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Given a Banach space X, a multivalued operator T : X → 2X
∗
is called pseudomonotone (in Karamar-

dian’s sense) if for all (x, x∗) and (y, y∗) in its graph, 〈x∗, y − x〉 ≥ 0 implies 〈y∗, y − x〉 ≥ 0. We define an
equivalence relation on the set of pseudomonotone operators. Based on this relation, we define a notion
of “D-maximality” and show that the Clarke subdifferential of a locally Lipschitz pseudoconvex function
is D-maximal pseudomonotone. We generalize some well-known results on upper semicontinuity and
generic single-valuedness of monotone operators by showing that, under suitable assumptions, a pseu-
domonotone operator has an equivalent operator that is upper semicontinuous, generically single-valued
etc.
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1. Introduction

Pseudomonotone operators, as introduced by Karamardian [10], are defined by making
use of the order relation in R, without any reference to topological properties. This is
in sharp contrast to pseudomonotonicity in Brezis’ sense1 [1]. Another feature of these
operators is that they are closely related to generalized convexity, just like the relation of
monotone operators to convex functions; in fact, the subdifferential of a locally Lipschitz
function is pseudomonotone if and only if the function is pseudoconvex [12, 13].

Pseudomonotone operators have been the subject of intense study during the last decade.
Directions of research include the finding of criteria for pseudomonotonicity of differen-
tiable single-valued operators [2, 6] and the pseudomonotone variational inequality prob-
lem [14, 5, 7]. However, in contrast to the theory of monotone operators, which is very
rich, results on the structure of pseudomonotone operators are rare. For instance, it
is known that the subdifferential of a proper, lower semicontinuous convex function is
not only monotone, but also maximal monotone. Under some rather weak assumptions,
monotone operators are upper semicontinuous in the interior of their domain; also, they
are generically single-valued. It is a widely held belief that pseudomonotone operators do
not have such properties and that, in particular, maximality is not a relevant property
in generalized monotonicity, and in particular for pseudomonotone operators. Let us ten-

1In order to underline the distinction between pseudomonotone operators in the Karamardian and in the
Brezis sense, some authors use the terms order pseudomonotone and topologically pseudomonotone,
respectively.
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tatively define maximal pseudomonotone operators as those pseudomonotone operators
that admit no pseudomonotone extension other than themselves. Let f : R → R be a
continuously differentiable function such that f ′ (x) = 0 for x ∈ [a, b], f ′ (x) > 0 for x > b
and f ′ (x) < 0 for x < a. This function is pseudoconvex; its subdifferential is the single-
valued pseudomonotone operator Tx = {f ′ (x)} and it is not maximal pseudomonotone
in the above sense since the following operator is a pseudomonotone extension:

̂Tx =































]−∞, 0[ , x < a

]−∞, 0] , x = a

{0} , x ∈ (a, b)

[0,+∞[ , x = b

]0,+∞[ , x > b.

Note that ̂T has no pseudomonotone extension, ̂Tx has the same zeros as f ′ (i.e., f ′ (x) =

0 ⇐⇒ 0 ∈ ̂Tx), and whenever x is not a zero, ̂Tx consists of all positive multiples of
f ′ (x). Let us note also that given any pseudomonotone operator T , say single-valued,
the operator Sx = f (x)Tx where f is any positive function is also pseudomonotone. In
fact, it can also be seen that the two operators have the same solutions in a variational
inequality problem (see next section for details).

Based on these observations, we will define an equivalence relation on the set of pseu-
domonotone operators. The idea underlying the paper is that for any pseudomonotone
operator T , under assumptions similar to those of the monotone case, there might exist
an equivalent operator S with better properties; for instance, we will show that S may
be chosen to be upper semicontinuous, or generically single-valued. We will also define
“D-maximal pseudomonotonicityÔ by means of this equivalence, and show that the sub-
differential of a locally Lipschitz, pseudoconvex function is D-maximal pseudomonotone.

