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This paper describes a class of convex closed sets, S, in Rn for which the following property holds: for
every correspondence defined on a probability space with relative open values in S its integral is a relative
open subset of S. It turns out, that the only closed convex sets in Rn having this property are generalized
polyhedral convex sets. In particular, the only compact convex sets in Rn having this property are
polytopes.
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1. Introduction

This note describes a class of closed convex sets, S, in Rn for which the following property
holds: for every correspondence defined on a probability space with relative open values in
S its integral is a relative open subset of S. It turns out, that the only convex closed sets in
Rn having this property (named in sequel the relative openness of integral property, r.o.i.
property,) are generalized polyhedral convex sets (see Definition 2.1 below). In particular,
the only compact convex sets in Rn having the r.o.i. property are polytopes.

This study bears on a theorem on the integral of correspondences due to Grodal [1].
Grodal used this theorem to study the closedness and continuity of the core and the set
of Pareto optimal allocations.

First, we formulate here a result which drops the convexity assumption in Grodal’s the-
orem on correspondences. Its proof can be found in Husseinov [2], where it is used to
strengthen Grodal’s results on the core and Pareto optimal allocations to economies with
nonconvex preferences. We start with some notations. As usual, A4A′ = (A\A′)∪(A′\A)
is the symmetric difference of two sets A and A′. ∂X, intX, riX, and coX will denote
the boundary, interior, relative interior and convex hull of a set X in Rn, respectively.
The set of all positive integers is denoted by N. For a correspondence F : T → Rn,
where (T,Σ, µ) is a measure space, and a µ−measurable set A ⊂ T we use a short nota-
tion

∫

A
F for

∫

A
F (t)dµ(t). Instead of

∫

T
F we write

∫

F. We denote as LF the set of all
integrable selections of correspondence F.

Theorem 1.1. Let (T,Σ, µ) be a measure space and let X : T → Rn be a measurable
convex-valued correspondence. Let furthemore, ϕ : T → Rn be a measurable correspon-
dence such that ϕ(t) is a relative open subset of X(t) almost everywhere on T. Then

int (

∫

Xdµ) ∩ (

∫

ϕdµ) = int (

∫

ϕdµ).
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This theorem allows to strengthen Grodal’s results on the continuity of the core and the
Pareto optimal allocations of economies with nonconvex preferences.

A natural question concerning Theorem 1.1 is the following. Is it true that under the
assumptions of Theorem 1.1,

∫

ϕdµ is a relative open subset in
∫

Xdµ? The following
simple example shows that the answer is in negative.

Example 1.2. Let D be a closed circle in R2 of radius 1 and with the center at point
(0, 1). Define ϕ : (0, 1] → D by ϕ(t) = {x ∈ D : ||x|| < t} for t ∈ (0, 1]. Clearly,

0 ∈
∫ 1

0
ϕ(t)dt, but 0 is not a relative interior point of

∫ 1

0
ϕ(t)dt in D. In fact, no point

of ∂D, except 0, belongs to
∫ 1

0
ϕ(t)dt. Indeed, take a ∈ ∂D, a 6= 0, and assume, on the

contrary, a ∈
∫ 1

0
ϕ(t)dt. Then there exists f ∈ Lϕ such that a =

∫ 1

0
f(t)dt. Denote by

L the line tangent to D at a. Then if f(t) 6∈ L on a set of positive measure, we would

have a =
∫ 1

0
f(t)dt 6∈ L. So f(t) ∈ L for almost all t ∈ (0, 1]. Since L ∩ D = {a}, and

ϕ(t) ⊂ D for all t ∈ (0, 1], it follows that f(t) = a almost everywhere on (0, 1]. So, we
obtain a ∈ ϕ(t) almost everywhere on (0, 1]. But from the definition of ϕ(t) we have
a 6∈ ϕ(t) for t ∈ (0, ||a||). This contradiction proves the assertion.

