential of f at x0 is

∂Df(x0) = {ξ ∈ Rn : 〈ξ, v〉 ≤ Df(x0, v) ∀v ∈ Rn}.

If Df(x0, v) is a convex function in v, then its subdifferential (in the Convex Analysis
sense) at v = 0 exists, and it is denoted ∂Df(x0, ·)(0). This is a nonempty, compact and
convex set of Rn and the following asserts are true:

∂Df(x0) = ∂Df(x0, ·)(0),

Df(x0, v) = Max{〈ξ, v〉 : ξ ∈ ∂Df(x0)}.

If Df(x0, v) is not convex, then ∂Df(x0) can be empty.

A function f whose Dini derivative Df(x0, ·) is convex was called by Pshenichnyi qua-
sidifferentiable at x0. This concept was later extended by Demyanov (see Demyanov and
Rubinov [2]).
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3. Alternative Theorems

In this section, several generalizations of some alternative theorems are demonstrated. In
particular, we extend the classic theorems of Gordan and Motzkin [10] and the results of
Robinson [14, Theorem 3], and Ishizuka and Shimizu [5, Lemma 2]. In the first place, the
case of equalities is considered and, then, we work with both equalities and inequalities.
The proof of the following Lemma 3.1 is omitted because it is very simple.

Lemma 3.1. Let B be a nonempty set and C a cone of Rn with 0 ∈ C. Then

0 /∈ B + C ⇔ (−B) ∩ C = ∅ ⇔ 0 /∈ B and (− coneB) ∩ C = {0}.

Lemma 3.2. Let Q ⊂ Rn be a convex set with 0 ∈ Q and h : Rn → Rr linear with
component functions hk, k ∈ K = {1, . . . , r} given by hk(u) = 〈ck, u〉. Suppose the affine
hull of Q is given by affQ = {x ∈ Rn : 〈dj, x〉 = 0, j = 1, . . . , l}, being d1, . . . , dl linearly
independent. Consider the following propositions:

(h1) 0 ∈
∑r

k=1 νkck +N(Q, 0), ν ∈ Rr ⇒ ν = 0.

(h2)
∑r

k=1 νkhk(u) ≥ 0 ∀u ∈ Q, ν ∈ Rr ⇒ ν = 0.

(h3) (h3.1) c1, . . . , cr, d1, . . . , dl are linearly independent and (h3.2) Kerh ∩ riQ 6= ∅.
(h4) (h4.1) c1, . . . , cr are linearly independent and (h4.2) lin{ck : k ∈ K} ∩ N(Q, 0) =

{0}.
(h5) 0 ∈ inth(Q).

(h6) Kerh ∩ riQ 6= ∅.
(h7) 0 ∈ rih(Q).

(h8) lin{ck : k ∈ K} ∩ (riQ)s− = ∅.
Then

(i) (h6) to (h8) are equivalent.

(ii) (h1) to (h5) are equivalent.

(iii) Each proposition (h1) to (h5) implies (h6), (h7) and (h8).

(iv) If inth(Q) 6= ∅ then
1) (h4.1) holds.
2) (h1) to (h8) are equivalent.

Proof. (i) (h7)⇒ (h8). Suppose that (h8) is false and take µ ∈ lin{ck : k ∈ K}∩(riQ)s−.
Then µ =

∑r
k=1 νkck and 〈

∑r
k=1 νkck, q〉 < 0 ∀q ∈ riQ \ {0}.

Let ϕ : Rr → R be the linear application defined by ϕ(y) = 〈ν, y〉 and ψ = ϕ ◦ h, which
is given by ψ(x) = 〈µ, x〉. One has

ψ(q) < 0 ∀q ∈ riQ \ {0}. (1)

By convexity of Q, Q ⊂ cl riQ, and by the continuity of ψ, ψ(q) ≤ 0 ∀q ∈ Q. Thus
ϕ(y) ≤ 0 ∀y ∈ h(Q). Therefore, y = 0 is a maximum of the convex function ϕ on the
convex h(Q). By hypothesis, 0 ∈ rih(Q). But if a convex function reaches its maximum
at a relative interior point of its domain, then the function is constant (Rockafellar [15,
Theorem 32.1]). It follows that ϕ(y) = 0 ∀y ∈ h(Q), that is, ϕ(h(q)) = 0 ∀q ∈ Q, which
contradicts (1).
(h6) ⇔ (h7). It is clear if we take into account that rih(Q) = h(riQ) [15, Theorem 6.6].
Not (h6) ⇒ Not (h8). As Kerh ∩ riQ = ∅ and Kerh is a convex cone, using Theorems
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11.3 and 11.7 in [15], Kerh and Q are separated properly by a hyperplane M through the
origin. That is, there exists µ ∈ Rn, µ 6= 0 such that M = Ker〈µ, ·〉 and

〈µ, q〉 ≤ 0 ≤ 〈µ, x〉 ∀q ∈ Q, ∀x ∈ Kerh.

Hence µ ∈ −(Kerh)∗ = (Kerh)⊥ = lin{ck : k ∈ K}. It follows that Kerh ⊂ M , and as
M separates properly to Q and Kerh, there exists q0 ∈ Q such that 〈µ, q0〉 < 0. As a
matter of fact

〈µ, q〉 < 0 ∀q ∈ riQ, (2)

because if for some q1 ∈ riQ, 〈µ, q1〉 = 0, then the convex function 〈µ, ·〉 has a maximum
on Q at q1 and, therefore, it is constant on Q, this is 〈µ, q〉 = 0 ∀q ∈ Q, which contradicts
that M separates properly.
Accordingly, from (2), µ ∈ lin{ck : k ∈ K} ∩ (riQ)s−.
(ii) (h1) ⇔ (h2). This is obvious.
(h1) ⇒ (h4). Let us prove the linear independence, since the second part is obvious. Let
∑r

k=1 νkck = 0. Taking d = 0 ∈ N(Q, 0) one has
∑r

k=1 νkck + d = 0. By (h1), ν = 0.
(h4) ⇒ (h3). Let us observe in the first place that (h4.2) ⇒ (h8) because (riQ)s− ⊂
Q∗ \ {0}. Now, by (i), (h8) ⇔ (h6)=(h3.2). We have to prove (h3.1).
Let

∑r
k=1 νkck +

∑l
j=1 αjdj = 0. As Q ⊂ affQ = (lin{d1, . . . , dl})⊥ results that

N(affQ, 0) = (affQ)⊥ = lin{d1, . . . , dl} ⊂ N(Q, 0).

