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Given a Banach space X, a multivalued operator T': X — 2% is called pseudomonotone (in Karamar-
dian’s sense) if for all (z, 2*) and (y, y*) in its graph, (z*,y — z) > 0 implies (y*,y — ) > 0. We define an
equivalence relation on the set of pseudomonotone operators. Based on this relation, we define a notion
of “D-maximality” and show that the Clarke subdifferential of a locally Lipschitz pseudoconvex function
is D-maximal pseudomonotone. We generalize some well-known results on upper semicontinuity and
generic single-valuedness of monotone operators by showing that, under suitable assumptions, a pseu-
domonotone operator has an equivalent operator that is upper semicontinuous, generically single-valued
etc.

Keywords: Maximal monotone operator, pseudomonotone operator, pseudoconvex function

2000 Mathematics Subject Classification: 26B25, 47TH04, 47THO5

1. Introduction

Pseudomonotone operators, as introduced by Karamardian [10], are defined by making
use of the order relation in R, without any reference to topological properties. This is
in sharp contrast to pseudomonotonicity in Brezis’ sense! [1]. Another feature of these
operators is that they are closely related to generalized convexity, just like the relation of
monotone operators to convex functions; in fact, the subdifferential of a locally Lipschitz
function is pseudomonotone if and only if the function is pseudoconvex [12, 13].

Pseudomonotone operators have been the subject of intense study during the last decade.
Directions of research include the finding of criteria for pseudomonotonicity of differen-
tiable single-valued operators [2, 6] and the pseudomonotone variational inequality prob-
lem [14, 5, 7]. However, in contrast to the theory of monotone operators, which is very
rich, results on the structure of pseudomonotone operators are rare. For instance, it
is known that the subdifferential of a proper, lower semicontinuous convex function is
not only monotone, but also maximal monotone. Under some rather weak assumptions,
monotone operators are upper semicontinuous in the interior of their domain; also, they
are generically single-valued. It is a widely held belief that pseudomonotone operators do
not have such properties and that, in particular, maximality is not a relevant property
in generalized monotonicity, and in particular for pseudomonotone operators. Let us ten-

Tn order to underline the distinction between pseudomonotone operators in the Karamardian and in the
Brezis sense, some authors use the terms order pseudomonotone and topologically pseudomonotone,
respectively.
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tatively define maximal pseudomonotone operators as those pseudomonotone operators
that admit no pseudomonotone extension other than themselves. Let f : R — R be a
continuously differentiable function such that f’ (xz) = 0 for z € [a,b], f' () > 0 forx > b
and f’ (z) < 0 for < a. This function is pseudoconvex; its subdifferential is the single-
valued pseudomonotone operator Tx = {f’ (z)} and it is not maximal pseudomonotone
in the above sense since the following operator is a pseudomonotone extension:

(1—00,0[, z<a
|—00,0], z=ua
Tx = ¢ {0}, x € (a,b)
[0,4+00[, x=0b
10, +oo[, z>0.

Note that 7' has no pseudomonotone extension, Tz has the same zeros as [’ (ie., f'(x) =

0= 0 ¢ fa:), and whenever x is not a zero, Tz consists of all positive multiples of
f'(x). Let us note also that given any pseudomonotone operator T, say single-valued,
the operator Sx = f (z) Tx where f is any positive function is also pseudomonotone. In
fact, it can also be seen that the two operators have the same solutions in a variational
inequality problem (see next section for details).

Based on these observations, we will define an equivalence relation on the set of pseu-
domonotone operators. The idea underlying the paper is that for any pseudomonotone
operator T, under assumptions similar to those of the monotone case, there might exist
an equivalent operator S with better properties; for instance, we will show that S may
be chosen to be upper semicontinuous, or generically single-valued. We will also define
“D-maximal pseudomonotonicity” by means of this equivalence, and show that the sub-
differential of a locally Lipschitz, pseudoconvex function is D-maximal pseudomonotone.