In mathematical economics correspondences with values in a convex (polyhedral) cone,
frequently arise. For example, in the classical model of economy involving finitely many
(n) different commodities the commodity space is assumed to be the nonnegative orthant
Rn

+. So, the above question is of particular interest, from the viewpoint of mathematical
economics, in the case, where X(t) = X is a convex (polyhedral) cone. The idea of
Example 1.2 can be extended to show that the answer, in general, is still in negative.

Example 1.3. Put D1 = {x ∈ R3 : x2
1 + x2

2 ≤ 1 and x3 = 1} , and let C be a cone
generated by D1. Define ϕ : (0, 1] → C in the following way

ϕ(t) = C ∩H(t)

where H(t) is that of the two open half-spaces in R3 defined by the plane through point
a(t) = (1, 0, 1 + t) and coordinate axis 0x2, which contains the point (1, 0, 0). Clearly,

a(0) = (1, 0, 1) ∈ ϕ(t) for every t ∈ (0, 1]. Hence (1, 0, 1) ∈
∫ 1

0
ϕ(t)dt. But obviously,

no point from the relative boundary of D1 except (1, 0, 1) belongs to
∫ 1

0
ϕ(t)dt. Hence,

(1, 0, 1) is not a relative interior point of
∫ 1

0
ϕ(t)dt in C.

2. Characterization of polyhedral convex sets

We will show that the answer to the above question is in positive in the case of a polyhedral
convex cone. Moreover, it will be shown here that for every polyhedral convex set P in
Rn the following property holds: for an arbitrary probability space (T,Σ, µ), and for an
arbitrary correspondence ϕ : T → P with relative open values in P, its integral

∫

ϕ is
a relative open subset of P. It turns out, that polyhedral convex sets form the maximal
class of sets in Rn possessing this property. To formulate this result we need the following
definition.

Definition 2.1. A set P in Rn is said to be a generalized polyhedral convex set if for each
a > 0, the intersection Ca ∩ S, where Ca = [−a, a]n, is a polytope.

Now we are ready to formulate a theorem which characterizes sets with the r.o.i. property.
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Before we introduce two notions that are used in a proof of this theorem.

Definition 2.2. A local cone with the vertex x is an intersection of a convex cone with
the vertex at x and an open ball with the center at x.

Definition 2.3. A set S in Rn is said to be locally conical if for each x ∈ S there exsits
an open ball Br(x) with center at x such that Br(x) ∩ S is a local cone with vertex at x.

Theorem 2.4. A convex closed set P in Rn possesses the relative openness of integral
property, if and only if it is a generalized polyhedral convex set.

Proof. Without loss of generality, we assume that P has the full dimension n. First show
that if a set P in Rn is a generalized polyhedral set, then it possesses the r.o.i. property.
This will be done in five steps. Proofs of steps 1,3 and 4 are carried by induction on the
dimension n. In all three proofs the case n = 1 is simple.

Step 1. For every two relative open subsets A,B in P and α, β ≥ 0, α + β = 1, the set
αA+ βB is relative open in P.

Indeed, let z ∈ αA+ βB. Then z = αx+ βy for some x ∈ A, y ∈ B. If either x or y is an
interior point of P, then obviously, z is an interior point of αA+ βB. Assume x, y ∈ ∂P.
Then two cases are possible: x = y and x 6= y. Consider the case x = y. Then there
exists r > 0 such that Br(x) ∩ P ⊂ A ∩ B. Since A ∩ B ⊂ αA + βB it follows that
Br(x) ∩ P ⊂ αA+ βB. That is x is a relative interior point of αA+ βB. Let now x 6= y.
We will consider two subcases (a) z ∈ int P and (b) z ∈ ∂P.

(a) Denote (x, y) = {(1 − t)x + ty|0 < t < 1}. If z ∈ int P, then there exists x′, y′ ∈
(x, y) ⊂ int P such that x′ ∈ A, y′ ∈ B and z = αx′ + βy′. Then there exists r > 0 such
that Br(x

′) ⊂ A and Br(y
′) ⊂ B. Clearly, Br(z

′) = αBr(x
′) + βBr(y

′) ⊂ αA+ βB. So, z
is an interior point of αA+ βB.

