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In this paper, we study norming functionals of absolute normalized norms on C". We also prove the
characterization of smoothness of absolute normalized norms on C".
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1. Introduction

A norm || - || on C™ is said to be absolute if
||(ZEO,I‘1, T 7In—1)|| = H (|I0|, |£C1|, T |xn—1|)||
for all (zg, 1, ,x,-1) € C", and normalized if
||(170>"' ’O)H = ||(O’170>"' ’O)H == ||(07 7071)|| = 1.
The ¢,-norms || - ||, are such examples:
(JzolP + |21 17 + - + 2 [P) 7 i1 < p < o0,
||(SL’0,Q?1,'~' 7xn*1)Hp: .
max{\x0|,|az’1\,~- ,]xn,ll} if p = o0.

Let AN, be the family of all absolute normalized norms on C". Bonsall and Dun-
can in [3] showed the following characterization of absolute normalized norms on C?
(cf. [6]). Namely, the set AN of all absolute normalized norms on C? is in one-to-one
correspondence with the set Wy of all (continuous) convex functions on [0, 1] satisfying
¥(0) = (1) =1 and max{1 — ¢,t} <(t) <1 for ¢t € [0,1]. The correspondence is given
by

() = (1= t,8)]| fort € [0,1]. 1)
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Indeed, for any ¢ € Wy, the norm || - ||, on C* defined as

(|x0] + ]x1|)w QL) , if (zo,21) # (0,0),

To| + |1
0, if (29, 21) = (0,0)

G0, 1) |y =

belongs to AN, and satisfies (1). From this result, we have a plenty of concrete absolute
normalized norms on C? which are not /,-type. Recently, Saito, Kato and Takahashi in
[7] generalized this result to C". Before stating it, we give some notations. For each n € N
with n > 2, we put

n—1
An: t17t27t37”'7tn71 ERnil:t‘Zoy tgl
J J

J=1

and define the set ¥, of all (continuous) convex functions on A, satisfying the following
conditions:

w<070770):w(17070770):w<07170770) (AO)
::¢(07a071):17
Y(ty, . te1) > (A1)
131 tn—1
ty 4+t e ,
(t 1)¢(t1+"'+tn—l t1+"'+tn—1>
ifty 4+ +to1 #0,
ty th_1 .
w(tla s 7tn71) 2 (1 - tl)w (071—7' Tty ) ) if tl 7é 17 (A2>
—t1 1—1t
W(t tnt) > (1= ta)i h s bt if £y # 1 (As)
ceiyln_1) =2 — , U, YT, y 1 )
1 ) 1 2 ]_—tg 1—t2 1—t2 2 3
1 tn—2 .
¢(t17--->tn71)2(1_tn71)w 1 s T aO ) 1ftn,—l?'él' (An)
_tnfl 1_tn71

Saito, Kato and Takahashi in [7] showed that, for each n € N with n > 2, AN,, and ¥,
are in one-to-one correspondence under the following equation:

SR (8 S| .

for (t1,--- ,t,—1) € A,. Indeed, for any ¢ € U,,, the norm || - ||, on C™ defined as

||($07:C17 U 7‘1'71*1)”11; =
‘.’L’l‘ |xﬂ*1’ )
zol 4+ -+ + |2p S )
(l 0| | 1|)¢(‘$0‘+"'+|$n—1’ ’$0‘+"'+‘$n—1‘
if (lL‘(),"' ,I'n—l) 7é (07 70)7
0 i (20, 1) = (0, ,0)
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belongs to AN,, and satisfies (2). For 1 < p < oo, the {,-norm || - ||, on C" is an absolute
normalized norm, and so the associated function %, is defined by

¢p(t17 t27 T 7tn—1) -

( n—1 p 1/p
((1—2@-) +t§’+~-+tﬁl> if 1 <p < oo,
j=1
n—1
max{l—th,tl,-~-,tn1} if p = oo.
\ J=1

In [7, 8], we proved that, if ¢ € ¥,,, then (C",|| - ||,) is strictly convex if and only if ¢ is
strictly convex on A,,.

Our main purpose of this paper is to give the necessary and sufficient condition of ¥ that
(C™, | - |l) is smooth. Namely, we shall show that the space (C", || - ||) is smooth if and
only if the associated convex function v satisfies that, for each t = (¢1,t9, -+ ,t,_1) € A,
the following equalities hold:

L ¢ (t;pj—t) =, (t;p; —t) for all j € I, with ¢; > 0;
2. Y (t;p; —t) = =(t) for all j € I,, with ¢; =0

(see the notations of ¢’ , /., p; and I, in Section 2). In Section 3 and Section 4, we
calculate all norming functionals of absolute normalized norms on C? and C", respectively.
In Section 5, we prove the characterization of smoothness of absolute normalized norms
on C™.