Hence, d =
∑l

j=1 αjdj = −
∑r

k=1 νkck ∈ lin{ck : k ∈ K} ∩ N(Q, 0); by (h4.2), d = 0.
Since the vectors dj are linearly independent, α = 0, and by (h4.1), ν = 0.
(h3) ⇒ (h2). Suppose that the hypothesis of (h2) holds. Thus
〈µ, u〉 = 〈ν, h(u)〉 ≥ 0 ∀u ∈ Q, being µ =

∑r
k=1 νkck. Take q ∈ Kerh ∩ riQ. It is verified

that the concave function 〈µ, ·〉 has a minimum of value 0 on Q at q ∈ riQ. Hence it is
constant on Q, then 〈µ, u〉 = 0 ∀u ∈ Q and, therefore, 〈µ, u〉 = 0 ∀u ∈ affQ. Thereby
µ ∈ (affQ)⊥ = lin{d1, . . . , dl}. Consequently, µ =

∑l
j=1 αjdj =

∑r
k=1 νkck, taking into

account (h3.1), α = 0 and ν = 0.
The equivalence of (h2) with (h5) is proved in a similar way to the equivalence of (b) with
(e) in Theorem 3.9.
(iii) It is obvious since (h3.2)=(h6).
(iv) 1) inth(Q) 6= ∅ ⇒ (h4.1). In fact, the hypothesis implies that h(Rn) = Rr, that is, h
has rank r. The conclusion follows from observing that the vectors c1, . . . , cr are the rows
of the matrix of h in the canonical bases.
2) It is immediate since (h7) becomes (h5).

Lemma 3.3. If (h6), (h7) or (h8) is verified then lin{ck : k ∈ K}+N(Q, 0) is closed.

Proof. Since ri Kerh = Kerh, one has by hypothesis (h6), ri Kerh ∩ riQ 6= ∅. By
Corollary 23.8.1 in [15], it follows

N [Kerh ∩Q, 0] = N [Kerh, 0] +N(Q, 0) = lin{ck : k ∈ K}+N(Q, 0),

which is closed.



102 B. Jiménez, V. Novo / Alternative Theorems and Optimality Conditions

Let us observe that (h4.2) is a form more interesting than (h8), since (riQ)s−, which is,
in general, neither open nor closed, is substituted by N(Q, 0), which is closed.

Let us prove with an example that in (h8) of Lemma 3.2 (riQ)s− cannot be substituted,
in general, by Q∗ (Example 3.4(a)), either by Qs−, or by ri(Q∗) (Example 3.4(b)) and that
the converse of (iii) is false. Also it is easy to prove that (h4.1) is neither a necessary nor
sufficient condition so that (h6) to (h8) are verified.

Example 3.4.

(a) Let h : R3 → R2 given by h(x1, x2, x3) = (x1, x2) and Q = {x = (x1, x2, x3) ∈ R3 :
x1 = 0, x3 ≥ 0}. It is easy to prove the following results.
1. L = lin{ck : k ∈ K} = lin{(1, 0, 0), (0, 1, 0)} = {x : x3 = 0}, Kerh =

{x : x1 = 0, x2 = 0}.
2. h(Q) = {y = (y1, y2) ∈ R2 : y1 = 0}, riQ = {x : x1 = 0, x3 > 0},

Q∗ = N(Q, 0) = {x : x2 = 0, x3 ≤ 0}, ri(Q∗) = {x : x2 = 0, x3 < 0}, Qs− = ∅.
3. (h7) in Lemma 3.2 holds, and logically its equivalents (h6) and (h8). But,

(1, 0, 0) ∈ L ∩ Q∗ 6= {0}, this means that (h4.2) does not hold. Then, the
converse of (iii) is false. Let us observe that inth(Q) = ∅.

(b) We change the set Q. It will be now Q = {x : x1 = 0, x2 ≥ 0, x3 ≥ 0}. It is
proved without difficulty:
4. h(Q) = {y : y1 = 0, y2 ≥ 0}, riQ = {x : x1 = 0, x2 > 0, x3 > 0},

Q∗ = {x : x2 ≤ 0, x3 ≤ 0}, ri(Q∗) = Qs− = {x : x2 < 0, x3 < 0},
(riQ)s− = Q∗ \ {x : x2 = 0, x3 = 0}.

5. (h7) in Lemma 3.2 does not hold, neither does (h8), obviously. However, L ∩
Qs− = ∅ and L∩ri(Q∗) = ∅. Note that c1, c2 are linearly independent, therefore,
this is not a sufficient condition so that (h6) to (h8) are fulfilled.

(c) In part (a) we change h. Now h(x1, x2, x3) = (x1, x2, x1 + x2). 3 of part (a) holds
since the sets of 1 and 2 are all maintained except h(Q) which now is h(Q) = {y ∈
R3 : y1 = 0, y2 = y3} and one has that 0 ∈ rih(Q), that is, (h6), (h7) and (h8)
are fulfilled. The vectors c1 = (1, 0, 0), c2 = (0, 1, 0), c3 = (1, 1, 0) are linearly
dependent, hence, this is not a necessary condition so that (h6) to (h8) are fulfilled.

Notice that Theorem 21.2 of Rockafellar [15] is not applicable to the situation described
by Lemma 3.2 since there are no strict inequality constraints. Example 3.4(a) above shows
that the two incompatible alternatives of the aforesaid theorem would be verified if it were
applicable. In fact, the vector u = (0, 0, 1) ∈ riQ verifies the system h1(u) ≤ 0, h2(u) ≤ 0
and considering λ1 = 1, λ2 = 0 we have the inequality λ1h1(u) + λ2h2(u) ≥ 0 ∀u ∈ Q.

Theorem 3.5. Let f1, . . . , fp be sublinear functions from Rn to R with p ≥ 1, f =
(f1, . . . , fp), h : Rn → Rr linear given by h = (h1, . . . , hr) being hk(u) = 〈ck, u〉, k ∈ K =
{1, . . . , r}, and Q ⊂ Rn a convex set with 0 ∈ Q. Consider the following propositions:

(a) 0 ∈
∑p

i=1 λi∂fi(0) +
∑r

k=1 νkck +N(Q, 0), λ ≥ 0 implies λ = 0.

(b)
p

∑

i=1

λifi(u) +
r

∑

k=1

νkhk(u) ≥ 0 ∀u ∈ Q, λ ≥ 0 (3)

implies λ = 0.

(c) There exists v ∈ Rn such that f(v) < 0, h(v) = 0, v ∈ Q.
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(d) 0 /∈ co(∪p
i=1∂fi(0)) + lin{ck : k ∈ K}+N(Q, 0).

Then

(i) (a), (b) and (d) are equivalent.

(ii) (c) ⇒ (b).

(iii) If 0 ∈ rih(Q), then (b) ⇒ (c) and, consequently, the four are equivalent.