We begin by fixing the notation and recalling some definitions. Let X be a Banach space
and X∗ its dual. We denote by 〈x∗, x〉 the duality pairing of x ∈ X and x∗ ∈ X∗. For
C ⊆ X∗ and x ∈ X we set 〈C, x〉 = {〈x∗, x〉 : x∗ ∈ C} and write 〈C, x〉 ≥ a if 〈x∗, x〉 ≥ a
for all x∗ ∈ C. We denote by co (K) the convex hull of a subset K of X and by core (K)
its algebraic interior; K is called radially open if K = core (K). Given ε > 0, B (x, ε)
(resp. B [x, ε]) is the open (resp. closed) ball of radius ε around x ∈ X. For any K ⊆ X∗,
we set R+K = ∪t≥0tK and R++K = ∪t>0tK.

Given a locally Lipschitz function f : X → R ∪ {+∞}, the Clarke subdifferential ∂of is
defined at any x ∈ dom (f) by

∂of (x) = {x∗ ∈ X∗ : 〈x∗, d〉 ≤ f o (x; d)}

where

f o (x; d) = lim sup
t↘0,y→x

f (y + td)− f (y)

t
.

The locally Lipschitz function f is called pseudoconvex, if for every x ∈ dom (f) and
x∗ ∈ ∂of (x), the following implication holds:

〈x∗, y − x〉 ≥ 0 ⇒ f (y) ≥ f (x) .
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Given an operator T : X → 2X
∗
we denote by D (T ) its domain and by Gr (T ) its graph.

We call T upper sign-continuous at x ∈ D (T ) if for all v ∈ X, the following implication
holds:

∀t ∈ (0, 1) , inf
x∗
t∈T (x+tv)

〈x∗
t , v〉 ≥ 0 ⇒ sup

x∗∈Tx
〈x∗, v〉 ≥ 0.

This is a very weak kind of continuity. For instance, if the restriction of T on all straight
lines through x is upper semicontinuous with respect to the w∗ topology in X∗, then T
is upper sign-continuous at x. Also, any positive function f : R → R is upper sign-
continuous everywhere. Likewise, we call T lower sign-continuous at x ∈ D (T ) if for all
v ∈ X, the following implication holds:

∀t ∈ (0, 1) , inf
x∗
t∈T (x+tv)

〈x∗
t , v〉 ≥ 0 ⇒ inf

x∗∈Tx
〈x∗, v〉 ≥ 0.

Again, if the restriction of T on all straight lines through x is lower semicontinuous with
respect to the w∗ topology in X∗, then T is lower sign-continuous at x.

According to Karamardian [10], T is called pseudomonotone if for all (x∗, x) and (y, y∗)
in Gr (T ) the following implication holds:

〈x∗, y − x〉 ≥ 0 ⇒ 〈y∗, y − x〉 ≥ 0

or equivalently
〈x∗, y − x〉 > 0 ⇒ 〈y∗, y − x〉 > 0.

Given an operator T , we define the set of zeros of T by

ZT = {x ∈ X : 0 ∈ Tx} . (1)

2. Equivalent operators and maximal pseudomonotonicity

We will introduce an equivalence relation in the class of pseudomonotone operators. Given
two pseudomonotone operators T and S, we write T ∼ S if the following conditions hold:

(a) D (T ) = D (S),

(b) ZT = ZS,

(c) for all x ∈ X\ZT , R++Tx = R++Sx.

This equivalence is related to variational inequalities. Given a convex subset K of X, we
recall that x ∈ K is a solution of the variational inequality problem VIP(T,K) if there
exists x∗ ∈ Tx such that 〈x∗, y − x〉 ≥ 0 for all y ∈ K. Note that in case 0 ∈ Tx, x
is a solution of the VIP(T,K). It is obvious that whenever T ∼ S, x is a solution of
VIP(T,K) if and only if x is a solution of VIP(S,K).

A pseudomonotone operator T will be called D-maximal pseudomonotone if there exists
an equivalent pseudomonotone operator S which has no pseudomonotone extension with
the same domain, apart from itself. This means that if S ′ is a pseudomonotone operator
such that D (S ′) = D (S) and for all x ∈ X,Sx ⊆ S ′x, then S = S ′.