2. Preliminaries

Throughout of this paper, we denote by N, R and C the set of positive integers, real
numbers and complex numbers, respectively. Let X be a Banach space with norm || - ||
and let X* be the dual space of X. a € X* is said be a norming functional of x € X
with  # 0 if ||a|| = 1 and (a,z) = ||z|| (see [1]). We denote by D(X,z) the set of all
norming functionals of z. The Hahn-Banach theorem yields that, for every x € X with
x # 0, there exists at least one norming functional of 2. A Banach space X is said to be
smooth if for every x € X with x # 0, there exists a unique norming functional of . We
know that X is smooth if and only if || - || is Gateaux differentiable at any z € X \ {0},
that is,

ety ]
t—0 t

exists for every z,y € X with = # 0 (cf. [1]). Let f be a continuous convex function from
a convex subset C' of a real Banach space X into R. As in [4], we denote by df(x) the
subdifferential of f at z € C,

0f(x) = {a € X*: f(y) = f(x) + (a,y — z) for y € C}.

It is clear that 0f(z) is a closed convex subset of X*. We know 0f(z) # @ at every z GCO’,

where (7 is the set of interior points of C. In particular, if C' is the closed interval [0, 1] of
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R, then the following equation holds:

fr@®)], ifo<t<l,
(t),00), ift=1,

where f](t) is the left derivative of f at ¢ and fg(¢) is the right derivative of f at ¢,
respectively.
In this paper, we use the following notations. For n € N with n > 2, we put [, =
{0,1,2,--- ;n—1}. We also put

bo = (070707"' 70) € An

and

(4)
pj:(0707 707 i7oaoa"' 70)€An

for j=1,2,...,n—1. For t = (t1,ta, -+ ,tn_1) € A,, we put to € [0,1] as

n—1
to=1— th,
j=1

and ¢;(t) € A, as

t—t;p;), ift i
4;(t) = 1_tj( iPj) # Dj
pj? lft:pj

for j € I,. Note that, for each t € A,, ¢ is on the line segment between p; and ¢;(t) for
j € I,,. From the conditions (Ag)—(A,) in Section 1, it is clear that a (continuous) convex
function ¢ on A, belongs to V,, if and only if

U(p;) =1 and (t) > (1 —1t;)(g;(t))

for all t = (¢1,ta,--+ ,tn_1) € A, and j € I,,. We denote by A,, the set of interior points
of A,. It is clear that

o

n—1
A, = {(tl,tg,tg,"' o) ERMN ity > 0(for j =1, n—1),) ;< 1}.
j=1
We define the directional derivative ¢, (¢;s) of ¢ at t € A, with respect to s € R"!

which satisfies t + As € A,, for some A > 0,

Vts) = tim LA 00,

A—+40 )\

Similarly, if t € A, and s € R"! satisfy t + A\s € A,, for some A < 0, we define ¢’ (; s)
by
Y (t;8) = lim YlttAs) - w(t)

A——0 A
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It is clear that ¢’ (t;s) = —¢/ (t; —s) if there exists A > 0 such that ¢ — As belong to
A,. We also denote by || - || the norm of the dual space of (C",| - ||). That is, for
(Oéo, Op,y - ,Cvn_l) c Cn,

H(Ck(bala T 7an71)H*

= SUP{K(O«J,%,'“ y0n1), (T, T1, -+ ,iEn—1)>| : H(fffo@lv'” 7%—1)”1/, - 1}

:sup{

n—1
E :O‘jxj
Jj=0

: H(l’g,{th..- ’;L‘n_l)H¢ = 1}.