Proof. (b) ⇒ (a). Suppose that the hypothesis of (a) holds. Then there exist ai ∈ ∂fi(0)
and d ∈ N(Q, 0) such that

p
∑

i=1

λiai +
r

∑

k=1

νkck + d = 0. (4)

As fi(u) ≥ 〈ai, u〉 ∀u ∈ Rn and 0 ≥ 〈d, u〉 ∀u ∈ Q, it follows:
∑p

i=1 λifi(u) +
∑r

k=1 νkhk(u) ≥
∑p

i=1 λi〈ai, u〉+
∑r

k=1 νk〈ck, u〉+ 〈d, u〉 = 0 ∀u ∈ Q.
By (b), λ = 0.
(a) ⇒ (b). Suppose that (3) is verified. Then, u = 0 is a minimum of the convex function
ϕ =

∑p
i=1 λifi +

∑r
k=1 νkhk on Q. Hence,

0 ∈ ∂ϕ(0) +N(Q, 0) =
∑p

i=1 λi∂fi(0) +
∑r

k=1 νkck +N(Q, 0).

By (a), λ = 0.
Not (a) ⇔ Not (d). Suppose that (4) holds for some λ ≥ 0, λ 6= 0, ai ∈ ∂fi(0), d ∈
N(Q, 0). We can assume that

∑p
i=1 λi = 1, otherwise we just divide by

∑p
i=1 λi > 0.

Hence, (4) means that 0 ∈ co(∪p
i=1∂fi(0)) + lin{ck : k ∈ K} +N(Q, 0). The converse is

now obvious.
(c) ⇒ (b). Suppose that (3) holds for some λ 6= 0 and let v be a vector satisfying (c).
Then

∑p
i=1 λifi(v)+

∑r
k=1 νkhk(v) < 0 in contradiction with what is obtained in (3) taking

u = v. Hence λ = 0.
(iii) Suppose that (c) is not fulfilled. Using Lemma 3.2(i) on has Kerh ∩ riQ 6= ∅
and then we can apply [15, Theorem 21.2 ] to f , h and −h, resulting that there exist
(λ, α, β) ∈ Rp × Rr × Rr such that (λ, α, β) ≥ 0, λ 6= 0 and

∑p
i=1 λifi(u) +

∑r
k=1 αkhk(u)−

∑r
k=1 βkhk(u) ≥ 0 ∀u ∈ Q,

therefore, (b) is not verified taking νk = αk − βk.

The following proposition shows the connection with subsequent theorems. Corollary 3.7
simplifies this theorem when there are no linear constraints.

Proposition 3.6. In the hypotheses of Theorem 3.5, if (d) holds and Kerh ∩ riQ 6= ∅,
then

D := cone co(∪p
i=1∂fi(0)) + lin{ck : k ∈ K}+N(Q, 0) is closed.

Proof. By Lemma 3.1, proposition (d) is equivalent to

(e)

{

(e1) 0 /∈ co(∪p
i=1∂fi(0))

(e2) [− cone co(∪p
i=1∂fi(0))] ∩ [lin{ck : k ∈ K}+N(Q, 0)] = {0},
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but (e1), by [4, Proposition 1.4.7, Chap. 3], implies that cone co(∪p
i=1∂fi(0)) is closed and

by Lemma 3.3, lin{ck : k ∈ K} + N(Q, 0) is closed. Taking into account (e2), by [15,
Corollary 9.1.3], we deduce that D is closed.

Corollary 3.7. Let f1, . . . , fp be sublinear functions from Rn to R, f = (f1, . . . , fp) and
Q ⊂ Rn a convex set which contains to 0. The following propositions are equivalent:

(a) 0 ∈
∑p

i=1 λi∂fi(0) +N(Q, 0), λ ≥ 0 ⇒ λ = 0.

(b)
∑p

i=1 λifi(u) ≥ 0 ∀u ∈ Q, λ ≥ 0 ⇒ λ = 0.

(c) There exists v ∈ Rn such that f(v) < 0, v ∈ Q.

(d) 0 /∈ co(∪p
i=1∂fi(0)) +N(Q, 0).

If some of the conditions (a)-(d) with Q = Rn is satisfied, we will say that the sets
∂f1(0), . . . , ∂fp(0) are positively linearly independent.

This corollary is a generalization of the Gordan alternative theorem [10] since we obtain
it if Q = Rn and if ∂fi(0) = {ai}, this is, if fi(u) = 〈ai, u〉 is linear.
Remark 3.8. It can be seen in Theorem 3.5 (with Q = Rn, and thus, propositions (a)
to (d) are equivalent) a characterization of the compatibility of a system with infinite
equations through the compatibility of infinite systems with a finite number of equations.
In fact, proposition (c) is equivalent to
(c′) There exists a solution u ∈ Rn of the system

{

Maxai∈Ai
〈ai, u〉 < 0, i = 1, . . . , p

〈ck, u〉 = 0, k = 1, . . . , r
(5)

being Ai = ∂fi(0), since fi(u) = Max{〈ai, u〉 : ai ∈ Ai}.
Proposition (a) can be formulated as:
(a′) For every ai ∈ Ai, i = 1, . . . , p, there exist no (λ, ν) ∈ Rp × Rr, λ ≥ 0, λ 6= 0 such
that

∑p
i=1 λiai +

∑r
k=1 νkck = 0,

and, by the classic Motzkin alternative theorem, this is equivalent to
(a′′) For every ai ∈ Ai, i = 1, . . . , p, there exists a solution u ∈ Rn of the system

{

〈ai, u〉 < 0, i = 1, . . . , p
〈ck, u〉 = 0, k = 1, . . . , r.

(6)

(c′) expresses that a system of infinite equations has a solution and it is equivalent to
(a′′), that expresses that the infinite finite systems of type (6) have a solution.

If in the equivalence (c′) ⇔ (a′′) the equality constraints are removed, we obtain Theorem
2.1 in Wang, Dong and Liu [18].

Note that every solution u of (5) it is also of (6), but not inversely. The solutions of (6)
depend on the election on a1, . . . , ap.

The results obtained in Lemma 3.2 and Theorem 3.5 are combined in the following theo-
rem.
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Theorem 3.9. In the hypotheses of Theorem 3.5, assume that the affine hull to Q is
affQ = {x ∈ Rn : 〈dj, x〉 = 0, j = 1, . . . , l}, being d1, . . . , dl linearly independent. The
following propositions are equivalent:

(a) 0 ∈
∑p

i=1 λi∂fi(0) +
∑r

k=1 νkck +N(Q, 0), λ ≥ 0 ⇒ λ = 0, ν = 0.

(b)
∑p

i=1 λifi(u) +
∑r

k=1 νkhk(u) ≥ 0 ∀u ∈ Q, λ ≥ 0 ⇒ λ = 0, ν = 0.

(c) (c1) c1, . . . , cr, d1, . . . , dl are linearly independent and (c2) there exists v ∈ Rn such
that

f(v) < 0, h(v) = 0, v ∈ riQ.

(d) (d1) c1, . . . , cr are linearly independent, (d2) lin{ck : k ∈ K} ∩N(Q, 0) = {0} and
(d3) 0 /∈ co(∪p

i=1∂fi(0)) + lin{ck : k ∈ K}+N(Q, 0).

(e) 0 ∈ int[(f × h)(Q) + Rp
+ × {0r}].