(b) Let z ∈ ri F, where F is a maximal proper face of P. Let A0 ⊂ A and B0 ⊂ B be two
convex relative open subsets in P containing x and y, respectively. Then by the induction
assumption B̄r(z) = Br(z)∩F ⊂ αA0+βB0 for some r > 0. Since A0 and B0 are relative
open, there are x0 ∈ A0 \F and y0 ∈ B0 \F. Then αx0 + βy0 ∈ (αA0 + βB0) \F. Clearly,
co ({αx0 + βy0} ∪ B̄r(z)) ⊂ αA0 + βB0 is a neighborhood of z in P which is contained in
αA0 + βB0. So, z is a relative interior point of αA+ βB. Let z ∈ αA+ βB belong to the
relative interior of a face F of dimension smaller than n− 1. Let Fj (j = 1, ...,m) be the
collection of all maximal proper faces of P containing F. By the induction assumption
there exists a convex relative open set Uj ⊂ Fj, z ∈ Uj, such that Uj ⊂ αA + βB (j =
1, ...,m). Put U = co (∪m

j=1Uj), and show that U ⊂ αA+βB (j = 1, ...,m). This will finish

the proof, because , since Uj are relative open in Fj (j = 1, ...,m), we have that U is
relative open in P. Let u ∈ U. Then u =

∑m
j=1 γjuj, for some uj ∈ Uj (j = 1, ...,m), γj ≥

0 and
∑m

j=1 γj = 1. Then uj = αxj+βyj for some xj ∈ A, yj ∈ B (j = 1, ...,m). It follows

that

u =
m
∑

j=1

γjuj = α
m
∑

j=1

γjxj + β
m
∑

j=1

γjyj = αx+ βy,

where x =
∑m

j=1 γjuj ∈ A0 and y =
∑m

j=1 γjyj ∈ B0. So, x ∈ A, y ∈ B, and hence

u ∈ αA+ βB. So, Step 1 is proved.
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Step 2. It follows easily from Step 1 that for an arbitrary finitely many open sets
A1, ..., Am ⊂ P and α1, ..., αm ≥ 0,

∑m
j=1 αj = 1,

∑m
j=1 αjAj is relative open in P.

Indeed, assume that the assertion is correct for less thanm sets. If some of αj is zero, then
by the induction assumption

∑m
j=1 αjAj is relative open in P. Assume αj > 0, j = 1, ...,m.

Then
m
∑

j=1

αjAj = αmAm + β
m−1
∑

j=1

αj

β
Aj, where β =

m−1
∑

j=1

αj.

By the induction assumption B =
∑m−1

j=1
αj

β
Aj is relative open in P. Then by Step 1,

∑m
j=1 αjAj = αmAm + (1− αm)B is relative open in P.

Step 3. Let A1, A2, ... be a sequence of relative open sets in P and
∑∞

j=1 αj a nonnegative

series with sum 1. Then
∑∞

j=1 αjAj is a relative open subset of P.

Without loss of generality, we can assume that Aj (j ∈ N) are convex. Let x =
∑∞

j=1 αjxj, where xj ∈ Aj (j ∈ N), be an arbitrary point in
∑∞

j=1 αjAj. If x is an

interior point of P, then by Theorem 1.1, x is an interior point of
∑∞

j=1 αjAj. Let now x

be a relative interior point of some (n − 1)−face F of P. Since Bj = Aj ∩ F (j ∈ N) is
relative open in F, by the induction assumption x is an interior point of

∑∞
j=1 αjBj in F.