3. Norming functionals on (C?, || - ||,)

In this section, we describe the set D(C?, ) of all norming functionals of 2 in C? (cf. [3]).
The reason for this is that the result for C? illustrates all the mechanisms involved in the
induction to follow. Fix ¢ € W,. For each t € (0, 1], we denote by 1} (t) the left derivative
of ¢ at t. Similarly for each ¢t € [0,1), we denote by ¥/,(t) the right derivative of ¢ at t.
Since ¥(0) = 1 and ¢(t) > 1 —t for ¢ € [0, 1], we have

B =) o 1—t—1

/ T B
vr(0) = tLHJIrlo t = tLHJIFIO t L
Similarly, since ¢(1) = 1 and ¢(t) > ¢ for ¢ € [0, 1], we have
vl +t) — (1) . 14t-1
/
et < —_—
v (1) tEE% t < Jim, t L

Thus, if s,t € (0,1) with s < ¢, then we have
—1 < PR(0) < Yp(s) S UL(t) < vR(t) < ¥i(1) < 1.

We define a mapping G from [0, 1] into the set of subintervals of [—1,1] as

—LR(0),  ift=0,
G(t) = 3 [ () dpt)], H0<t<1,
(47 (1), 1], ift =1.

For each = = (z9,71) € C? with ||z||, = 1, we put

|71] 1
=——— and z(t) = —=(1—1t1).
|zl + |1 »(t)
Then we write
1 , ,

r=——(e"(1—1),e"t),
where z; = e"|z;| (k = 0,1). Since || - ||, is absolute on C?, it is clear to prove that
a = (ag,a;) € C? is a norming functional of z(¢) if and only if (e”"ag, e "tay) is

a norming functional of z. Thus, we only describe the set D(C?,z(t)) of all norming
functionals of z(t) for any ¢ € [0, 1] (cf. Theorem 3.2). The following theorem is proved
by Bonsall and Duncan [3]. For the convenience of the reader, we rewrite the proof in our
setting.
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Theorem 3.1 ([3]). Let i) € Uy be fized. Then

4 1 | i
¢(1 + a) > :aeG(O),|c\:1}, ift =0,
2 B ¢(t)—at ‘ .
D(C? z(t) = ¢(t)+a(1—t)) .aEG(t)}, if 0 <t <1,
CG;a))iaeGU%M=ﬂ}, ift=1

holds for each t € [0, 1].

Bm:{<dii®):a€GmLM:1}.

We first show that D(C?,x(0)) C Bo. Fix (ao,a1) € D(C?, 2(0)). From the definition of
D<CQa$(0))7 |, a1)]]« = 1 and

ap = {(ap, ar),z(0)) = 1.
We put 6 = argay € [0, 27), where arg0 = 0. For each s € (0, 1], we have

U(s) = (1 =s,8)l = [|(1 = 5,¢75)]],
> [{(a0, 1), (1= s5,e75))| = ao(1 = 5) + ne™s|

=1—s4|a]s.

Proof. We put By as

So,
. Y(s) — ¥(0) . l=s+|mls—1
! — ]_ -_ > l
¢R(0) s—1>I-in-0 S - sirfrlo S
=1+ >~-1

and hence |a;| — 1 € G(0). We put a = |a;| — 1. Then
o = ey | = (1 +a).

So, we obtain (ap, ;) € By and hence D(C?, z(0)) C By. We next show D(C? z(t)) D
By. Fix a € G(0) and ¢ € C with |¢| = 1. Then

((1,c(1+a)),(1,0)) = 1.

Since

for s,t € (0,1] with s < ¢, we have

a < Yp(0) < -
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and hence ¢(s) > 1+ as for s € (0,1]. Fix (z0,21) € C* with ||(z0,21)||¢ = 1. Let us
prove

(1, e(1+a)), (20, 21))] < 1.

Put
_ |21]
ol + =]
Note that
L= {|(z0, 21) [, = ([0l + |21])2(s).

So we have
(L, e(1+a)), (20, 21))| = |1- 20+ c(1+a) - 2|

20 + (1 +a)lz| _ 1+as
(ol + 20)e(s) — 96)

<zl + (1 4a)|z| = <1.

Thus, we have |[(1,c¢(1 + a))||, = 1. These imply (1,c¢(1 + a)) € D(C%z(0)). So
D(C?,2(0)) D By and hence D(C?,z(0)) = By. Fix t € (0,1) and put B; as

e {( i) e}

We shall show that D(C?,z(t)) C B,. Fix (ag, ;) € D(C? z(t)). We put
Op = argay € [0,27) and 6 = argay € [0, 27),
where arg0 = 0. From the definition of D(C?, z(t)), ||(c0, a1)||« = 1 and

a0~(1—t)+a1-t
b (t) '

1= <(a0,a1),x(t)> =
Hence
1/1(t> = Oéo(l - t) + at.
Then we have
¥(t) = Re(ap)(1 —t) + Re(aq)t < Jao|(1 —t) + |t
= apge (1 —t) + e 1t = {(a0, 1), (e_ieo(l — 1), e_wlt)>
< |[(e(1 - t),e_wlt)”w =||(1- t,t)Hw = ().