We begin by fixing the notation and recalling some definitions. Let X be a Banach space
and X* its dual. We denote by (x*, z) the duality pairing of z € X and z* € X*. For
CC X*and x € X we set (C,z) = {(z*,z) : 2* € C'} and write (C,z) > a if (z*,2) > a
for all z* € C'. We denote by co (K) the convex hull of a subset K of X and by core (K)
its algebraic interior; K is called radially open if K = core (K). Given ¢ > 0, B (x,¢)
(resp. B [x,¢]) is the open (resp. closed) ball of radius € around = € X. For any K C X*,
we set Ry K = Ut K and Ry K = Ups ot K.

Given a locally Lipschitz function f : X — R U {400}, the Clarke subdifferential 0°f is
defined at any x € dom (f) by

0°f () = {a" € X (2%, d) < f°(z;d)}

where
fo (I; d) _ limsupf (y + td) — f (y)

The locally Lipschitz function f is called pseudoconvex, if for every z € dom (f) and
x* € 0°f (x), the following implication holds:

(" y—x) >0=f(y) > f(x).
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Given an operator T': X — 2% we denote by D (T its domain and by Gr (T) its graph.
We call T upper sign-continuous at x € D (T) if for all v € X, the following implication
holds:

Vie (0,1), inf (z;,v) > 0= sup (z",v) >0.
ap €T (z+tv) z*eTx

This is a very weak kind of continuity. For instance, if the restriction of T" on all straight
lines through x is upper semicontinuous with respect to the w* topology in X*, then T
is upper sign-continuous at x. Also, any positive function f : R — R is upper sign-
continuous everywhere. Likewise, we call T" lower sign-continuous at € D (T) if for all
v € X, the following implication holds:

Vte (0,1), inf “ o) > 0= inf (z%,v) > 0.
(0,1) et (x7,v) > Jnf (27, v)

Again, if the restriction of T on all straight lines through z is lower semicontinuous with
respect to the w* topology in X*, then T is lower sign-continuous at x.

According to Karamardian [10], 7" is called pseudomonotone if for all (z*, z) and (y, y*)
in Gr (T) the following implication holds:

(e y—2) >0= (y",y—z) >0

or equivalently
<I‘*,y—$> >0= <y*,y—l’> > 0.

Given an operator T, we define the set of zeros of T by

Zr={re X:0eTx}. (1)

2. Equivalent operators and maximal pseudomonotonicity

We will introduce an equivalence relation in the class of pseudomonotone operators. Given
two pseudomonotone operators T" and S, we write T' ~ S if the following conditions hold:

(a) D(T)=D(S),
(b) Zr = Zs,
(¢) forall z e X\Zp, Ry Tx =R, Sx.

This equivalence is related to variational inequalities. Given a convex subset K of X, we
recall that = € K is a solution of the variational inequality problem VIP(T, K) if there
exists #* € Tz such that (z*,y —x) > 0 for all y € K. Note that in case 0 € Tz, x
is a solution of the VIP(T, K). It is obvious that whenever T' ~ S, x is a solution of
VIP(T, K) if and only if x is a solution of VIP(S, K).

A pseudomonotone operator T will be called D-maximal pseudomonotone if there exists
an equivalent pseudomonotone operator S which has no pseudomonotone extension with

the same domain, apart from itself. This means that if S’ is a pseudomonotone operator
such that D (S’) = D (S) and for all x € X, Sz C S’x, then S = 5.

Let us now explore the equivalence relation. Given a pseudomonotone operator T', we
can construct an operator 7' which is the maximum of its equivalent class with respect
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to graph inclusion. To do so, let us first remark that if we combine pseudomonotonicity
with the relation (0,y — z) > 0, we deduce that the following implication holds:

ve€Zr=VyeD(T),(Ty,y —z) > 0. (2)

For any x € Zp, set

Lry,={yeX:3y €Ty, (y",y—z) =0}
={ye X W €Ty, (y",y—x) <0}.