(f ) (f × h)(coneQ) + Rp
+ × {0r} = Rp × Rr.

For the demonstration of this theorem we need the following lemma.

Lemma 3.10.

(c2) ⇔
{

(c′) there exists w ∈ Rn such that h(w) = 0, w ∈ riQ
(c′′) there exists v ∈ Rn such that f(v) < 0, h(v) = 0, v ∈ Q.

Proof. It is clear that (c2) ⇒ (c′) and (c′′). For the other implication let w and v be
vectors satisfying (c′) and (c′′), respectively, and vλ = λv + (1 − λ)w. By linearity of h,
h(vλ) = 0, and by [4, Lemma 2.1.6, Chap. 2], we deduce that vλ ∈ riQ ∀λ ∈ [0, 1). As
lim
λ→1−

vλ = v, by the continuity of f , f(vλ) < 0 for λ near enough 1 and, consequently, all

these vectors vλ verify (c2).

Proof of Theorem 3.9. One has, obviously, the following equivalences: (a) ⇔ (h1) and
(3.5a), (b) ⇔ (h2) and (3.5b) and (d) ⇔ (h4) and (3.5d), where (h1) denotes the same
proposition of Lemma 3.2, (3.5a) denotes proposition (a) of Theorem 3.5, etc. By Lemma
3.2(ii) and Theorem 3.5(i), it follows the equivalence of (a), (b) and (d).
By Lemma 3.10 one has that (c2) ⇔ (h3.2) and (3.5c), and as (c1)=(h3.1) it follows

(c) = (c1) and (c2) ⇔ (h3.1) and (h3.2) and (3.5c).

By Theorem 3.5(ii), (3.5c) ⇒ (3.5a); by Lemma 3.2, (h3.1) and (h3.2) ⇔ (h1) and by
Theorem 3.5(iii), (h3.2) and (3.5a) ⇒ (3.5c). Hence, (h3.1) and (h3.2) and (3.5c) ⇔ (h1)
and (3.5a) ⇔ (a). Consequently, (c) ⇔ (a).
Let us prove that (b) ⇒ (e). Let

A = (f × h)(Q) + Rp
+ × {0r}

= {(x, y) ∈ Rp × Rr : ∃u ∈ Q such that f(u) ≤ x, h(u) = y}.

A is a non-empty convex set and verifies that intA 6= ∅. In fact, if intA = ∅, A is
contained in a hyperplane, that is, there exist (λ, ν) ∈ Rp × Rr \ {(0, 0)} such that A ⊂
Ker〈(λ, ν), (·, ·)〉. Therefore, 〈λ, f(u)〉+ 〈ν, h(u)〉 = 0 ∀u ∈ Q and, by (b), (λ, ν) = (0, 0),
which is a contradiction.
Let us prove that 0 ∈ intA. Otherwise, as 0 ∈ A, there exists a supporting hyperplane to
A at 0 and by a similar reasoning to the previous one it also results a contradiction.
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(e) ⇒ (b). Suppose that the hypothesis of (b) holds, this is that 〈λ, f(u)〉 + 〈ν, h(u)〉 ≥
0 ∀u ∈ Q. Then 〈λ, x〉+ 〈ν, y〉 ≥ 0 ∀(x, y) ∈ A. Hence, the concave function 〈(λ, ν), (·, ·)〉
has a minimum on the convex A at (0, 0) ∈ intA (from hypothesis). Therefore, this
function is constant on A, namely, 〈λ, x〉 + 〈ν, y〉 = 0 ∀(x, y) ∈ A. Since intA 6= ∅, it
follows that (λ, ν) = (0, 0).
Finally, (e) ⇔ (f). By [15, Corollary 6.4.1], condition (e) is equivalent to say that for all
u ∈ Rp ×Rr there exists t > 0 such that 0+ tu ∈ A, this means, coneA = Rp ×Rr. Now,
it is immediate that

coneA = cone[(f × h)(Q) + Rp
+ × {0r}] = (f × h)(coneQ) + Rp

+ × {0r},

with what one has the equivalence of (e) and (f).

If some of the six equivalent conditions of Theorem 3.9 with Q = Rn is verified, we
will say {∂Dfi(0) : i = 1, . . . , p} is posindependent of {c1, . . . , cr}, or, that f1, . . . , fp are
posindependent of h1, . . . , hr. This notion generalizes that of positive-linearly independent
vectors in Qi and Wei [13, Definition 2.1].

Theorem 3.10 extends Theorem 3 in Robinson [14] who supposes f linear and only con-
siders the propositions (b), (c) and (e).

Remark 3.11.

(1) Taking into account Lemmas 3.2 and 3.10, condition (c) can be expressed:
(c) 0 ∈ inth(Q) and there exists v ∈ Rn such that f(v) < 0, h(v) = 0, v ∈ Q.

(2) When f is linear, condition (e) becomes the so-called Robinson constraint qualifi-
cation [14], (f) becomes Zowe-Kurcyusz constraint qualification [19] and, if further-
more Q = Rn, (c) becomes the classic Mangasarian-Fromovitz constraint qualifica-
tion [11].

Finally we approach the Motzkin alternative theorem in the most general situation that
includes inequality constraints, both strict and not strict, equality constraints and convex
set constraint.

Theorem 3.12. Let f1, . . . , fp, g1, . . . , gm be sublinear functions from Rn to R with p ≥ 1
and m ≥ 0, f = (f1, . . . , fp), g = (g1, . . . , gm), h : Rn → Rr linear given by h =
(h1, . . . , hr), hk(u) = 〈ck, u〉, k ∈ K = {1, . . . , r}, and Q ⊂ Rn convex subset with 0 ∈ Q.
Consider the following propositions:

(a) 0 ∈
∑p

i=1 λi∂fi(0) +
∑m

j=1 µj∂gj(0) +
∑r

k=1 νkck +N(Q, 0), (λ, µ) ≥ 0 ⇒ λ = 0.

(b)
∑p

i=1 λifi(u) +
∑m

j=1 µjgj(u) +
∑r

k=1 νkhk(u) ≥ 0 ∀u ∈ Q, (λ, µ) ≥ 0 ⇒ λ = 0.

(c) There exists v ∈ Rn such that f(v) < 0, g(v) ≤ 0, h(v) = 0, v ∈ Q.

(d) 0 /∈ co(∪p
i=1∂fi(0)) + cone co(∪m

j=1∂gj(0)) + lin{ck : k ∈ K}+N(Q, 0).

Then

(i) (a), (b) and (d) are equivalent.

(ii) (c) ⇒ (b).

(iii) If the condition
(c′) there exists w ∈ Rn such that g(w) < 0, h(w) = 0, w ∈ riQ
holds, then (b) ⇒ (c) and, consequently, the four are equivalent.
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Proof. (i) and (ii) are proved in a similar way to (i) and (ii) of Theorem 3.5.
(iii) Suppose that (c) is not true. Then there exists no v ∈ Rn such that

f(v) < 0, g(v) < 0, h(v) = 0, v ∈ Q.