Thus, we obtain Re(ap) = |ag| and Re(ay) = |ay|. Therefore oy > 0 and oy > 0. For
s € (0,1), we have

L= Jlz(s)]l, > [{(a0, a1), 2(s)))|
e —s) taus|  ag(1—s) +aus
W(s) P(s) '

Then we have
P(s) > ap(l — 8) + ags.
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So,

. (s) ()
() = 1 R S 4 N
R(t) = lim ———
> lim Oé()(l — S) + a8 — Oéo(]. - t) — Oélt
s—t+0 s—1t

= 1 — (.

Similarly, we obtain

— s—t—0 s—1

and hence a; — ap € G(t). From
Y(t) — (cn — ap)t = ap(l —t) + ant — (a1 — )t =

and
Y(t) + (an —ap)(1 —t) = ap(l —t) + ant + (o — ap)(1 — t) = ay,

we obtain (ag, @) € B,. Hence, D(C? z(t)) C B,. Let us show D(C? z(t)) D B,. Fix
a € G(t), and put
ap=(t) —at and o =P(t) +a(l —1).

Then we have

t
<(a0,a1),a:(t)> = (Q/J(t) — at)— + (w(t) +a(l— t))m =1.

Since G(t) C [—1, 1], we have
ag=Y(t) —at >Y(t)—t>0

and
ar =¢(t)+a(l —t) = P(t) — (1 —1t) > 0.

Fix (29, 21) € C? with ||(z0, 21)||¢ = 1, and put

_ |21]
§=——.
|20] + [21]
In the case of s < t,
s—1t
In the case of s > t,
o< i < YO = U0
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Therefore we have
Y(s) > »(t) +a(s —t).
Since (|zo] + |21])¢(s) = 1, we have

|<(040,Oé1), (20, 21)>| = |z + o2z1| < aplzo] + an 2|
_ ap + (o — ap)s _ Y(t) —at +as -1
(s) (s) T

These imply (oo, 1) € D(C? z(t)). So D(C?,z(t)) D B, and hence D(C?,z(t)) = B;.

Similarly, we can show that

D(C?,z(1)) = {( e(l . @) ) caeG(l),|d = 1}.

This completes the proof. O]

From Theorem 3.1, we obtain the following.

Theorem 3.2. Let ¢ € Wy be fized. Let (xg, x1) € C* with ||(x0,x1)Hw = 1. Put

|1

t=
|zo| + |1]

and
po = argxy € [0,27) and p; = argax; € [0,27),

where arg0 = 0. Then

D((:2 (Io,l’l =
( *lPO )
1+ a) ) a€ G0),|c=15%, if r1 =0,
e~ (Y(t) — at)

_zpl t)+a1—t )Z(IGG(t)}, ifx0.$l7é0’

—2p1

1_
a) a€G),ld = 1}, if 20 =0

holds.

As a direct consequence of Theorem 3.2, we obtain the following.

Theorem 3.3. Fiz ) € Uy. Then (C2,|| - ||,) is smooth if and only if ¢ is differentiable
at any t € (0,1), ¥5(0) = =1 and ¢} (1) =

4. Norming functionals on (C", || - [|;)

In this section, we discuss norming functionals on C" for n > 2. We put I,, = {0, 1,2,
n— 1} and
(th t17 e 7tn—1)

x(t) =
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n—1
for t = (tl,t27 L ;tn—l) c An, where to =1- th
j=1

Lemma 4.1. For every t = (t1,t2, -+ ,t,_1) € A, and a = (a1, a9, ,a,_1) € OVY(t),
the 1nequality

Y(t) + (a,pj —t) >0 (3)
holds for every j € I,, with t; > 0.

Proof. Fix j € I,, with t; > 0. In the case of t; = 1, i.e., t = p;, (3) clearly holds. If
0 <t; <1, then we have, by the properties of ¢ as in Section 2,

ti{v(t) + (a,p; — 1)}
—(t) — (1 —t;) {@b(t) + <a, 1_;]5]_(25 —tipj) — t>}

= p(t) — (1 —t;) {&(t) + (a,q;(t) — t) }
> (t) — (1 —t;)p(g;(t) > 0.

Thus, we have this lemma. O

As a direct consequence of Lemma 4.1, we obtain the following.