Let a1, ..., an be affinely independent points in
∑∞

j=1 αjBj such that x ∈ ri co {a1, ..., an}.
For every j ∈ N fix a point x′

j ∈ Aj \ F such that ||x′
j − xj|| < 1

2j
(j ∈ N). Then

clearly, the series
∑∞

j=1 αjx
′
j is convergent and its sum, x′ 6∈ F. Since

∑∞
j=1 αjAj is convex

and a1, ..., an, x
′ ∈

∑∞
j=1 αjAj, the simplex Σ with vertices at these points is contained

in
∑∞

j=1 αjAj. Clearly, Σ is a neighborhood of x in P. Hence x is an interior point of
∑∞

j=1 αjAj relative to P.

Let now x ∈ ri F, where F is a face of P of dimension smaller than n − 1, and let
Fk (k = 1, ...,m) be the collection of all (n − 1)− dimensional faces of P containing x.
Then by the induction assumption x is an interior point of

∑∞
j=1 αj(Aj∩Fk) (k = 1, ...,m)

relative to Fk, that is there exists Uk (k = 1, ...,m) a convex neighborhood of x in Fk

such that Uk ⊂
∑∞

j=1 αjAj. Since Aj (j ∈ N) are convex,
∑∞

j=1 αjAj is convex. Then

co (∪m
k=1Uk), which is a neighborhood of x in

∑∞
j=1 αjAj, is contained in

∑∞
j=1 αjAj.

Step 4. In this step we show that for a generalized polyhedral set P, an atomless prob-
ability space (T,Σ, µ) and a correspondence ϕ : T → P with relative open values,

∫

ϕ is
relative open in P.

Take z ∈
∫

ϕ. Let x ∈ Lϕ be such that z =
∫

x. If z is an interior point of P, then by

Theorem 1.1, z ∈ int (
∫

ϕ). Let z ∈ ∂P, and let Fj (j = 1, ...,m) be the collection of all
maximal proper faces of P containing z. Since z ∈ Fj (j = 1, ...,m), it follows that for
some measurable set T0 ⊂ T of full measure, x(t) ∈ ∩m

j=1Fj for all t ∈ T0. Since set ϕ(t)

is relative open in P, sets ϕj(t) = ϕ(t) ∩ Fj are relative open in Fj (j = 1, ...,m) for all
t ∈ T0. Extend ϕj (j = 1, ...,m) into T putting ϕj(t) = Fj (j = 1, ...,m) for t ∈ T \ T0.
Then ϕj : T → Fj (j = 1, ...,m) are measurable correspondences with nonempty relative
open values. By the induction assumption, set

∫

ϕj is relative open in Fj for j = 1, ...,m.

Since z ∈
∫

ϕj (j = 1, ...,m), there exist relative open sets Uj ⊂ Fj (j = 1, ...,m) such that

z ∈ Uj ⊂
∫

ϕj (j = 1, ...,m). Clearly U = co (∪m
j=1Uj) is a neighborhood of z in P. Since
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set ϕj(t) ⊂ ϕ(t) almost everywhere on T, we have Uj ⊂
∫

ϕ (j = 1, ...,m). By Lyapunov

Theorem [3],
∫

ϕ is a convex set. Hence it contains U. So z is a relative interior point of
∫

ϕ.

Step 5. This step concludes the proof of the fact that every generalized polyhedral convex
set possesses the r.o.i. property.

Let Ak (k ∈ M), where M ⊂ N, be the set of all atoms in T and let T0 = T \ (∪k∈MAk).
Then

∫

ϕ =
∫

T0
ϕ +

∑

k∈M αkϕk, where ϕk = ϕ(Ak) for k ∈ M. Denote α0 = µ(T0). If

α0 > 0 denote µ0(E) = 1
α
µ(E) for sets from Σ(T0), where Σ(T0) = {E ∈ Σ : E ⊂ T0}.