By Theorem 3.5(iii), (which is applicable since by (c′), Kerh ∩ riQ 6= ∅, and by Lemma
3.2(i), 0 ∈ rih(Q)), there exist (λ, µ, ν) ∈ Rp × Rm × Rr such that (λ, µ) ≥ 0, (λ, µ) 6= 0
and

p
∑

i=1

λifi(u) +
m
∑

j=1

µjgj(u) +
r

∑

k=1

νkhk(u) ≥ 0 ∀u ∈ Q. (7)

By (b), λ = 0. Let w be a vector verifying (c′), then
∑m

j=1 µjgj(w) +
∑r

k=1 νkhk(w) < 0,
in contradiction with which is obtained applying (7) to u = w (with λ = 0).

If in this theorem we take m = 0, we obtain Theorem 3.5.

In the next theorem it is proved that the implication (b) ⇒ (c) of Theorem 3.12 is also
verified with other different conditions to (iii) in the aforesaid theorem.

Theorem 3.13. In the hypotheses of Theorem 3.12, assume that some of the equivalent
conditions (a), (b), (d) of that theorem holds.
If D = cone co(∪m

j=1∂gj(0)) + lin{ck : k ∈ K} + N(Q, 0) is closed and coneQ is closed,
then (c) holds, so the four are equivalent.

Proof. Let C = co(∪p
i=1∂fi(0)). C is a non-empty compact convex set and D is a closed

convex cone. By assumption (d), 0 /∈ C +D, and by Lemma 3.1, C ∩ (−D) = ∅. By the
strong separation theorem, there exist v ∈ Rn \ {0} and α ∈ R such that

〈v, x〉 < α < 〈v, y〉 ∀x ∈ C, ∀y ∈ −D. (8)

Taking y = 0 ∈ −D it follows that α < 0. If for some y ∈ −D we have 〈v, y〉 < 0, then
lim

t→+∞
〈v, ty〉 = −∞ with ty ∈ −D and (8) does not hold. Hence, 〈v, y〉 ≥ 0 ∀y ∈ −D, or

rather, 〈v, y〉 ≤ 0 ∀y ∈ D. In particular:

1) ∀bj ∈ ∂gj(0) one has 〈v, bj〉 ≤ 0. As gj(v) = Max{〈bj, v〉 : bj ∈ ∂gj(0)}, it follows

gj(v) ≤ 0, for j = 1, . . . ,m. (9)

2) 〈v, ck〉 ≤ 0 and 〈v,−ck〉 ≤ 0, hence

〈v, ck〉 = 0 ∀k ∈ K. (10)

3) 〈v, d〉 ≤ 0 ∀d ∈ Q∗, therefore v ∈ Q∗∗ = cl coneQ and since coneQ is closed,

v ∈ coneQ. (11)

From (7), 〈v, x〉 < α < 0 ∀x ∈ C. In particular, ∀ai ∈ ∂fi(0) 〈v, ai〉 < 0. Thus,

fi(v) < 0, for i = 1, . . . , p. (12)

From (11) there exist t > 0, u ∈ Q such that v = tu (since v 6= 0) and substituting v by
tu in (9), (10) and (12), these equations are verified for u in the place of v, this means
that u is solution of system (c).
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According to Theorem 3.5 and Proposition 3.6 if 0 ∈ rih(Q) and there exists v ∈ Rn

such that g(v) < 0, h(v) = 0, v ∈ Q, then D is closed and, if furthermore coneQ is
closed, Theorem 3.13 can be applied, but in this case we get no advantage since Theorem
3.12(iii) is applicable (by Lemma 3.10) with slightly weaker hypotheses (it is not required
that coneQ be closed). Nevertheless, there are, obviously, cases in which Theorem 3.13
is applicable and Theorem 3.12 is not applicable as in Example 3.4(b) considering, for
example, f(x1, x2, x3) = −x3.

This theorem generalizes Lemma 2 in Ishizuka and Shimizu [5] which does not include
equality constraints or constraint set. This theorem also generalizes the classic Motzkin
alternative theorem, because if fi(u) = 〈ai, u〉 and gj(u) = 〈bj, u〉 are linear and Q = Rn,
then cone co{bj : j = 1, . . . ,m}+ lin{ck : k ∈ K} is closed.

4. Optimality conditions

In this section, as an application of the results of the previous section, we obtain both Fritz
John and Kuhn-Tucker type necessary optimality conditions for multiobjective optimiza-
tion problems. These problems are defined by Dini or Hadamard differentiable functions
with convex derivative in the direction, and they include three types of constraints: in-
equality, equality and set constraints. For this purpose, we need a constraint qualification
of extended Abadie type, if the objective function is Hadamard differentiable, or one of
extended Zangwill type, if only it is Dini differentiable. To obtain the Kuhn-Tucker type
conditions we need the addition of other regularity conditions. If there are no equality
constraints (Theorem 4.8) the extended qualifications (Abadie or Zangwill) are not nec-
essary. These results can be applied to study the differentiable programs and the convex
programs, so that the results of Singh [16] and of Giorgi and Guerraggio [3], for differ-
entiable programs, and those of Kanniappan [8], Islam [6] and Kouada [9], for convex
programs, are just particular cases.

Consider the following multiobjective optimization problem

(P) Min{f(x) : x ∈ S ∩Q},
where f : Rn → Rp, S = {x ∈ Rn : g(x) ≤ 0, h(x) = 0}, g : Rn → Rm, h : Rn → Rr and
Q is an arbitrary set of Rn.

Let fi, i ∈ I = {1, . . . , p}, gj, j ∈ J = {1, . . . ,m}, hk, k ∈ K = {1, . . . , r} be the
component functions of f , g and h, respectively. Given x0 ∈ S, the set of active indexes
at x0 is J0 = {j ∈ J : gj(x0) = 0}. The sets defined by the constraints g and h are
denoted, respectively, G = {x ∈ Rn : g(x) ≤ 0}, H = {x ∈ Rn : h(x) = 0}, accordingly,
S = G ∩H, and the set of points “betterÔ than x0 is F = {x ∈ Rn : f(x) ≤ f(x0)}.
Hereafter we will suppose that the involved functions are Dini differentiable at x0. We
will consider the following cones:

C0(G) = {v ∈ Rn : Dgj(x0, v) < 0 ∀j ∈ J0},
C(G) = {v ∈ Rn : Dgj(x0, v) ≤ 0 ∀j ∈ J0},
C0(S) = C0(G) ∩KerDh(x0, ·), C(S) = C(G) ∩KerDh(x0, ·),
C0(F ) = {v ∈ Rn : Dfi(x0, v) < 0 ∀i ∈ I},
C(F ) = {v ∈ Rn : Dfi(x0, v) ≤ 0 ∀i ∈ I}.