Let us now explore the equivalence relation. Given a pseudomonotone operator T , we
can construct an operator ̂T which is the maximum of its equivalent class with respect
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to graph inclusion. To do so, let us first remark that if we combine pseudomonotonicity
with the relation 〈0, y − x〉 ≥ 0, we deduce that the following implication holds:

x ∈ ZT ⇒ ∀y ∈ D (T ) , 〈Ty, y − x〉 ≥ 0. (2)

For any x ∈ ZT , set

LT,x = {y ∈ X : ∃y∗ ∈ Ty, 〈y∗, y − x〉 = 0}
= {y ∈ X : ∃y∗ ∈ Ty, 〈y∗, y − x〉 ≤ 0} .

The second equality is a consequence of (2). Let

NLT,x
= {x∗ ∈ X∗ : 〈x∗, y − x〉 ≤ 0,∀y ∈ LT,x}

be the normal cone of LT,x at x. Define the operator ̂T by

̂Tx =







NLT,x
, if x ∈ ZT

R++Tx, if x ∈ D (T ) \ZT

?, if x /∈ D (T ) .

Proposition 2.1. Let T : X → 2X
∗
be pseudomonotone. Then:

(i) ̂T is pseudomonotone.

(ii) ̂T ∼ T .

(iii) If S ∼ T then Gr (S) ⊆ Gr(̂T ).

(iv) S ∼ T if and only if ̂S = ̂T .

Proof. (i) Obviously, D(̂T ) = D (T ). Thus, we have to show that if x, y ∈ D (T ), x∗ ∈ ̂Tx

and 〈x∗, y − x〉 ≥ 0, then
〈

̂Ty, y − x
〉

≥ 0.

There exists x∗
1 ∈ Tx such that 〈x∗

1, y − x〉 ≥ 0 (if x ∈ ZT we may take x∗
1 = 0; if x /∈ ZT we

may take a positive multiple of x∗). Thus, by pseudomonotonicity of T , 〈Ty, y − x〉 ≥ 0.

We consider two cases. If y /∈ ZT this obviously implies that
〈

̂Ty, y − x
〉

≥ 0 and we are

done. If y ∈ ZT then from 〈x∗
1, y − x〉 ≥ 0 we deduce that x ∈ LT,y. It follows that for all

y∗ ∈ ̂Ty = NLT,y
(y) , 〈y∗, x− y〉 ≤ 0 thus we have again

〈

̂Ty, y − x
〉

≥ 0.

(ii) This is an obvious consequence of the definition of ̂T .

(iii) If S ∼ T then from the definitions we deduce that D (S) = D (T ) = D(̂T ). For all

x ∈ D (T ) \ZS, Sx ⊆ R++Sx = R++Tx = ̂Tx. Now let x ∈ ZS. We intend to prove that
LS,x ⊆ LT,x. Choose any y ∈ LS,x. If y ∈ ZS then y ∈ ZT thus 0 ∈ Ty and obviously
y ∈ LT,x. If y /∈ ZS then R++Sy = R++Ty. Since y ∈ LS,x, there exists y∗ ∈ Sy such
that 〈y∗, y − x〉 = 0. There exists also some y∗1 ∈ Ty which is a positive multiple of y∗;
this implies again that y ∈ LT,x. It follows that in all cases, LS,x ⊆ LT,x. By symmetry,

LS,x = LT,x. Thus, ̂Sx = ̂Tx and Sx ⊆ ̂Tx.
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(iv) If S ∼ T then ̂S = ̂T since by (iii) they are both maxima of the corresponding

equivalence class. Conversely, if ̂S = ̂T then S ∼ ̂S = ̂T ∼ T . £

As a consequence of Proposition 2.1, an operator T is D-maximal pseudomonotone if
and only if ̂T has no pseudomonotone extension with the same domain, apart from itself.
The following lemma gives a practical way to show that an operator is D−maximal
pseudomonotone.

Lemma 2.2. Let T be a pseudomonotone operator. Suppose that for any (x, x∗) ∈
(D (T ) \ZT ) × X∗ such that {(x, x∗)} ∪ Gr (T ) is the graph of a pseudomonotone op-
erator, one has x∗ ∈ R++Tx. Then T is D-maximal pseudomonotone. The converse is
also true, provided that D (T ) is convex.