The second equality is a consequence of (2). Let

N, = {r"e X" (2" y —2) <0,Vy € Lr,}
be the normal cone of Ly, at x. Define the operator T by

. NLT,z’ if z € ZT
Tx=< Ry Tz, ifxe D(T)\Zr
, ifx¢ D(T).

Proposition 2.1. Let T : X — 2%" be pseudomonotone. Then:

(i) T is pseudomonotone.

(ii) T~T.

(iii) If S ~ T then Gr(S) C Gr(T).
(1v) SNTifandonlyifng.

Proof. (i) Obviously, D(T') = D (T). Thus, we have to show that if x,y € D (T), z* € T
and (z*,y — ) > 0, then <fy,y — :1:> > 0.

There exists x7 € Tx such that (x},y — ) > 0 (if v € Zy we may take 2} = 0;if x ¢ Zp we
may take a positive multiple of z*). Thus, by pseudomonotonicity of T', (T'y,y — =) > 0.

We consider two cases. If y ¢ Zr this obviously implies that <fy, Yy — x> > 0 and we are
done. If y € Zp then from (z7,y — x) > 0 we deduce that x € Ly,. It follows that for all
y* e T\y = Np,, (), (y", 2 —y) <0 thus we have again <T\y, Yy — a:> > 0.

(ii) This is an obvious consequence of the definition of 7.

~

(iii) If  ~ T then from the definitions we deduce that D (S) = D (T) = D(T). For all
x € D(T)\Zs, Sv C Ry, Sz =R, Ta = Tx. Now let 2 € Zg. We intend to prove that
Ls, C Ly,. Choose any y € Lg,. If y € Zg then y € Zp thus 0 € T'y and obviously
y € Ly,. Ify ¢ Zg then R, Sy = R, Ty. Since y € Lg,, there exists y* € Sy such
that (y*,y — x) = 0. There exists also some y; € T'y which is a positive multiple of y*;
this implies again that y € Ly ,. It follows that in all cases, Lg, C Lp,. By symmetry,

Ls, = Ly ,. Thus, Sy =Tz and Sx - Tx.
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(iv) If S ~ T then S = T since by (iii) they are both maxima of the corresponding
equivalence class. Conversely, if S=Tthen S~S=T~T. O

As a consequence of Proposition 2.1, an operator 7" is D-maximal pseudomonotone if
and only if 7" has no pseudomonotone extension with the same domain, apart from itself.
The following lemma gives a practical way to show that an operator is D—maximal
pseudomonotone.

Lemma 2.2. Let T be a pseudomonotone operator. Suppose that for any (z,z*) €
(D(T)\Z7) x X* such that {(x,z*)} U Gr(T) is the graph of a pseudomonotone op-
erator, one has v* € Ry Tx. Then T is D-mazimal pseudomonotone. The converse is
also true, provided that D (T') is convex.

~

Proof. Since D (T) = D(T'), in order to show that T is D—maximal pseudomonotone, we
have to show that for any (z,2*) € D (T) x X* such that {(z,2*)} UGr(T) is the graph of

a pseudomonotone operator T, one has z* € Tz. We consider two cases. If z € Zr then
for all y € Lg, there exists y* € T'y such that (y*,x —y) > 0. By pseudomonotonicity

of Th, (z*,x —y) > 0. Hence z* € N, = Tx. Now suppose that x ¢ Zr. By the
assumption, we have again x* € R, Tz = Tx. Thus, T is D-maximal pseudomonotone.

To show the converse, suppose that T is maximal pseudomonotone with convex domain,
and that for some (z,2*) € (D (T') \Zr) x X*, the operator S with graph {(x,z*)}UGr (T)

is pseudomonotone. We will show that the operator S’ with graph {(z,z*)} U Gr(T) is

-~

pseudomonotone. We have to show that if (y,y*) € Gr(T') then the following implications
hold:

(,y—2)>0=(y"y—=z) >0 (3)
(y'z—y) > 0= (2", —y) > 0. (4)

If (z*,y —x) > 0 then by pseudomonotonicity of S, (Ty,y —x) > 0. If y ¢ Zr then
yr e Ty = R, . Ty, hence (y*,y —x) > 0. If y € Zp, set z = (z+y) /2 and choose
some z* € Tz. Since S is pseudomonotone, (z*,y — x) > 0 implies (z*, z — ) > 0, hence
(*,y—2)>0and z € Ly,. Using y* € Ty = N, we infer that (y*,y — z) > 0; hence
we have again (y*,y —x) > 0 and (3) holds.