(C(S) is called the linearized cone). Let us point out that the active inequality constraints
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take part with “<Ô or “≤Ô, according to be C or C0 and those of equality, with “=Ô, and
that the point x0 is omitted to cut it short.

It is assumed that the functions gj, j ∈ J \ J0 are continuous at x0.

Theorem 4.1. Let x0 ∈ S∩Q be a feasible point of problem (P) and suppose the following:

(a) T (Q, x0) is convex.

(b) gj, j ∈ J0 are Dini differentiable at x0 with convex derivative at x0 and h is Dini
differentiable at x0 with linear derivative given by Dhk(x0, ·) = 〈ck, ·〉, k ∈ K.

(c) The extended Abadie constraint qualification (EACQ) is verified:
C(S) ∩ T (Q, x0) ⊂ T (S ∩Q, x0).

(d) x0 ∈ LWMin(f, S ∩Q).

(e) f is Hadamard differentiable at x0 with convex derivative at x0.

Then

(i) There exist (λ, µ, ν) ∈ Rp × Rm × Rr such that (λ, µ) ≥ 0, (λ, µ, ν) 6= 0 and

0 ∈
p

∑

i=1

λi∂Dfi(x0) +
m
∑

j=1

µj∂Dgj(x0) +
r

∑

k=1

νkck +N(Q, x0),

µjgj(x0) = 0, j = 1, . . . ,m.

(ii) If lin{ck : k ∈ K}+N(Q, x0) is closed, then (i) is satisfied with (λ, µ) 6= 0.

(iii) If

cone co(∪j∈J0∂Dgj(x0)) + lin{ck : k ∈ K}+N(Q, x0) is closed, (13)

then (i) is satisfied with λ 6= 0.

Proof. It is known that if the objective function is Hadamard differentiable and (d)
holds, then T (S ∩ Q, x0) ∩ C0(F ) = ∅. From here, by the extended Abadie constraint
qualification, it follows that there exists no v ∈ Rn such that















Dfi(x0, v) < 0 ∀i ∈ I
Dgj(x0, v) ≤ 0 ∀j ∈ J0
Dhk(x0, v) = 0 ∀k ∈ K
v ∈ T (Q, x0).

(14)

Therefore, we also find the incompatibility in v ∈ Rn of the systems

(a)















Dfi(x0, v) < 0 ∀i ∈ I
Dgj(x0, v) < 0 ∀j ∈ J0
Dhk(x0, v) = 0 ∀k ∈ K
v ∈ T (Q, x0)

(b)















Dfi(x0, v) < 0 ∀i ∈ I
Dgj(x0, v) < 0 ∀j ∈ J0
Dhk(x0, v) = 0 ∀k ∈ K
v ∈ riT (Q, x0).

(15)

By Theorem 3.9 applied to system (15)(b), part (i) is obtained (taking µj = 0, for j ∈
J \ J0, as usual).
Parts (ii) and (iii) are deduced, respectively, by Theorem 3.13 (with m = 0) applied to
system (15)(a) and by Theorem 3.13 applied to system (14).
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Part (iii) of this theorem generalizes Theorem 3.1 of Singh [16] (which is identical to
Theorem 2 of Wang [17]), valid for differentiable functions and without constraint set
(Q = Rn), and therefore ∂Dfi(x0) = {∇fi(x0)}, ∂Dgj(x0) = {∇gj(x0)}, ck = ∇hk(x0) and
condition (i) becomes the one used by Singh. Condition (13) is always satisfied, since

cone co(∪j∈J0∂Dgj(x0)) + lin{ck : k ∈ K}
= cone co{∇gj(x0) : j ∈ J0}+ lin{∇hk(x0) : k ∈ K}

is a polyhedral convex set and therefore, it is closed. Condition (c) in this case becomes
C(S) ⊂ T (S, x0), which is the constraint qualification used by Singh.

Remark 4.2.

(1) If

0 ∈ riDh(x0, ·)(T (Q, x0)), (16)

then (i) is satisfied with (λ, µ) 6= 0. This follows from Lemma 3.3 (applied to the
convex T (Q, x0)) and part (ii).

(2) If the constraint qualification

C0(S) ∩ riT (Q, x0) 6= ∅, (17)

is satisfied, then (13) holds by Theorem 3.5 and Proposition 3.6. Therefore, (13) is
more general than (17), but this is simpler to check.

(3) Notice that hypotheses of part (ii) can be false and (13) can be true though. There-
fore these criteria are of independent application. On the other hand, (17) implies
(16) by Lemma 3.2.

The following example shows that, in fact, there are situations in which part (iii) is
applicable but (17) is not.

Example 4.3. In R2, let x0 = (0, 0), f(x, y) = −2y, g1(x, y) = −2x and g2 the support
function of the set B = {(x, y) : (x− 2)2 + y2 ≤ 2, y ≥ 0}, that is to say

g2(x, y) =

{

2x+
√

2x2 + 2y2 if y ≥ 0

2x+
√
2x2 if y < 0.

Obviously Dg2(x0, v) = g2(v), ∂Dg2(x0) = B.
The feasible set is G = {(0, y) : y ≤ 0}. The point x0 is an (absolute) minimum of f on
G. We have: C0(G) = ∅ (hence, (17) is false), C(G) = G, T (G, x0) = G = C(G) and,
therefore, the Abadie constraint qualification holds at x0. Furthermore, condition (13)
holds, because

cone co(∪j∈J0∂Dgj(x0)) = cone co(B ∪ {(−2, 0)}) = {(x, y) : y ≥ 0} is closed.
Hence, Theorem 4.1(iii) is applicable. Concretely the conclusion is satisfied with (λ, µ1, µ2)
= (1, 1, 2) and the element b = (1, 1) ∈ B (there are infinite solutions).

When the constraint set Q is not present (or if Q is a closed convex set) and the functions
are continuously Fréchet differentiable, no regularity condition is required in obtaining the
usual Fritz John conditions. However, under the hypotheses of Theorem 4.1, the following
example shows that (EACQ) cannot be eliminated to obtain part (i).
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Example 4.4. Let h : R2 → R given by

h(x, y) =

{

−y2 if x = 0, y < 0
x+ x2 otherwise,

x0 = (0, 0) and f(x, y) = y. It is clear that x0 is a local minimum of f on H := h−1(0) =
{(0, y) : y ≥ 0} ∪ {(x, y) : x = −1}. However, the Fritz John conditions

λ∇f(x0) + ν∇h(x0) = (0, 0) with (λ, ν) 6= (0, 0), λ ≥ 0,

are not satisfied. Notice that (EACQ) is not verified: Ker∇h(x0) 6⊂ T (H, x0).