Proof. Since D (T ) = D(̂T ), in order to show that T is D−maximal pseudomonotone, we

have to show that for any (x, x∗) ∈ D (T )×X∗ such that {(x, x∗)}∪Gr(̂T ) is the graph of

a pseudomonotone operator T1, one has x∗ ∈ ̂Tx. We consider two cases. If x ∈ ZT then
for all y ∈ LT,x there exists y∗ ∈ Ty such that 〈y∗, x− y〉 ≥ 0. By pseudomonotonicity

of T1, 〈x∗, x− y〉 ≥ 0. Hence x∗ ∈ NLT,x
= ̂Tx. Now suppose that x /∈ ZT . By the

assumption, we have again x∗ ∈ R++Tx = ̂Tx. Thus, ̂T is D-maximal pseudomonotone.

To show the converse, suppose that T is maximal pseudomonotone with convex domain,
and that for some (x, x∗) ∈ (D (T ) \ZT )×X∗, the operator S with graph {(x, x∗)}∪Gr (T )

is pseudomonotone. We will show that the operator S ′ with graph {(x, x∗)} ∪ Gr(̂T ) is

pseudomonotone. We have to show that if (y, y∗) ∈ Gr(̂T ) then the following implications
hold:

〈x∗, y − x〉 ≥ 0 ⇒ 〈y∗, y − x〉 ≥ 0 (3)

〈y∗, x− y〉 ≥ 0 ⇒ 〈x∗, x− y〉 ≥ 0. (4)

If 〈x∗, y − x〉 ≥ 0 then by pseudomonotonicity of S, 〈Ty, y − x〉 ≥ 0. If y /∈ ZT then

y∗ ∈ ̂Ty = R++Ty, hence 〈y∗, y − x〉 ≥ 0. If y ∈ ZT , set z = (x+ y) /2 and choose
some z∗ ∈ Tz. Since S is pseudomonotone, 〈x∗, y − x〉 ≥ 0 implies 〈z∗, z − x〉 ≥ 0, hence

〈z∗, y − z〉 ≥ 0 and z ∈ LT,y. Using y∗ ∈ ̂Ty = NLT,y
, we infer that 〈y∗, y − z〉 ≥ 0; hence

we have again 〈y∗, y − x〉 ≥ 0 and (3) holds.

Suppose that 〈y∗, x− y〉 ≥ 0. If y /∈ ZT then y∗ = λy∗1 for some λ > 0 and y∗1 ∈ Ty; by
pseudomonotonicity of S we infer that 〈x∗, x− y〉 ≥ 0. If y ∈ ZT then by (2) we have
again 〈x∗, x− y〉 ≥ 0. Hence (4) holds.

Consequently, S ′ is pseudomonotone. By assumption, ̂T has no pseudomonotone extension
apart from itself; hence S ′ = ̂T thus x∗ ∈ ̂Tx = R++Tx. £

The proof of the preceding lemma reveals that the converse is also true if, instead of
convexity of D (T ), we assume the following: for every x ∈ ZT and y ∈ D (T ), there is
ε > 0 such that [x, x+ ε (y − x)] ⊆ D (T ). Such an assumption can be further relaxed,
but not completely ommited, as shown by the following example: X = R, D (T ) = {0, 1},
T (0) = {−1}, T (1) = {0}. Then ̂T is given by ̂T (0) = ]−∞, 0[, ̂T (1) = R and admits no
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pseudomonotone extension with the same domain, thus T is D-maximal pseudomonotone.
Also, G (T ) ∪ {(0, 0)} is the graph of a pseudomonotone operator, but 0 /∈ ̂T (0).

By means of Zorn’s Lemma, it is easy to show that every pseudomonotone operator T
has a D-maximal pseudomonotone extension. Of course, this extension needs not be
equivalent to T . If it is, then T itself is D-maximal pseudomonotone.

D-maximal pseudomonotone operators have some nice properties. The following propo-
sition gives some useful information on the structure of the set of zeros:

Proposition 2.3. Let T be D−maximal pseudomonotone. Then ZT is weakly closed in
D (T ). If in addition D (T ) is convex, then ZT is convex.