Suppose that (y*,z —y) > 0. If y ¢ Z then y* = \y; for some A > 0 and y} € Ty; by
pseudomonotonicity of S we infer that (z*,x —y) > 0. If y € Z7 then by (2) we have
again (z*,x —y) > 0. Hence (4) holds.

Consequently, S is pseudomonotone. By assumption, T has no pseudomonotone extension
apart, from itself; hence S’ =T thus z* € Tx =R, Tx. O

The proof of the preceding lemma reveals that the converse is also true if, instead of
convexity of D (T'), we assume the following: for every x € Zr and y € D (T), there is
e > 0 such that [z,z +¢(y —2)] € D(T). Such an assumption can be further relaxed,
but not completely ommited, as shown by the following example: X =R, D (T) = {0, 1},

T(0) = {—1}, T (1) = {0}. Then T is given by T (0) = ]—00,0[, T (1) = R and admits no
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pseudomonotone extension with the same domain, thus 7" is D-maximal pseudomonotone.
Also, G(T) U {(0,0)} is the graph of a pseudomonotone operator, but 0 ¢ 7' (0).

By means of Zorn’s Lemma, it is easy to show that every pseudomonotone operator T
has a D-maximal pseudomonotone extension. Of course, this extension needs not be
equivalent to 7. If it is, then T itself is D-maximal pseudomonotone.

D-maximal pseudomonotone operators have some nice properties. The following propo-
sition gives some useful information on the structure of the set of zeros:

Proposition 2.3. Let T' be D—mazximal pseudomonotone. Then Zr is weakly closed in
D (T). If in addition D (T) is convez, then Zr is convex.

Proof. We first prove the following claim: if z € D (T) is such that <fy, Y — z> > 0 for

all y € D(T), then z € Zr. Indeed, the assumption implies that for every y* € fy the
following implication is true:

0,y —2) >0= (y",y —2) >0.

On the other hand we also have tautologically
(y*,z—y) > 0= (0,2 —y) > 0.

~

Hence, the operator with graph Gr(T)U{(z,0)} is pseudomonotone. Since T is D-maximal

pseudomonotone, this implies that 0 € T\z, l.e., 2 € Zz = Zr and the claim is true.
Let (z;) be a net in Zr, weakly converging to z € D (T'). By applying (2) to the pseu-
domonotone operator T, we infer that for every y € D (T') and for all i’s, <fy, Y — zz> >0

holds; It follows that <fy,y — z> > 0 and, according to the claim, z € Zy. Hence Zr

is weakly closed in D (7). The fact that Zr is convex whenever D (T') is convex can be
proved in the same way. 0

Given a pseudomonotone operator 7', define the operator coT by coTx = co(Tx) for
all x € X. Luc and Jeyakumar [9] have noted that coT is also pseudomonotone. If we

apply this to T we infer that coT is a pseudomonotone extension of T Hence, if T is
D—maximal pseudomonotone, then 7' = coT". We arrive to the following conclusion:

Proposition 2.4. If T is D—mazimal pseudomonotone, then Tz is convex for all x €

D(T).

In contrast to what one might expect having in mind the behavior of maximal monotone
operators, Tr is not necessarily closed, since it may be a cone from which 0 has been
extracted. In fact, even Tz U {0} is not necessarily closed. As an example, consider the
operator T : R? — 2% with domain D (T') = R x {0} defined by Tz = R, x R for every
x € D(T). It is easy to see that T" admits no pseudomonotone extension with the same
domain, hence it is D-maximal pseudomonotone and 71" = T. It is obvious that Tz U {0}

is not closed. This is mainly due to the “thinness” of D (T'); as we will see later, under
suitable assumptions this situation does not occur.
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3. D-maximal pseudomonotonicity and continuity.
The first proposition gives a criterion for D-maximal pseudomonotonicity.