Corollary 4.2. For every t = (t1,ta,- - ,t,_1) €A, and a = (ay,az, - ,a,_1) € OY(1),
the 1nequality

U(t) + {a,p; —t) 2 0

holds for every j € I,.

Using Lemma 4.1, we obtain the following.

Theorem 4.3.

D(C™, x(t)) (4)
( ' a € 0Y(t), )
e (P(t) + (a,po — t)) W(t) + (a,p; —t) > 0
efel »(t) + (a,p1 — t)) for j € I, with t; =0,
— €2 ((t) + (a,py — t>) : 0, €[0,2m)

for j € I, witht; =0,

e (1) + (apo — 1) ) 05 =0
for j eI, witht; >0

\ /

fO’F allt = (tl,tg, cee ,tn71> c An

Proof. We put B as the right hand side of (4). We first show that D(C", z(¢)) C B. Fix
o= (ag,ar, -+ ,a,_1) € D(C",z(t)). We put

6; = arga; € [0,2m)
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for j € I,, where arg0 = 0. From the definition of D(C", z(t)), |||l =1 and

1= (o, z(t)) = % ; ajt;.
Hence 1
Y(t) = i%’ta’
From .

n—1
Y(t) = ZRe (a;)t; <Z|aj|t _Zaj ~ig, (5)

<Oé, (eizeot% 67191t1’ U 76719n_ltn71)>

(e 0ty e701ty ... e n-1g

= H(t(htb' te atn—l)Hw = ¢(t)

"—1)||1p

we obtain Re(q;) = |ay| for j € I,, with t; > 0. Hence o; > 0 and 6; = 0 for j € I,, with
t; > 0. From (5), we also obtain

n—1
=Y laylt;.
5=0

We put a as
|| = |l
a= 2] _ [0 e R* L.
|atn—1| — |ao|

We fix s = (81,82, -+ ,8,-1) € A, and put s =1 — ZJ | Sj. From

0(s) = [l(s0, 1.+ Sn—l)”w

|| 2090 —i@l —ienfl

- HaH 81,7, € Sn—l)Hd,

> }<0z 6_29080,6_19181,--' ,e_w”‘lsn_l)ﬂ

n—1

Z|O‘j|33 Z|O‘J|SJ+¢ Z‘aylt

=0
n—1 - - n—1

— 59 + ool (1 —zsj) =S laglss — o (1 —ztj) i
j=1 j=1 j=1 j=1

]S]

= () + ‘ (loj| = [al) (s; — t5)
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we have a € 0¢(t). We also obtain

1
-1 n—1

= 9(t) = > loylt; — ol D (1))
1 =1

j=

3

n—1
= () =D lajlt; + lao| = |l

J=0

and hence
o 1) + (e po = 1)), it =0,
U(t) + (a,po — ), if £ > 0.

For each j € [, with 7 # 0, we have

Y(t) + (a,pj — t) = »(t) + (a, —t) + (a, pj) = |ao| + (@, p))
= |ap| + |aj] — |ao| = |ey]

and hence

o — e (Y(t) + (a,p; — 1)), ift; =0,
j Y(t) + (a,p; —t), it ¢; > 0.

Therefore v € B and hence D(C", z(t)) € B. We next show D(C", z(t)) D B. Fix a =
(g, 1, ,04—1) € B. Then there exist a = (a1, ag,- -+ ,a,-1) € 0Y(t) and 0; € [0, 2m)
for j € I,, with t; = 0 which satisfy

U(t) + {a,p; —t) 2 0

for j € I,, with t; = 0 and

0 = e (p(t) + (a,p; — 1)), ift; =0,
J @Z)(t) + <a,pj — t>’ if t; > 0.

From Lemma 4.1, for each j € I,, with t; > 0, we have
e(t) + {a,p; = 1) = 0
and hence a; > 0 holds. We also have
il = (1) + {a,p; — 1)
for j € I,,. For each j € I, with j # 0, from

|| — [ao| = (a, p;) = aj,
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we have

o] = Jao| + aj.

