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This paper gives some general criteria for recognizing minmax convex pairs, i.e. pairs (X,Y ) of con-
vex subsets of a Hilbert space for which the bilinear minmax equality infx∈X supy∈Y 〈x, y〉 = supy∈Y

infx∈X〈x, y〉 holds. Based on new notions of normality, consistency, closure feasibility and bound-
ary negligibility of pairs of convex sets, such criteria yield new minmax equalities besides the old ones.
Included are the celebrated Classical Minmax Theorem (von Neumann 1928, [8] and Kneser 1952, [7])
for bounded, closed convex sets, Fenchel’s Minmax Theorem for polyhedral convex sets (Fenchel 1951,
[2]), the Fenchel Minmax Theorem for strongly feasible pairs of convex sets (Borwein, Lewis [1]) and
new minmax theorems (for locally compact sets, for polar sets,. . . ). In the last section minmax convex
pairs are used to characterize bounded, closed convex sets. Further investigation on minmax convex
pairs relatively to closed hyperplanes and on attainment of extrema in their associated bilinear minmax
equalities are left to subsequent papers, [3], [4] respectively.

1. Two criteria for minmax convex pairs

Let E be a (real) Hilbert space with inner product 〈·, ·〉. A couple (X, Y ) of nonempty
convex subsets of E is called a minmax (convex) pair, whenever the following equality

(bilinear minmax equality) inf
x∈X

sup
y∈Y

〈x, y〉 = sup
y∈Y

inf
x∈X

〈x, y〉

holds. Let δ+Y be the convex (or upper) support function of Y, and δ−X the concave (or
lower) support function of X, from E to extended real line R := R ∪ {±∞}, defined by

(support functions) δ+Y (x) := sup
y∈Y

〈x, y〉 and δ−X(y) := inf
x∈X

〈x, y〉.

A pair (X, Y ) is declared consistent if1

(A)

{

either ∀ ε ∈ R++ infBε(X) δ
+
Y < +∞ (inf-consistency)

or ∀ ε ∈ R++ supBε(Y ) δ
−
X > −∞ (sup-consistency).

A pair (X, Y ) is said to be normal if the following two properties hold:

(B) infX δ+Y = supε>0 infBε(X) δ
+
Y (inf-normality),

∗This research was undertaken at the Universidad de Tarapacá (Arica, Chile), Department of Mathe-
matics in the August 2000; I thank H. Román-Flores and A. Flores-Franulič for financial support, great
hospitality and for stimulating discussions.
1R++ := {t ∈ R : t > 0}. And Bε(X) := X + Bε(0), Bε(Y ) := Y + Bε(0) are open neighborhoods of
X,Y, generated by the ball Bε(0) := {v ∈ E : ‖v‖ < ε} with radius ε > 0.
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(C) supY δ−X = infε>0 supBε(Y ) δ
−
X (sup-normality).

Theorem 1.1 (A minmax criterion for consistent pairs of convex sets).
A couple of nonempty convex subsets of a Hilbert space is a minmax pair iff it is consistent
and normal.

The properties (A) consistency, (B) inf-normality and (C) sup-normality which charac-
terize minmax convex pairs, are independent (see the following examples A, B and C,
respectively). And, the extrema in the bilinear minmax equality, associated to a minmax
convex pair, are not necessary attained. This can be seen from example D.

(Ex A) Set E := R2, X := {(a, b) ∈ R2 : a = 1, b ≥ 1} and Y := {(a, b) ∈ R2 : a ≥ 1, b =
−1}. Since

{δ+Y = +∞} ⊃ {(a, b) ∈ R2 : a > 0} and {δ−X = −∞} ⊃ {(a, b) ∈ R2 : b < 0},

one has infX δ+Y = infBε(X) δ
+
Y = +∞ and supY δ−X = supBε(Y ) δ

−
X = −∞ for every real

number 0 < ε < 1. Thus the pair (X, Y ) is normal, but not consistent. £

(Ex B) Set E := R, X := {x ∈ R : x > 0} and Y := R. Then δ+Y = δ{0} and
δ−X = −δ{t∈R:t≥0}.