Proof. We first prove the following claim: if z ∈ D (T ) is such that
〈

̂Ty, y − z
〉

≥ 0 for

all y ∈ D (T ), then z ∈ ZT . Indeed, the assumption implies that for every y∗ ∈ ̂Ty the
following implication is true:

〈0, y − z〉 ≥ 0 ⇒ 〈y∗, y − z〉 ≥ 0.

On the other hand we also have tautologically

〈y∗, z − y〉 ≥ 0 ⇒ 〈0, z − y〉 ≥ 0.

Hence, the operator with graphGr(̂T )∪{(z, 0)} is pseudomonotone. Since T isD-maximal

pseudomonotone, this implies that 0 ∈ ̂Tz, i.e., z ∈ Z
̂T = ZT and the claim is true.

Let (zi) be a net in ZT , weakly converging to z ∈ D (T ). By applying (2) to the pseu-

domonotone operator ̂T , we infer that for every y ∈ D (T ) and for all i’s,
〈

̂Ty, y − zi

〉

≥ 0

holds; It follows that
〈

̂Ty, y − z
〉

≥ 0 and, according to the claim, z ∈ ZT . Hence ZT

is weakly closed in D (T ). The fact that ZT is convex whenever D (T ) is convex can be
proved in the same way. £

Given a pseudomonotone operator T , define the operator coT by coTx = co (Tx) for
all x ∈ X. Luc and Jeyakumar [9] have noted that coT is also pseudomonotone. If we

apply this to ̂T we infer that co ̂T is a pseudomonotone extension of ̂T . Hence, if T is
D−maximal pseudomonotone, then ̂T = co ̂T . We arrive to the following conclusion:

Proposition 2.4. If T is D−maximal pseudomonotone, then ̂Tx is convex for all x ∈
D (T ).

In contrast to what one might expect having in mind the behavior of maximal monotone
operators, ̂Tx is not necessarily closed, since it may be a cone from which 0 has been
extracted. In fact, even ̂Tx ∪ {0} is not necessarily closed. As an example, consider the
operator T : R2 → 2R

2
with domain D (T ) = R×{0} defined by Tx = R++ ×R for every

x ∈ D (T ). It is easy to see that T admits no pseudomonotone extension with the same

domain, hence it is D-maximal pseudomonotone and T = ̂T . It is obvious that Tx ∪ {0}
is not closed. This is mainly due to the “thinnessÔ of D (T ); as we will see later, under
suitable assumptions this situation does not occur.
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3. D-maximal pseudomonotonicity and continuity.

The first proposition gives a criterion for D-maximal pseudomonotonicity.

Proposition 3.1. Let T be pseudomonotone and upper sign-continuous, D (T ) be radi-
ally open and Tx be w∗-compact and convex for all x ∈ D (T ). Then T is D−maximal
pseudomonotone.

Proof. If T is notD−maximal pseudomonotone, then by Lemma 2.2 there exists (x, x∗) ∈
(D (T ) \Z)×X∗ such that the operator T1 with graph GrT ∪ (x, x∗) is pseudomonotone
and x∗ /∈ R++Tx. Hence Tx∩R+x

∗ = ?. By the separation Theorem, there exists b ∈ X
such that 〈R+x

∗, b〉 > 〈Tx, b〉. Since R+x
∗ is a cone, this implies that

〈x∗, b〉 ≥ 0 > 〈Tx, b〉 . (5)

For t > 0 sufficiently small, 〈x∗, x+ tb− x〉 ≥ 0 and x+ tb ∈ D (T ); using that T1 is pseu-
domonotone, we infer that 〈T (x+ tb) , b〉 ≥ 0. By upper sign-continuity, supy∗∈Tx 〈y∗, b〉 ≥
0. However, by the w∗-compactness of Tx, (5) implies that supy∗∈Tx 〈y∗, b〉 < 0, a contra-
diction. Hence T is D−maximal pseudomonotone. £

Corollary 3.2. Let f : X → R∪{+∞} be a pseudoconvex, locally Lipschitz function.
Then ∂of is a D−maximal pseudomonotone operator.