Since a;; > 0 for j € I, with ¢; > 0, we have

n—1 n—1 n—1
D)o z(t) =D ajty =Y laglt; = laolto + Y oyt
§=0 §=0 j=1

n—1 n—1
= |aolto + Z(|a0| + a;)t; = |oo| + Z ajt;
j=1 Jj=1

= || + (a, 1) = [ao| = (a, po — 1) = ¥(t)

and hence
(,2(t)) = 1.
Fix z = (20, 21, , 2n—1) € C" with ||2||, = 1. Let us prove |[{a, z)| < 1. Put
|2
S; —
! Zk:é |2k ]
for j € I,,, and s = (s1, 82, ,Sp—1) € A,,. Note that E;:& s; =1 and
n—1
1= lzlly = <Z \2k|> ¥(s).
k=0
So we have
n—1 n—1
Y(s) (o, 2)| = (s) | Y ayzi| < ib(s) (Z |aj| |Zy|>
j=0 =0

-1
(55 fal - ll) ot
= :Z’%"Sj = ’040\30+Z(!a0\+aj)3j
=0

1
D ko |zl j=1

= laol + Y ays; = laol + {a,5) = %) + a0~ 1) + a5
= 0(0) + (o — ) < (s)

Thus we have [{a, z)] < 1 and so ||a|l, = 1. These imply o € D(C™, x(t)) and hence
D(C™,z(t)) D B. This completes the proof. O

As a direct consequence of Theorem 4.3 we have
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Corollary 4.4. For allt = (t1,ta, -+ ,ty,_1) € Ay,

D(C", z(t))
( ‘ a € 0Y(t), )
e ((t) + (a,po — 1)) Y(t) + (ap; — ) 2 0,
efgl P(t) + (a,pr — 1)) for j € I,
= eif ¢(t) + <a,p2 - t>) : ej S [07 27T)

for j €I, witht; =0,

e ((t) + (apo — 1) ) 05 =0
for j €I, witht; >0

\

o

In particular, for all t = (t1,t2, - ,tn_1) EAn,

w(t) + <a,p0 - t>
V() + (a,pr = t)
D(C",z(t)) = vlt) +lap =t | aedy(t)

-~

L\ w®) + (90— 1)

Corollary 4.5. Let ¢ € U,, be fized. Let v = (xo, 21,22, ,Tp_1) € C" with ||z|, = 1.
Put

Vs

Jj = n—1

forje€l,, and
= (t17t27 T atn—1> € An

Put p; = argx; € [0,27) for j € I,,, where arg0 = 0. Then

D(C™, x)
( a € 0Y(t), )
co(¥(t) + (a,po — 1)) W(t) + (a,p; —t) >0,
ci(v(t) + (a,p1 — t>) for g e l,,
= Co (1/1@) + <aap2 - t>) : |Cj‘ =1 > .
: for j € I, with t; =0,
Cn—1 (1/1(75) + <a7pn71 - t)) G = e_.ij .
for j €I, witht; >0

/

Proof. Since
n—1
2]l = (Z |ij> Y(t) =1,
=0

we can write

I |
r=——(e"tg, ePty, -+ e, ).
7ok )
Since || - ||, is absolute on C", it is clear that a = (ap, 1, -+ ,a,—1) € C" is a norming
functional of x(t) if and only if (e”"°ag, e ay, -+ , e *"~1q,, 1) is a norming functional

of x as in Section 3. This completes the proof. n
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5. Smoothness of (C", || - |y)

In this section, we discuss the smoothness of absolute norms on C" for n > 2. We put
I,={0,1,2,--- ;n—1}.

Theorem 5.1. Let ¢ € W,,. Then (C", | - |ly) is smooth if and only if for each t =
(t1,ta,++ ,tn_1) € A, the following equalities hold:

1. Y (t;p;—t) =4 (t;p; —t) for all j € I, with t; > 0;
2. Y (tip; —t) = —(t) for all j € I, with t; = 0.

To prove Theorem 5.1, we need some preliminaries. We define a function ¢ on R"~! by

S = (317 82, 7Sn—1> € Anv
p(t) =sup { ¥(s) + {a,t —s) = a € I(s),
P(s)+ (a,p; —s) >0 for j eI,
for every t € R". In fact, ¢ is an extension of 1 on A, to R""! from Lemma 5.3.

Remark 5.2. If ¢ € U,, we have

1—t, ift<O,
p(t)=q (), if0<t<1,
t, ift >1,

and dp(t) = G(t) for t € [0, 1] (see the definition of G(t) as in Section 3).

Lemma 5.3. The function ¢ has the following properties:

1. ¢ is a conver function on R™™! such that ¢(t) < oo for all t € R"™1;
2. () =9(t) fort € Ay;
3. foreacht = (ty,ta, -+ ,tn_1) € A, with t, =0 for some { € I,,, the equality
(At = pe) + pe) = Ap(t)
holds for all A\ > 1, and the equality

@' (t;pe —t) = =(2)

holds;
4. oApy) <A+ 1 foralldeRandj (1 <j<n-—1).