2 Hence

inf
X

δ+Y = +∞ > 0 = inf
Bε(X)

δ+Y and sup
Bε(Y )

δ−X = sup
Y

δ−X = 0

for every real number ε > 0. Thus (X, Y ) is consistent and sup-normal, but not
inf-normal. £

(Ex C) Set E := R, X := R and Y := {y ∈ R : y < 0}. Then δ+Y = δ{t∈R:t≥0} and
δ−X = −δ{0}. Hence

inf
X

δ+Y = inf
Bε(X)

δ+Y = 0 and sup
Bε(Y )

δ−X = 0 > sup
Y

δ−X = −∞

for every real number ε > 0. Thus (X, Y ) is consistent and inf-normal, but not
sup-normal. £

(Ex D) Set E := R, X := {x ∈ R : 1 < x < 2} and Y := X. Then for every
(x, y) ∈ X × Y one has δ+Y (x) = 2x and δ−X(y) = y; hence δ+Y (x) = 2x > infX δ+Y =
2 = supY δ−X > y = δ−X(y). Thus (X, Y ) is a minmax pair, but no extrema are
attained. £

A pair (X, Y ) is said to be feasible, if either infX δ+Y < +∞ or supY δ−X > −∞. Moreover,
a pair (X, Y ) is said to be closure feasible, if (X,Y ) is feasible3 or, equivalently, if

(A′)

{

either infX δ+Y < +∞ (closure inf-feasibility)

or supY δ−X > −∞ (closure sup-feasibility).

Obviously, a minmax convex pair is (closure) feasible pair; on the other hand, a (closure)
feasible pair is consistent. Therefore, Theorem 1.1 still holds if consistency is replaced by
(closure) feasibility.

Call (X, Y ) boundary negligible, if the following two properties hold:
2For an arbitrary subset A of E, the indicator function δA is a function from E to R, defined by
δA(y) := 0 (resp. := +∞), if y ∈ A (resp. y 6∈ A).
3The topological closure of a subset A of E is denoted by A.
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(D) infX δ+Y ≤ δ+Y (x) for every x ∈ X \X (boundary inf-negligibility),

(E) supY δ−X ≥ δ−X(y) for every y ∈ Y \ Y (boundary sup-negligibility).

Every minmax convex pair is boundary negligible. Clearly, a pair (X, Y ) is boundary inf-
(resp. sup-) negligible, if X (resp. Y ) is closed or Y (resp. X) is bounded.

Theorem 1.2 (A minmax criterion for feasible pairs of convex sets). Let X, Y be
nonempty convex subsets of a Hilbert space. Then the following properties are equivalent:

(1) (X, Y ) is minmax,

(2) (X, Y ) is closure feasible, inf-normal and boundary sup-negligible,

(3) (X, Y ) is closure feasible, sup-normal and boundary inf-negligible.

Each one of the following corollaries is logically equivalent to Theorem 1.2.

Corollary 1.3 (A minmax criterion for closed sets). Let X and Y be nonempty
convex sets with Y closed (resp. X closed). Then (X, Y ) is minmax iff it is both closure
feasible and inf- (resp. sup-) normal. £

Corollary 1.4 (A minmax criterion for closure sets). Let X and Y be nonempty
convex sets. Then

(4) (X,Y ) is minmax iff (X, Y ) is closure feasible and inf-normal,

(5) (X, Y ) is minmax iff (X, Y ) is closure feasible and sup-normal. £

It is worthwhile to notice that (closure) feasibility cannot be replaced by consistency in
Theorem 1.2 and in its Corollary 1.3 and 1.4 (see following ex. E). Similarly, closure
feasibility cannot be replaced by feasibility in Corollary 1.4, as we can see from ex. F .