Proof. Since f is locally Lipschitz, it follows that dom (f) is open. Also, it is known
that D (∂of) = dom (f), ∂of (x) is w∗-compact and convex for all x ∈ D (∂of), and ∂of
is upper semicontinuous in the strong-to-w∗ topology [3]. In particular, ∂of is upper sign-
continuous. In addition, ∂of is pseudomonotone [12, 13]. Hence, by Proposition 3.1, ∂of
is D−maximal. £

Remark. Let us call T “maximal pseudomonotoneÔ if ̂T has no pseudomonotone exten-
sion. In contrast to what holds for convex functions, ∂of is not maximal pseudomonotone
in general. For instance, if f is any locally Lipschitz pseudoconvex function with domain
]0, 1[, then the operator T defined by

Tx =







{−1} , x ≤ 0
̂∂of (x) , x ∈ ]0, 1[
{1} , x ≥ 1

is a pseudomonotone extension of ̂∂of , thus ∂of is not maximal pseudomonotone. This
is the reason why we focus our study on D−maximal pseudomonotone operators, rather
than maximal pseudomonotone ones.

We will prove that pseudomonotone operators have a property which reminds of the so-
called M-property of operators [8]. We first need two lemmas that establish a small but
necessary refinement of the argument used in Proposition 3.1.

Lemma 3.3. Let x∗ ∈ X∗\ {0} and C ⊆ X∗ be nonempty, w∗-compact and convex. If
C ∩ R+x

∗ = ?, then there exists b ∈ X such that 〈x∗, b〉 > 0 > 〈C, b〉.

Proof. Set K = R+C. Then K is a closed convex cone and x∗ /∈ K. Let d > 0 be the
distance of x from K. Then D := R+B [x∗, d/2] is a closed convex cone and it can be



466 N. Hadjisavvas / Continuity and Maximality Properties of Pseudomonotone ...

easily seen that D ∩ C = ?. By the separation Theorem, there exists b ∈ X such that
〈D, b〉 > 〈C, b〉. Since D is a cone, it follows that 〈D, b〉 ≥ 0 > 〈C, b〉. Finally, using
x∗ ∈ intD we infer that 〈x∗, b〉 > 0 > 〈C, b〉. £

Lemma 3.4. Assumptions as in Proposition 3.1. Let (x, x∗) ∈ (D (T ) \Z) × (X∗\ {0})
be such that the following implication holds for all (y, y∗) ∈ Gr (T ):

〈x∗, y − x〉 > 0 ⇒ 〈y∗, y − x〉 ≥ 0. (6)

Then x∗ ∈ ̂Tx.

Proof. Suppose that x∗ /∈ ̂Tx. Since 0 /∈ Tx, this implies that Tx ∩ R+x
∗ = ?. Using

the previous lemma we deduce that there exists b ∈ X such that

〈x∗, b〉 > 0 > 〈Tx, b〉 .

For all t > 0 sufficiently small, x + tb ∈ D (T ). Since 〈x∗, x+ tb− x〉 > 0, from (6) we
infer that 〈T (x+ tb) , b〉 ≥ 0. We conclude as in the proof of Proposition 3.1. £

Proposition 3.5. Assumptions as in Proposition 3.1. Let (xi, x
∗
i ) ∈ GrT and ai > 0, i ∈

I be nets such that w∗-lim aix
∗
i = x∗ 6= 0, w-limxi = x ∈ D (T ) \Z, and lim sup 〈aix∗

i , xi〉 ≤
〈x∗, x〉. Then x∗ ∈ ̂Tx.

Proof. Let y ∈ D (T ) be such that 〈x∗, y − x〉 > 0. Using the assumptions we infer that
lim 〈aix∗

i , y〉 > lim sup 〈aix∗
i , xi〉, hence for sufficiently large i, ai 〈x∗

i , y − xi〉 > 0. Since T
is pseudomonotone, 〈y∗, y − xi〉 > 0 for all y∗ ∈ Ty. Thus, 〈y∗, y − x〉 ≥ 0. The result
follows from Lemma 3.4. £

If T satisfies the assumptions of Proposition 3.1 then we know that it is D-maximal
pseudomonotone; hence, according to Corollary 2.4, ̂T has convex values. Actually, ̂Tx∪
{0} is a closed convex cone:

Corollary 3.6. Assumptions as in Proposition 3.1. Then ̂Tx ∪ {0} is w∗-closed for all
x ∈ D (T ).