Proposition 3.1. Let T' be pseudomonotone and upper sign-continuous, D (T) be radi-
ally open and Tz be w*-compact and convex for all x € D (T). Then T is D—mazimal
pseudomonotone.

Proof. If T'is not D—maximal pseudomonotone, then by Lemma 2.2 there exists (x, z*) €
(D (T)\Z) x X* such that the operator T with graph GrT U (z, z*) is pseudomonotone
and 2* ¢ R, ,Tx. Hence Tx "R, 2* = &. By the separation Theorem, there exists b € X
such that (Ryx*,b) > (T'z,b). Since R z* is a cone, this implies that

(2*,b) > 0> (T, b) . (5)

For t > 0 sufficiently small, (z*, z +tb—2) > 0 and x+tb € D (T); using that T} is pseu-
domonotone, we infer that (T (z +tb) ,b) > 0. By upper sign-continuity, sup,.cr, (y*, b) >
0. However, by the w*-compactness of Tz, (5) implies that sup,.cz, (y*,b) < 0, a contra-
diction. Hence T" is D—maximal pseudomonotone. O

Corollary 3.2. Let f : X — RU{+o0} be a pseudoconvex, locally Lipschitz function.
Then 0°f is a D—maximal pseudomonotone operator.

Proof. Since f is locally Lipschitz, it follows that dom (f) is open. Also, it is known
that D (0°f) = dom (f), 0°f (x) is w*-compact and convex for all x € D (9°f), and 0°f
is upper semicontinuous in the strong-to-w* topology [3]. In particular, 9°f is upper sign-
continuous. In addition, 0°f is pseudomonotone [12, 13]. Hence, by Proposition 3.1, 9°f
is D—maximal. O

Remark. Let us call T" “maximal pseudomonotone” if T has no pseudomonotone exten-
sion. In contrast to what holds for convex functions, 9°f is not maximal pseudomonotone
in general. For instance, if f is any locally Lipschitz pseudoconvex function with domain
10, 1], then the operator T" defined by

{-1}, z <0
Tz=< 9°f(z), z€]0,1]
{1}, x>1

is a pseudomonotone extension of 9°f, thus 0°f is not maximal pseudomonotone. This
is the reason why we focus our study on D—maximal pseudomonotone operators, rather
than maximal pseudomonotone ones.

We will prove that pseudomonotone operators have a property which reminds of the so-
called M-property of operators [8]. We first need two lemmas that establish a small but
necessary refinement of the argument used in Proposition 3.1.

Lemma 3.3. Let 2* € X*\ {0} and C C X* be nonempty, w*-compact and convez. If
CNRix* =@, then there exists b € X such that (z*,b) >0 > (C,b).

Proof. Set K = R, C. Then K is a closed convex cone and z* ¢ K. Let d > 0 be the
distance of x from K. Then D := R, B[z*,d/2] is a closed convex cone and it can be
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easily seen that D N C = &. By the separation Theorem, there exists b € X such that
(D,b) > (C,b). Since D is a cone, it follows that (D,b) > 0 > (C,b). Finally, using
x* € intD we infer that (z*,b) >0 > (C,b). O

Lemma 3.4. Assumptions as in Proposition 3.1. Let (x,x*) € (D(T)\Z) x (X*\ {0})
be such that the following implication holds for all (y,y*) € Gr (T):

Then x* € Tx.

Proof. Suppose that z* ¢ Tx. Since 0 ¢ Tx, this implies that Tz "R 2" = &. Using
the previous lemma we deduce that there exists b € X such that

(x*,b) > 0> (Tx,b).