Then (T0,Σ(T0), µ0) is a probability space and by Step 4, ϕ0 =
∫

T0
ϕdµ0 is a relative open

subset of P. Obviously, ϕ0 =
∫

T0
ϕdµ0 =

1
α0

∫

T0
ϕdµ. So

∫

ϕ = α0ϕ0 +
∑

k∈M αkϕk, where

ϕk (k ∈ M0) are relative open sets in P, and αk > 0,
∑

k∈M0
αk = 1. By Step 3,

∫

ϕ is a
relative open subset of P.

In the next two steps we show that if a set P in Rn possesses the r.o.i. property, then it
is a generalized polyhedral convex set.

Step 6. If a convex closed set P in Rn possesses the r.o.i.p. then P is locally conical.

Obviously, P is locally conical at x ∈ int P. Assume P is not locally conical at x ∈ ∂P.
Then for each ε > 0 there exists xε ∈ Bε(x) ∩ (∂P ) such that [x, xε] 6⊂ ∂P. Let Hε be
a supporting hyperplane of P at xε. Then x 6∈ Hε. Otherwise, [x, xε] ⊂ Hε, and hence
[x, xε] ⊂ ∂P. Define ϕ : (0, 1] → P, putting ϕ(t) = Bt(x) ∩ P for t ∈ (0, 1]. It is easily
shown that xε 6∈

∫

ϕ for all ε > 0. Indeed, since x 6∈ Hε, x belongs to the open half-
space H+

ε defined by Hε, closure of which contains P. Then there exists r > 0 such that
Br(x) ⊂ H+

ε . Since ϕ(t) ⊂ Bt(x) for each t ∈ (0, 1] it follows that ϕ(t) ⊂ H+
ε for t ∈ (0, r].

This implies that for y(·) ∈ Lϕ,
∫

y ∈ H+
ε . Since xε 6∈ H+

ε , we have from here xε 6∈
∫

ϕ

for all ε > 0. So {xε : ε > 0} ∩ (
∫

ϕ) = ∅, and ||xε − x|| < ε for all ε > 0. That is,

we have points in P arbitrarily close to x, not lying in
∫

ϕ. Therefore x is not a relative

interior point of
∫

ϕ. Thus, P does not possess the r.o.i. property. So, we have showed
that if P possesses the r.o.i. property, then P is locally conical.

Step 7. A locally conical convex closed set is a generalized polyhedral convex set.

So, let P be a locally conical convex closed set. Then P ∩ [−a, a]n, as the intersection of
two locally conical sets, is locally conical for every a > 0. Hence, it suffices to show that
every locally conical convex compact set P is a polytope. Show that every extreme point
x in P is isolated. Let C = Br(x) ∩ P be a local cone with the vertex at x. Then for an
arbitrary point y ∈ C, y 6= x we have y ∈ ri{(1− t)x+ ty|t ∈ [0, b]} ⊂ C for some number
b > 1. So y is not an extreme point of C. We conclude that x is the only extreme point of
P in Br(x). Since P is compact and every extreme point in P is isolated it follows that
P has only finitely many extreme points. Indeed, assume that there are infinitely many
extreme points in P. Then by compactness of P, we have that there exists a convergent
sequence {xk} of extreme points with xk 6= xl for k 6= l. Let xk → x. Since P is locally
conical, there exists r > 0, such that C = Br(x)∩ P is a local cone. For sufficiently large
index k̄ we have xk̄ ∈ Br(x). Since xk̄ is an extreme point of P, it is an extreme point of
C. But we showed above that in the local cone C all points, perhaps except x, are not
extreme points. The obtained contradiction proves that P has only finitely many extreme
points. According to the representation theorem [4, Theorem 18.5] P is the convex hull
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of its extreme points. Then P is a polytope. The theorem is proved.

Theorem 2.4 contains the following characterization of polytopes.

Corollary 2.5. A convex compact set in Rn is a polytope if and only if it possesses the
relative openness of integral property.

When P is a cone in Rn Theorem 2.4 implies the following

Corollary 2.6. A convex closed cone in Rn is polyhedral if and only if it possesses the
relative openness of integral property.
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