Proof. If x ∈ ZT then it is obvious that ̂Tx is a w∗-closed convex cone. Suppose that
x ∈ D (T ) \ZT . Let x

∗
i ∈ ̂Tx, i ∈ I be a net such that w∗-limx∗

i = x∗ 6= 0. Then x∗
i = aiy

∗
i

for some ai > 0 and y∗i ∈ Tx. If we apply Proposition 3.5 to the net (x, y∗i ) we infer that

x∗ ∈ ̂Tx. Hence ̂Tx ∪ {0} is w∗-closed. £

It is known that a maximal monotone operator is upper semicontinuous on the interior
of its domain, with respect to the w∗- topology in X∗. However, it is not true that a
D−maximal pseudomonotone operator has an equivalent operator which is even upper
sign-continuous. For instance, on R2 take

T (x, y) =

{

(0, 1) if y ≥ 0
(1, 1) if y < 0.
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Then T is D-maximal pseudomonotone but has no equivalent upper sign-continuous op-
erator. Nevertheless, the following theorem shows that pseudomonotonicity “helpsÔ con-
tinuity:

Theorem 3.7. Let T : Rk → 2R
k
be pseudomonotone, upper sign-continuous on D (T ),

with compact convex values. Suppose that D (T ) is an open convex set. Then there exists
an equivalent pseudomonotone operator T1 with compact convex values which is upper
semicontinuous on D (T ).

Proof. Define an operator T0 : D (T ) \ZT → 2R
k
by

T0x = {x∗/ ‖x∗‖ : x∗ ∈ Tx} , x ∈ D (T ) \ZT .

We show that T0 is upper semicontinuous (as a map defined only on D (T ) \ZT ): If
(

xn,
x∗
n

‖x∗
n‖

)

→ (x, x∗) with xn ∈ D (T ) \ZT , x
∗
n ∈ Txn and x ∈ D (T ) \ZT , then ‖x∗‖ = 1

and by Proposition 3.5 applied to the original operator T , x∗ ∈ ̂Tx. Hence, x∗ ∈ T0x and
T0 is closed (as a map on D (T ) \ZT ). Since obviously T0 is locally bounded, it follows
that T0 is upper semicontinuous.

Define an operator T1 : Rk → 2R
k
with domain D (T1) = D (T ) as follows. If ZT 6= ?, set

ρ (x) = d (x, ZT ), the distance of x ∈ Rk from the set ZT ; otherwise, set ρ (x) = 1 for all
x ∈ Rk. Define

T1x =

{

ρ (x) coT0x , if x ∈ D (T ) \ZT

{0} , if x ∈ ZT
(7)

(thus, T1 = coT0 whenever ZT 6= ?). For all x ∈ D (T ) the set T1x is compact and convex.
Also, Propositions 3.1 and 2.3 entail that ZT is convex and closed in D (T ); hence the
function ρ (x) is strictly positive on D (T ) \ZT and continuous on Rk.

For every x ∈ D (T ) \ZT and x∗ ∈ T1x, there exist x∗
i ∈ Tx and λi > 0, i = 1, 2, . . . n,

with
∑

i λ1 = 1, such that

x∗ = ρ (x)
∑

i

λi
x∗
i

‖x∗
i ‖
.

If we set λ′
i = λi/ ‖x∗

i ‖ , ti = λ′
i/
∑

i λ
′
i and a = ρ (x)

∑

i λ
′
i, then we get x∗ = a

∑

i tix
∗
i ∈

R++Tx. Hence, T1x ⊆ R++Tx. Since we also have Tx ⊆ R++T1x, it follows that T1 ∼ T .