(Ex E) Define E := R3 and let X, Y denote the nonempty closed convex subsets of E
defined by X := {(a, b, c) ∈ R3 : b ≤ −a2, c = 1} and Y := {(a, b, c) ∈ (R++)

3 :
a(b+ c) ≥ 1, b(c+ a) ≥ 1, c(a+ b) ≥ 1}. Since

X ⊂ R2 × R++ ⊂ {δ+Y = +∞} and Y ⊂ R× R++ × R ⊂ {δ−X = −∞},

(X, Y ) is not a minmax pair. On the other hand, (X, Y ) is “boundary sup-negligibleÔ
(because Y is closed). Moreover, (X, Y ) is “inf-normalÔ, since

Bε(X) ⊂ R2 × R++ ⊂ {δ+Y = +∞} for every real number 0 < ε ≤ 1.

Finally, (X, Y ) is “sup-consistentÔ, since for every natural number n ≥ 1

(n,
1

2n
, n) ∈ Y and δ−X(n,−

1

2n
, n) > −∞.

£

(Ex F ) Define E := R3 and let X, Y denote the nonempty convex subsets of E defined
by X := {(a, b, c) ∈ R3 : a ≤ 0, b = 0, c = 1} and Y := {(a, b, c) ∈ R3 : a > 0, b = 0}.
Since

X ⊂ R2 × {1} ⊂ {δ+Y = +∞} and Y ⊂ R++ × R2 ⊂ {δ−X = −∞},

(X, Y ) is not a feasible pair; but (X, Y ) is minmax, because infX δ+Y = +∞ and
supY δ−X = supY \Y δ−X = +∞. £
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In the sequel “convex setÔ always stand for “convex subset of a Hilbert space EÔ,
if not otherwise explicitly specified. For later reference, we recall the following equalities
relating well known notions and support functions:

(6) Y ◦ := {δ+Y ≤ 1} (polar set of Y )

(7) Y − := {δ+Y ≤ 0} (polar cone of Y )

(8) bar+Y := {v ∈ E : δ+Y (v) < +∞} (upper barrier cone of Y )

(9) convA = {y ∈ E : δ−A(v) ≤ 〈v, y〉 ≤ δ+A(v) for every v ∈ E} (Peano’s convex hull
formula)4

(10) Y ∞ := {v ∈ E : Y + v ⊂ Y } = (bar+(Y ))− (asymptotic cone of closed convex
nonempty sets).

2. Proof of Theorems 1.1 and 1.2

Obviously, if (X, Y ) is a minmax convex pair, then so are (Y,−X), (−Y,X) and (−X,−Y ).
Moreover, since

−δ−X = δ+−X , − δ+Y = δ−−Y and − inf
X

δ+Y = sup
−X

δ−Y = sup
X

δ−−Y , − sup
Y

δ−X = inf
−Y

δ+X = inf
Y

δ+−X ,

if a pair (X, Y ) is inf- (resp. sup-) •, then (Y,−X), (−Y,X) are sup- (resp. inf-) •; where
the bullet stands for consistent, closure feasible, feasible, boundary negligible or normal.

We will demonstrate Theorem 1.1 that normality and consistency characterize minmax
convex pairs. For that purpose and for proving Theorem 1.2, the following lemma is basic.

Lemma 2.1. Let X and Y be nonempty convex sets and let ε ∈ R++. Then

sup
Y

δ−X ≥ inf
Bε(X)

δ+Y (1)

if (and only if ) either infBε(X) δ
+
Y < +∞ or supY δ−X > −∞.

Proof. For proving the inequality (1), we will show that, for every real number a such
that infBε(X) δ

+
Y > a, we have supY δ−X ≥ a. First case: “infBε(X) δ

+
Y < +∞Ô. Fix a ∈ R

such that infBε(X) δ
+
Y > a; then

δ+Y > a− δBε(X). (∗1)
Obviously, the epigraph epi δ+Y := {(x, t) ∈ E × R : δ+Y (x) ≤ t} and the strict hypograph
hypos(a − δBε(X)) := {(x, t) ∈ E × R : x ∈ Bε(X) and t < a} are nonempty convex
subsets of the Hilbert space E × R; they are disjoint and, in addition, epi δ+Y is a cone
and hypos(a − δBε(X)) is open. Therefore, there is a closed hyperplane H of E × R with
0 ∈ H such that

epi δ+Y and hypos(a− δBε(X)) are separated by H. (∗2)