Similar conditions to (EACQ) are used by other authors. For example, Bender, who
considers Hadamard differentiable functions with linear derivative, uses the following [1,
Condition (3)]:

KerDh(x0, ·) ∩ T (Q, x0) ⊂ T (H ∩Q, x0). (18)

If the inequality constraints are not considered, (EACQ) becomes (18), but if they are
present, there is not implications between (EACQ) and (18). Thus, if we incorporate the
constraint g(x, y) = −y in the example 4.4, then (EACQ) holds but (18) is not verified.
On the other hand, if we consider h(x, y) = y, g(x, y) = −y−x3 and Q = {(x, y) : y ≥ 0}
then though (18) holds, (EACQ) is not true.

It is still possible to hold up the conclusions of Theorem 4.1 if f is only Dini differentiable.
In return, the constraint qualification must be more restrictive.

Theorem 4.5. Suppose that conditions (a), (b), (d) of Theorem 4.1 are verified and the
following ones:
(c) The extended Zangwill constraint qualification is satisfied:

clZs(S ∩Q, x0) = C(S) ∩ T (Q, x0).

(e) f is Dini differentiable at x0 with convex derivative.
Then the conclusions are the same (i)-(iii) that in Theorem 4.1.

Proof. It is known ([12, Proposition 4.1]) that if f is Dini differentiable and (d) is verified,
then

Zs(S ∩Q, x0) ∩ C0(F ) = ∅.

Therefore, clZs(S ∩ Q, x0) ∩ intC0(F ) = ∅. As Df(x0, ·) is continuous, C0(F ) is open,
hence, clZs(S ∩Q, x0) ∩ C0(F ) = ∅, and taking into account (c) we deduce that C(S) ∩
T (Q, x0) ∩ C0(F ) = ∅, this means that system (14) is incompatible. From here, it is
continued just as in the proof of Theorem 4.1.

Remark 4.6.

(1) Notice that if the extended Zangwill constraint qualification holds, also the extended
Abadie constraint qualification holds, since Zs(S ∩Q, x0) ⊂ T (S ∩Q, x0).

(2) In Theorems 4.1 and 4.4 can be used any convex subcone T1(Q) of T (Q, x0) instead of
the T (Q, x0) itself, in whose case the normal cone N(Q, x0) would be substituted by
the polar cone T1(Q)∗, condition (c) of Theorem 4.1 would be C(S)∩T1(Q) ⊂ T (S∩
Q, x0) and condition (c) of Theorem 4.5 would be C(S) ∩ T1(Q) ⊂ clZs(S ∩Q, x0).
Of course, the best results are obtained choosing the largest convex subcone.
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The following proposition provides us with a sufficient condition for the extended Zangwill
constraint qualification to hold.

Proposition 4.7. If Q is a convex set, gj, j ∈ J0 are Dini differentiable at x0 with
convex derivative, Zs(H, x0) = KerDh(x0, ·) and C0(S) ∩ ri cone(Q − x0) 6= ∅, then the
extended Zangwill constraint qualification holds.

Proof. For the set G, we have C0(G) ⊂ Z(G, x0) ⊂ C(G). Therefore,

C0(G) ∩KerDh(x0, ·) ⊂ Z(G, x0) ∩ Zs(H, x0) ⊂ Zs(G ∩H, x0) ⊂ C(G) ∩KerDh(x0, ·),

hence C0(S) ⊂ Zs(S, x0) ⊂ C(S), so

C0(S) ∩ cone(Q− x0) ⊂ Zs(S, x0) ∩ Z(Q, x0) ⊂ Zs(S ∩Q, x0) ⊂ C(S) ∩ T (Q, x0).

The conclusion follows by taking closure, since cl[C0(S)∩cone(Q−x0)] = C(S)∩T (Q, x0)
by [4, Proposition 2.1.10, Chap. 3].

In the following theorem, equality constraints are removed.

Theorem 4.8. Let x0 ∈ G ∩Q and suppose the following:

(a) T1(Q) is a convex subcone of T (Q, x0).

(b) x0 ∈ LWMin(f,G ∩Q).

Then

(i) If f and gj, j ∈ J0 are Hadamard differentiable at x0 with convex derivative, then
there exist (λ, µ) ∈ Rp × Rm, (λ, µ) 6= 0 such that

(λ, µ) ≥ 0,
0 ∈

∑p
i=1 λi∂Dfi(x0) +

∑m
j=1 µj∂Dgj(x0) + T1(Q)∗,

µjgj(x0) = 0, j = 1, . . . ,m.







(19)

(ii) If f and gj, j ∈ J0 are Dini differentiable at x0 with convex derivative and T1(Q) ⊂
Zs(Q, x0), then (19) holds with (λ, µ) 6= 0.

(iii) If, moreover,

C0(G) ∩ T1(Q) 6= ∅, (20)

then (19) holds with λ 6= 0.

Proof. (i) Since f is Hadamard differentiable and (b) holds, as it has been pointed out
in the proof of Theorem 4.1,

T (G ∩Q, x0) ∩ C0(F ) = ∅. (21)

Let us show that

C0(G) ∩ T (Q, x0) ⊂ T (G ∩Q, x0). (22)

In fact, if v ∈ C0(G) ∩ T (Q, x0), then there exist sequences xn ∈ Q, tn → 0+ such that
xn − x0

tn
= vn → v. As gj, j ∈ J0 are Hadamard differentiable, one has
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dgj(x0, v) = lim
n→∞

gj(x0 + tnvn)− gj(x0)

tn
= lim

n→∞

gj(xn)

tn
< 0, ∀j ∈ J0,

because v ∈ C0(G). Hence, for n large enough, gj(xn) < 0. For j ∈ J \ J0, by the
continuity of gj at x0, also it is gj(xn) < 0, for n large. Therefore, xn ∈ G ∩ Q and
consequently v ∈ T (G ∩Q, x0).
From (21), taking into account (22) and hypothesis (a), it follows that C0(G) ∩ T1(Q) ∩
C0(F ) = ∅, that is, there exists no v ∈ Rn such that

Df(x0, v) < 0, Dgj(x0, v) < 0 ∀j ∈ J0, v ∈ T1(Q).

By Corollary 3.7 one has the conclusion.
(ii) Since f is Dini differentiable and (c) holds, as has been pointed out in the proof of
Theorem 4.5,

Zs(G ∩Q, x0) ∩ C0(F ) = ∅. (23)

On the other hand, since C0(G) ⊂ Z(G, x0), we deduce that

C0(G) ∩ Zs(Q, x0) ⊂ Z(G, x0) ∩ Zs(Q, x0) ⊂ Zs(G ∩Q, x0). (24)

From (23), taking into account (24) and hypothesis of (ii), it follows that C0(G)∩T1(Q)∩
C0(F ) = ∅. From here we would continue as in part (i) above.
(iii) By reduction to the absurd, suppose that λ = 0. Then we have

0 ∈
∑

j∈J0 µj∂Dgj(x0) + T1(Q)∗, µ ≥ 0, µ 6= 0.

By Corollary 3.7, C0(G) ∩ T1(Q) = ∅, which contradicts (20).

Remark 4.9.