For all ¢ > 0 sufficiently small, = 4+ tb € D (T'). Since (z*,z +tb—x) > 0, from (6) we
infer that (T" (z +tb),b) > 0. We conclude as in the proof of Proposition 3.1. O

Proposition 3.5. Assumptions as in Proposition 3.1. Let (x;,x}) € GrT and a; > 0, i €
I be nets such that w*-lima;xf = z* # 0, w-limz; = x € D (T)\Z, and limsup (a;z], x;) <
(z*,z). Then z* € Tx.

Proof. Let y € D (T) be such that (z*,y —x) > 0. Using the assumptions we infer that
lim (a;z}, y) > limsup (a;x}, z;), hence for sufficiently large 7, a; (x},y — x;) > 0. Since T'
is pseudomonotone, (y*,y —x;) > 0 for all y* € Ty. Thus, (y*,y — ) > 0. The result
follows from Lemma 3.4. O

If T satisfies the assumptions of Proposition 3.1 then we know that it is D-maximal
pseudomonotone; hence, according to Corollary 2.4, T has convex values. Actually, Tz U
{0} is a closed convex cone:

Corollary 3.6. Assumptions as in Proposition 3.1. Then Tz U {0} is w*-closed for all
x e D(T).

Proof. If z € Zr then it is obvious that Tr is a w*-closed convex cone. Suppose that
x € D(T)\Zy. Let xf € Tz, i € I be a net such that w*-limz} = 2* # 0. Then 2] = a;y;
for some a; > 0 and y; € Tx. If we apply Proposition 3.5 to the net (z,y}) we infer that

a* € Tx. Hence Tz U {0} is w*-closed. O

It is known that a maximal monotone operator is upper semicontinuous on the interior
of its domain, with respect to the w*- topology in X*. However, it is not true that a
D—maximal pseudomonotone operator has an equivalent operator which is even upper
sign-continuous. For instance, on R? take

) ify>0

0,1
1,1) ify<o0.

T@ww—{g7
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Then T is D-maximal pseudomonotone but has no equivalent upper sign-continuous op-
erator. Nevertheless, the following theorem shows that pseudomonotonicity “helps” con-
tinuity:

Theorem 3.7. Let T : R¥ — 28 pe pseudomonotone, upper sign-continuous on D (T'),
with compact convex values. Suppose that D (T) is an open convex set. Then there exists
an equivalent pseudomonotone operator T, with compact convex values which is upper
semicontinuous on D (T).

Proof. Define an operator T : D (T)\Zy — 28" by
Tox = {z*/ ||z*|| : " € Tz} ,x € D(T)\Zr.

We show that T} is upper semicontinuous (as a map defined only on D (T')\Zr): If
<xn, ”i—””> — (x,2*) with z, € D(T)\Zr, «} € Tz, and = € D (T)\Zr, then ||z*] =1

and by Proposition 3.5 applied to the original operator T', x* € Tx. Hence, z* € Tyr and
To is closed (as a map on D (T')\Zr). Since obviously 7j is locally bounded, it follows
that T is upper semicontinuous.

Define an operator T} : R¥ — 28" with domain D (T}) = D (T) as follows. If Zy # &, set
p(x) = d(z, Zr), the distance of z € R from the set Zr; otherwise, set p (z) = 1 for all
r € R*. Define
_J px)coToz, ifxe D(T)\Zr
he = { {0}, if 2 € Zr @)

(thus, 71 = co Ty whenever Zp # @). For all z € D (T') the set Ty« is compact and convex.
Also, Propositions 3.1 and 2.3 entail that Z7 is convex and closed in D (T'); hence the
function p () is strictly positive on D (T') \Zz and continuous on R¥.

For every z € D (T)\Zr and x* € Tix, there exist } € Tx and \; > 0,7 =1,2,...n,
with > . Ay = 1, such that

*

* xi
= p(a:)Z)\lm

i 7

If we set X, = N/ ||}, t; = N/ >, N, and a = p(x) >, N, then we get 2* =a)_, tix} €
R, Tx. Hence, Thx C R, Tx. Since we also have Tx C R, Tz, it follows that 77 ~ T.