By infBε(X) δ
+
Y < +∞, the support function δ+Y is finite at some point of the open set

Bε(X). Therefore the separating hyperplane H is not “verticalÔ; that is, there is an
ȳ ∈ E such that H = {(x, t) ∈ E × R : t = 〈x, ȳ〉} and

δ+Y (x) ≥ 〈x, ȳ〉 ≥ a− δBε(X)(x) for every x ∈ E. (∗3)
4convA denotes the smallest closed convex subset of E containing A. See Peano (1888 [9], p. 132) for a
first appearance of statement (9). An useful reformulation of (7) is “y ∈ convA ⇐⇒ 〈v, y〉 ≤ δ+A(v) for
every v ∈ E”.
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By equality (9§1), (∗3) implies

ȳ ∈ Y and 〈x, ȳ〉 ≥ a for every x ∈ X. (∗4)

Thus supY δ−X ≥ a. Second case: “infBε(X) δ
+
Y = +∞ and supY δ−X > −∞Ô. Then

bar +Y ∩Bε(X) = ∅ and ∃ ȳ ∈ Y such that δ−X(ȳ) > −∞. (∗5)

Hence, the barrier cone bar+Y is strongly separated from X by a closed hyperplane of
E. Therefore, there are a w̄ ∈ E and a real number b such that

〈v, w̄〉 ≤ 0 < b ≤ 〈x, w̄〉 for every v ∈ bar +Y, x ∈ X. (∗6)

By equality (10§1), this amounts to

w̄ ∈ (Y )∞ and δ−X(w̄) > 0. (∗7)

By the definition of asymptotic cone, from ȳ ∈ Y it follows that ȳ + tw̄ ⊂ Y for t ∈ R++.
Therefore, sublinearity of δ−X , (∗5) and (∗7) combined give:

sup
Y

δ−X ≥ sup
t>0

δ−X(ȳ + tw̄) ≥ sup
t>0

(δ−X(ȳ) + tδ−X(w̄)) = +∞.

Thus supY δ−X ≥ infBε(X) δ
+
Y .

Lemma 2.2. Let X, Y be nonempty sets. Then the following properties hold:

(2) sup
Y

δ−X = sup
y∈Y

sup
ε>0

inf
x∈Bε(X)

〈x, y〉 ≤ sup
ε>0

inf
Bε(X)

δ+Y = sup
ε>0

inf
Bε(X)

δ+Y ≤ inf
X

δ+Y ≤ inf
X

δ+Y ,

(3) inf
X

δ+Y = inf
x∈X

inf
ε>0

sup
y∈Bε(Y )

〈x, y〉 ≥ inf
ε>0

sup
Bε(Y )

δ−X = inf
ε>0

sup
Bε(Y )

δ−X ≥ sup
Y

δ−X ≥ sup
Y

δ−X ,

(4) sup
Y

δ−X = sup
Y

δ−
X
≤ sup

Y

δ−X = sup
Y

δ−
X
≤ inf

X
δ+
Y
= inf

X
δ+Y ≤ inf

X
δ+
Y
= inf

X
δ+Y .

Proof. It follows immediately from elementary equalities

δ+
Y
= δ+Y = inf

ε∈R++

δ+Bε(Y ) , δ−
X
= δ−X = sup

ε∈R++

δ−Bε(X)

and from the general minmax inequality “supA infB f ≤ infB supA fÔ.

Proposition 2.3 (Necessary conditions). A minmax pair of nonempty sets is feasi-
ble, closure feasible, consistent, normal and boundary negligible.

Proof. Normality and boundary negligibility of a minmax pair (X, Y ) follow from (2)-
(4) of Lemma 2.2. Clearly, every minmax pair is feasible; hence, closure feasible and,
consequently, consistent.