(1) If Q is a convex set, the sharpest results in Theorem 4.8 are obtained for T1(Q) =
cone(Q− x0), with what T1(Q)∗ = N(Q, x0) and (20) is equivalent to

C0(G) ∩ (Q− x0) 6= ∅.
(2) The condition obtained in (i) is Fritz John type. If we wish one of Kuhn-Tucker

type, a constraint qualification can be used, as for example C0(G)∩ T1(Q) 6= ∅, but
in this case, if T1(Q) ⊂ Zs(Q, x0), it is preferable to use (iii) which is less restrictive.

Part (i) generalizes Theorem 5 in Giorgi and Guerraggio [3] in which the functions f
and g are differentiable. Parts (i) and (ii) generalize Theorem 3.2 in Kanniappan [8] and
Theorem 3.1 in Islam [6] in which it is supposed that the functions f and g are convex
on Rn and Q is convex. In fact, if a function is convex, it is Dini differentiable with
convex derivative, and in addition, it is locally Lipschitz, with what it is also Hadamard
differentiable, and (i) and (ii) can be applied by taking T1(Q) = cone(Q−x0) (the results
of these authors are obtained since, for a convex real function ϕ, ∂Dϕ(x0) = ∂ϕ(x0)).

Theorems 3.4 and 3.2 of the same authors can be deduced from part (iii). These theorems
state: “If f and g are convex, Q is convex, x0 ∈ Min(f,G ∩Q) and the Slater constraint
qualification (SCQ) holds, that is, for each i = 1, . . . , p there exists xi such that fk(xi) <
fk(x0) ∀k 6= i, gj(xi) < 0 ∀j ∈ J, xi ∈ Q, then (19) holds with λ > 0.Ô In fact, let
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us observe in the first place that if ϕ : Rn → R is convex and ϕ(x) < ϕ(x0) for some
x, x0 ∈ Rn, then

Dϕ(x0, x− x0) < 0. (25)

By convexity,

ϕ(x0 + t(x− x0)) ≤ ϕ(x0) + t(ϕ(x)− ϕ(x0)) ∀t ∈ (0, 1).

Hence,
ϕ(x0 + t(x− x0))− ϕ(x0)

t
≤ ϕ(x) − ϕ(x0) < 0. Taking the limit when t → 0+,

(25) is obtained.
Therefore, applying (25), by (SCQ), for each i = 1, . . . , p there exists v = xi − x0 such
that

Dfk(x0, v) < 0 ∀k 6= i, Dgj(x0, v) < 0 ∀j ∈ J0, v ∈ Q− x0. (26)

Theorem 4.6(iii) (with T1(Q) = cone(Q−x0)) can be applied, since any Pareto minimum
is a weak local Pareto minimum, resulting (19) with λ 6= 0. If p = 1, one has λ > 0.
If p ≥ 2, suppose that some λi = 0 (with some λj 6= 0, since λ 6= 0). By Corollary 3.7
(applied to the p− 1 functions Dfk(x0, ·), k 6= i and to Dgj(x0, ·), j ∈ J0) there exists no
vector v satisfying system (26), in contradiction to the existence of the solution v = x−xi.
Therefore, λ > 0.

Notice that in (SCQ) it is sufficient to require the condition gj(xi) < 0 for every j ∈ J0
(instead of for all j ∈ J). Observe also that if the weak Slater constraint qualification
holds: there exists x ∈ Q such that gj(x) < 0 ∀j ∈ J0, then (19) holds with λ 6= 0.
Finally, notice that at the same time it has been proved that if (SCQ) holds, every Pareto
minimum is a solution for a scalarized problem, Min{〈λ, f(x)〉 : x ∈ G ∩Q}, with λ > 0
([9, Theorem 5]).

The next lemma provides us with a simple expression for the tangent cone to a set which
is intersection of two sets: the first convex and the second is defined by quasiconvex or
quasilinear functions. This expression will allow us to obtain an optimality criterion with
this type of functions. Let us recall these concepts previously.

Let Γ ⊂ Rn be a convex set, ϕ : Γ → R, x0 ∈ Γ. ϕ is quasiconvex at x0 on Γ if

∀x ∈ Γ, ϕ(x) ≤ ϕ(x0) ⇒ ϕ(λx+ (1− λ)x0) ≤ ϕ(x0) ∀λ ∈ (0, 1).

ϕ is quasilinear at x0 if ϕ and −ϕ are quasiconvex at x0.

Lemma 4.10. Suppose that Q ⊂ Rn is a convex set and gj, j ∈ J0 are quasiconvex at x0

on a neighborhood of x0 and h is quasilinear at x0 on a neighborhood of x0. Then

clZ(S ∩Q, x0) = T (S ∩Q, x0).

Proof. Let B(x0, δ) be a neighborhood of x0 on which gj, j ∈ J0 are quasiconvex at x0

and h is quasilinear. Hence, ∀x ∈ B(x0, δ) if gj(x) ≤ gj(x0), then

gj(λx+ (1− λ)x0) ≤ gj(x0) ∀λ ∈ [0, 1].

Therefore, if x ∈ G ∩ B(x0, δ) we derive gj(λx + (1 − λ)x0) ≤ 0 ∀λ ∈ [0, 1], ∀j ∈ J0.
If j ∈ J \ J0, by the continuity of gj, there exists a neighborhood B(x0, δ1) such that
gj(x) < 0 ∀x ∈ B(x0, δ1), ∀j ∈ J \ J0. Taking δ0 = Min{δ, δ1}, both conditions are
verified and, therefore [x0, x] ⊂ G ∀x ∈ G ∩ B0, being B0 = B(x0, δ0). Similarly, since
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h and −h are quasiconvex at x0, [x0, x] ⊂ H. Hence [x0, x] ⊂ S ∀x ∈ S ∩ B0. As Q is
convex, one has [x0, x] ⊂ S ∩Q ∀x ∈ S ∩Q ∩ B0. Hence, v = x− x0 ∈ Z(S ∩Q, x0). It
follows

cone(S ∩Q ∩B0 − x0) ⊂ Z(S ∩Q, x0) ⊂ T (S ∩Q, x0).

Now, T (S ∩Q, x0) = T (S ∩Q ∩B0, x0) ⊂ cl cone(S ∩Q ∩B0 − x0) ⊂ clZ(S ∩Q, x0).
In conclusion, by closedness of the tangent cone,

T (S ∩Q, x0) = clZ(S ∩Q, x0) = cl cone(S ∩Q ∩B0 − x0).

Theorem 4.11. In the hypotheses of Lemma 4.10. Suppose that conditions (b), (c) and
(d) of Theorem 4.1 are verified and that f is Dini differentiable at x0 with convex deriva-
tive. Then the conclusions are the same (i)-(iii) that in Theorem 4.1.

Proof. By Lemma 4.10, condition (c) becomes the extended Zangwill constraint qualifi-
cation, i.e., condition (c) of Theorem 4.5, and it is enough to apply this theorem.
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