Proof. By Corollary 4.4, for each s = (s1,892,--+,8,-1) € A,, there exists a € (s)
satisfying 1(s) + (a,p; — s) > 0 for all j € I,. So ¢(t) > —oo for all ¢ € R""!. Since
¥(s) + (a,t — s) is linear about ¢, it is clear that ¢ is convex on R"~!. We next show (2).
Fix t € A,. By the definition of 0¥ (t), we have p(t) < ¥(t). By Corollary 4.4, there
exists b € 0 (t) satistying ¢(t) + (b,p; —t) > 0 for all j € I,,. So

P(t) = P(t) + (bt =) < p(t).

Therefore p(t) = (t) for t € A,. Let us show (3). We fix t = (t1,t2, - ,t,_1) € A,
with ¢, = 0 for some ¢ € I,,. Assume that there exists A > 1 such that

(At = pe) + po) > Mb(t).
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Then there exist u € A,, and a € 0y (u) satisfying ¥ (u) + (a,p; —u) > 0 for all j € I,,,
and

W(u) + (a, \(t — pe) + pe — u) > M(t).
We have

Y(u) + {(a,t — u)
1

- 1

T(@/J(U) + {a,pe —u)) + X(l/}(u) + {a, \(t — pe) + pe — u))
1

> () (0 Mt — o)+ pe— ) > £ (WD) = (1),
This contradicts to a € 0y (u). Therefore

e (At = pe) +pe) < M(t)
for A > 1. We next show
(At — pe) +pe) > M(t)

for A > 1. By Corollary 4.4, there exists a € 0v(t) satisfying ¢ (t) + (a,p; —t) > 0 for all
7 € 1I,. From t, = 0, we have

n—1 n—1
0= tipj—t=> tjp;—t) =Y t;(p;—1)
=0 =0 it

and hence {p; —t : j € I,,,j # {} is linearly dependent. On the other hand, the linear
span of {p; —t: j € I,,} equals to R"! because

(4)
(p]_t)_<p0_t>:pj:(0707 707 170707”' 70)

for j (1 <j <n—1). So, ps—t does not belong to the linear span of {p;—t: j € I,,,j # (}.
Therefore we can choose b € R"! satisfying

(b, pe — t) = —1(t)

and
(b,pj — 1) = {a,p; — t)
for j € I, with j # £. Note that

(b;pe —t) = —0(t) < =(t) + (t) + (@, pe — ) = (a,pe — 1).

n—1
For any u = (uy, ug, -+ ,up_1) € A, putting ug = 1 — Zuj, we have
j=1
n—1
Y(u) > P(t) + (a,u — 1) = () + > uya,p; — 1)
7=0
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This shows b € 0 (t). Since
(t) + (bype — ) = ¥(t) —¥(t) =0

and
for j € I,, with j # £, we obtain

(At —pe) +pe) = (t) + (b, At — pe) + pe — )
=)+ (1= A)b,pe —t) = () — (1 = NY(t) = Mp(t)

for A > 1. Therefore
(At —po) + po) = Mp(t)

for A > 1. From this equality, we have

gp(t + At — pg)) — (1)

@ (tipe—t) = =@ (it —po) = — Ahjrlo \
i (L + Nt —po) +pe) —o(t) ~ im (1+N(t) —9¥()
o A—40 A a A—+0 A
= —(1).

We have (3). We use (3) in order to show (4). Fix j (1 <j<n—1)and A € R. In the
case of A > 1, we have

p(Ap;) = ¢(Ap; — po) +1p0) = Mp(p;) = A < A+ 1.
In the case of 0 < A <1, from Ap; € A,,, we have
p(Ap;) = ¥(Ap;) < 1T < [A[+ 1.
In the case of A < 0, we have

p(Ap;) = (1 =N po —pj) +p;) = (1= No(po) = [A| + 1.
These imply (4). Fix t = (t,ty,+ - ,t,_1) € R*7L. In the case of ¢t = 0, we have

p(0) = 9(0) =1 < 0.

In the case of t # 0, by using (4), we have

— ST Il (sgn ) (302y [tkl) v
=1 1% J k=1 IUk|) Pj
o (Z tjpj) o ( j i

<; L (Sgnt (zukop])
<Z |J| (Z|t|+1>:nz_l|tk|+1<oo.