Since T0 is upper semicontinuous, the operator coT0 : D (T ) \ZT → 2R
k
is also upper

semicontinuous [8, Proposition 2.42], hence closed. Consequently, the restriction of T1 on
D (T ) \ZT is closed, thus it is upper semicontinuous. Finally, for any x ∈ ZT and any
ε > 0, if y ∈ B (x, ε) then T1y ⊆ B (x, ε) i.e., T1 is upper semicontinuous at x. Therefore,
T1 is upper semicontinuous on D (T ). £

If T is single-valued, then T1 defined by (7) is also single-valued. If T is radially continuous
(i.e., its restriction on straight line segments of D (T ) is continuous) then it is certainly
upper sign-continuous. We deduce the following result:

Corollary 3.8. Let T : Rk → Rk be a single-valued, pseudomonotone operator with open,
convex domain. If T is radially continuous , then there exists a function f : D (T ) → R++

and a continuous operator T1 : D (T ) → Rk such that Tx = f (x)T1x for all x ∈ D (T ).
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In the study of variational inequalities with single-valued pseudomonotone operators, a
set of assumptions which is frequently used to show existence of solutions for VIP(T,K)
is the following:

1. K ⊆ D (T ) is weakly compact,

2. T is pseudomonotone,

3. The restriction of T on finite-dimensional subspaces [4] (or: on one-dimensional sub-
spaces [14]) is continuous with respect to the w∗ topology on X∗.

Actually, when the continuity assumption is that the restriction of T on finite-dimensional
subspaces is continuous, the following idea is used (see for instance [4]): for any finite-
dimensional subspace N that intersects K, if E is the projection on N and E∗ the adjoint
operator of E, then E∗TE (i.e., the projection of T on E) is continuous; by the Hartman-
Stampachia Theorem, VIP(E∗TE,N ∩K) has a solution. Then, a limit process ensures
the existence of a solution for VIP(T,K). The above corollary shows that whenever
K ⊆ intD (T ), the same proof applies if we suppose that the projection of T on one -
dimensional subspaces is continuous; for in this case, we can replace E∗TE on each finite-
dimensional subspace by an equivalent continuous operator. Analogous considerations
are valid for multivalued operators.

As with monotone operators, lower semicontinuity implies a kind of single-valuedness for
pseudomonotone operators:

Proposition 3.9. Let T be a pseudomonotone operator, which is lower sign-continuous
at x ∈ coreD (T ). Then Tx = {0} or there exists x∗ ∈ X∗ such that Tx ⊆ R++x

∗.

Proof. Suppose that the conclusion is not true; then there exist x∗ ∈ Tx, y∗ ∈ Tx\ {0}
such that there exists no λ > 0 with x∗ = λy∗. Hence there exists z ∈ X such
that 〈x∗, z〉 ≥ 0 > 〈y∗, z〉. In particular, infu∗∈Tx 〈u∗, z〉 < 0. Since T is lower sign-
continuous and x ∈ coreD (T ), we can find t > 0 and w∗ ∈ T (x+ tz) such that
〈w∗, z〉 < 0. This implies that 〈w∗, x− (x+ tz)〉 > 0. Using pseudomonotonicity we
infer that 〈x∗, x− (x+ tz)〉 > 0, i.e., 〈x∗, z〉 < 0, a contradiction. £

We remark that the same proof applies to show that an analogous result holds for quasi-
monotone operators.

By applying the same proof as for monotone operators [11], we obtain:

Corollary 3.10. Let X be separable. If T : X → 2X
∗
is pseudomonotone, upper semi-

continuous on D (T ) with w∗-compact values and intD (T ) 6= ?, then the set C = {x ∈
X : Tx is not contained in {0} or R++x

∗ for some x∗} is of the first category.

Proof. The operator T : D (T ) → 2X
∗
is nonempty valued, upper semicontinuous with

w∗-compact values. Also, since X is separable, there exists a metrizable topology τ
on X∗ such that τ is weaker than w∗. Hence, according to [11, Corollary 1.4], the set
{x ∈ X : T is not lower semicontinuous at x} is of the first category. Applying Proposi-
tion 3.9 we get the desired result. £

An immediate consequence of the corollary is that, under its assumptions, there exists an
equivalent operator T1 which is generically single-valued. For instance, this conclusion is
true under the assumptions of Theorem 3.7.
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