Since Ty is upper semicontinuous, the operator coTy : D (T)\Zr — 2R is also upper
semicontinuous [8, Proposition 2.42], hence closed. Consequently, the restriction of 77 on
D (T)\Zr is closed, thus it is upper semicontinuous. Finally, for any x € Zy and any
e>0,ify € B(z,¢e) then TYy C B (z,¢) i.e., T} is upper semicontinuous at x. Therefore,
T} is upper semicontinuous on D (7). O

If T is single-valued, then T} defined by (7) is also single-valued. If T is radially continuous
(i.e., its restriction on straight line segments of D (T) is continuous) then it is certainly
upper sign-continuous. We deduce the following result:

Corollary 3.8. Let T : R¥ — R* be a single-valued, pseudomonotone operator with open,
convex domain. If T is radially continuous , then there exists a function f: D (T) — Ry
and a continuous operator Ty : D (T) — R* such that Tx = f (z) Tvx for all z € D (T).
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In the study of variational inequalities with single-valued pseudomonotone operators, a
set of assumptions which is frequently used to show existence of solutions for VIP(T', K)
is the following:

1. K C D(T) is weakly compact,

2. T is pseudomonotone,

3. The restriction of T" on finite-dimensional subspaces [4] (or: on one-dimensional sub-
spaces [14]) is continuous with respect to the w* topology on X*.

Actually, when the continuity assumption is that the restriction of 7" on finite-dimensional
subspaces is continuous, the following idea is used (see for instance [4]): for any finite-
dimensional subspace N that intersects K, if F is the projection on N and E* the adjoint
operator of E, then E*TE (i.e., the projection of 7" on E) is continuous; by the Hartman-
Stampachia Theorem, VIP(E*TE, N N K) has a solution. Then, a limit process ensures
the existence of a solution for VIP(T, K). The above corollary shows that whenever
K C int D (T), the same proof applies if we suppose that the projection of T on one-
dimensional subspaces is continuous; for in this case, we can replace E*T'E on each finite-
dimensional subspace by an equivalent continuous operator. Analogous considerations
are valid for multivalued operators.

As with monotone operators, lower semicontinuity implies a kind of single-valuedness for
pseudomonotone operators:

Proposition 3.9. Let T be a pseudomonotone operator, which is lower sign-continuous
at x € core D (T'). Then Tx = {0} or there exists x* € X* such that Tx C Ry x*.

Proof. Suppose that the conclusion is not true; then there exist * € Tz, y* € Tz\ {0}
such that there exists no A > 0 with 2* = Ay*. Hence there exists z € X such
that (z*,z) > 0 > (y*,2). In particular, inf,«cp, (u*,z) < 0. Since T is lower sign-
continuous and z € core D (T), we can find ¢ > 0 and w* € T (v +tz) such that
(w*,z) < 0. This implies that (w*,z — (z +tz)) > 0. Using pseudomonotonicity we
infer that (z*,x — (x +tz)) > 0, i.e., (z*, z) <0, a contradiction. O

We remark that the same proof applies to show that an analogous result holds for quasi-
monotone operators.

By applying the same proof as for monotone operators [11], we obtain:

Corollary 3.10. Let X be separable. If T : X — 2% is pseudomonotone, upper semi-
continuous on D (T') with w*-compact values and int D (T') # &, then the set C = {x €
X : Tx is not contained in {0} or Ry, x* for some x*} is of the first category.

Proof. The operator T : D (T) — 2% is nonempty valued, upper semicontinuous with
w*-compact values. Also, since X is separable, there exists a metrizable topology 7
on X* such that 7 is weaker than w*. Hence, according to [11, Corollary 1.4], the set
{z € X : T is not lower semicontinuous at =} is of the first category. Applying Proposi-
tion 3.9 we get the desired result. 0

An immediate consequence of the corollary is that, under its assumptions, there exists an
equivalent operator T} which is generically single-valued. For instance, this conclusion is
true under the assumptions of Theorem 3.7.
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