Hence we have (1). This completes the proof. O
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Proposition 5.4. Let t = (t1,ta, - ,t,_1) € A, and a € R"'. Then a € dp(t) if and
only if a € 0Y(t) and Y(t) + (a,p; —t) >0 for j € I,.

Proof. Assume that a € dp(t). For each u € A,,, we have

P(u) = p(u) 2 ) + (a,u = 1) = D) + (a,u = 1)

and hence a € 9y(t). For each j € I,, with ¢; > 0, by Lemma 4.1, we have ¢(t) + (a,p; —
t) > 0. For each j € I, with ¢; =0, by Lemma 5.3 (3), we have

U(t) + (a,p; — t) 2 () + @ (tip; — 1) = ¥(t) — ¥(t) =0,
because ¢’ (t;p; —t) < (a,p; —t). Therefore ¢(t) + (a,p; —t) > 0 for all j € I,,.

Conversely, we assume that a € 9¢(t) and ¥(t) + (a,p; —t) > 0 for j € I,. For each
u € R"1 from the definition of ¢, we obtain

pu) = 9(t) + (a,u = 1) = p(t) + (@, u = 1).

This shows a € dp(t). This completes the proof. O
Remark 5.5. We rewrite Theorem 4.3 by using ¢ in place of ). By Proposition 5.4, we
have
D(C", z(t))
([ ™ () + (a,po — 1)) a € dp(t), ‘
62461 Qﬁ(t) + <aap1 - t>) Hj < [0, 271')
= e (¢ (t) + {a, ps — t>) . forj eI, witht; =0,
: 9]' - 0
\ =1 (¢(t) + (@, pp_1 — 1)) for j € I, with t; >0 )

for all t = (tl,tg, ce 7tn—1) € An

Proof of Theorem 5.1. We first assume that (C", || - || ;) is smooth. Fix t = (t1, s, -,
tn—1) € A,. Since the linear span of {p;—t : j € I,,} equals to R"~!, and ﬁD(C”, x(t)) =1,
we have f0p(t) = 1 and hence ¢ is differentiable at ¢. Therefore

el (tip; —t) = ¢ (tip; — 1)
for j € I,,. In the case of t; =1, i.e., t = p;, we have
YLt py —1) = 0= (tp; — 1),
In the case of t; = 0, by Lemma 5.3 (3), we have
Vi(tips — 1) = @y (b — 1) = L (Gp; — 1) = (D),
In the case of 0 < ¢; < 1, we have

Y (tip; —t) =@ (tip; —t) = @ (t;p; —t) = (t;p; — t).

Conversely, we assume that for each t = (¢1,t2,--- ,t,—1) € A, the following equalities
hold:
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L. . (tpj—t) =\ (t;p; —t) for all j € I,, with ¢t; > 0;
2. Y (t;p; —t) = —(t) for all j € I, with t; = 0.
Fix t = (t1,t2, -+ ,th—1) € A,. In the case of t; = 1, i.e., t = p;, we have

ol (tipy — 1) = 0= (t;p; — 1)
In the case of t; = 0, by Lemma 5.3 (3), we have
¢ (tipy —t) =¥ (tip; —t) = —¥(t) = ¢ (t;p; — 1)
In the case of 0 < ¢; < 1, we have
Ptipy —t) =¥ (tip; —t) =YL(tp; — 1) = oL (Lip; — 1).
Therefore
ol (tp; —t) = (tip; — 1)

for j € I,. Since the linear span of {p; —t : j € I,} equals to R" ', we have ¢ is

differentiable at ¢t and hence §0¢(t) = 1. Then we write dp(t) = {a}. For each j € I,
with ¢; = 0, by Lemma 5.3 (3), we have

U(t) + (a,p; —t) = 0(t) + ¢ (;p; — 1) = ¥(t) —¥(t) = 0.

So, we obtain

Co (¢(t) + (a, po — t>)

Al +lap—1) | 9=0
D(C", z(t)) = e () + (a,p2 — 1)) . firlj € I, with t; =0,

: for j € I, with t; >0
\ Cnfl(w(t) + {(a, pp—1 — t))

Therefore §D(C", z(t)) = 1. O

From the proof of Theorem 5.1, we obtain the following.

Corollary 5.6. (C",|| - |ly) is smooth if and only if ¢ is differentiable at any t € A,,.
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