Proposition 2.4 (Sufficient conditions). A pair of nonempty convex sets is minmax,
if it is inf-normal, boundary sup-negligible and either inf-consistent or closure sup-feasible.
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Proof. By definition, the closure sup-feasibility (A′) and the inf-consistency (A) of a pair
(X, Y ) of nonempty convex set imply that conditions of Lemma 2.1 are satisfied for every
ε ∈ R++. Hence, property (1) of Lemma 2.1 gives: infX δ+Y ≥ supY δ−X ≥ supε>0 infBε(X) δ

+
Y ;

therefore, by the inf-normality (B) of (X, Y ) we infer:

inf
X

δ+Y = sup
Y

δ−X (the pair (X,Y ) is minmax). (∗2)

On the other hand, boundary sup-negligibility amounts to

sup
Y

δ−X = sup
Y

δ−X . (∗3)

Hence, from (∗2) and (∗3) it follows that (X, Y ) is a minmax pair.

Proof of Theorem 1.1. “if partÔ. First case: “(X, Y ) is normal and inf-consistentÔ.
From (2) and (3) of Lemma 2.2, it follows that normality of (X, Y ) implies boundary
negligibility of (X, Y ). Hence, Proposition 2.4 shows that (X, Y ) is minmax. Second
case: “(X, Y ) is normal and sup-consistentÔ. Then (−Y,X) is normal and inf-consistent.
Hence, first case gives that (−Y,X) is minmax; consequently, (X, Y ) is minmax. “only if
partÔ: It follows from Proposition 2.3.

Proof of Theorem 1.2. “(1§1) =⇒ (2§1) & (3§1)Ô: it follows from Proposition 2.3.
“(2§1) =⇒ (1§1)Ô: observe that closure feasibility of (X, Y ) implies that (X, Y ) is either
inf-consistent or closure sup-feasible. Hence, by Proposition 2.4 the pair (X, Y ) is minmax.
“(3§1) =⇒ (1§1)Ô: by (3§1) the pair (−Y,X) is closure feasible, inf-normal and boundary
sup-negligible. Applying “(2§1) =⇒ (1§1)Ô to pair (−Y,X) entails (−Y,X) is minmax;
thus (X, Y ) is minmax.

Remark 2.5 (Normality is preserved by closure). (2) and (3) of Lemma 2.2 imply:

(5) (X, Y ) is inf-normal ⇔ so is (X,Y ) ⇔ (X, Y ) is inf-normal and (X, Y ) is boundary
inf-negligible

(6) (X, Y ) is sup-normal ⇔ so is (X, Y ) ⇔ (X, Y ) is sup-normal and (X, Y ) is boundary
sup-negligible. £

Remark 2.6 (Minmax pairs are preserved by closure). If the pair (X, Y ) is min-
max, (4) of Lemma 2.2 implies that the couples (X,Y ), (X, Y ) and (X,Y ) are minmax
pairs as well. More clearly:

(7) (X, Y ) is minmax iff (X, Y ) and (X,Y ) are minmax

(8) (X, Y ) is minmax iff (X,Y ) is minmax and (X, Y ) boundary negligible. £

Remark 2.7 (Generally, minmax pairs are not preserved by translations). Suit-
able translations transform arbitrary pairs of convex sets into minmax pairs; in fact,
(X+v, Y +w) is a minmax pair for every (−v,−w) ∈ X×Y , because 0 ∈ (X+v)∩(Y +w).
Therefore, infinitely many minmax convex pairs are not preserved by translations, since
there are infinitely many pairs of convex sets which are not minmax. £
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3. Some classes of minmax convex pairs

Recall the upper and lower barrier cones:

bar +(Y ) := {x ∈ E : δ+Y (x) < +∞} and bar−(X) := {y ∈ E : δ−X(y) > −∞}.

Then feasibility of a pair (X, Y ) can alternatively be expressed by the following condition:

(AA) either X ∩ bar +(Y ) 6= ∅ or Y ∩ bar −(X) 6= ∅.

Call a couple (X, Y ) strongly feasible5, if

{

either (X + vR++) ∩ bar +Y 6= ∅ for every v ∈ E (strongly inf-feasible)

or (Y + wR++) ∩ bar −X 6= ∅ for every w ∈ E (strongly sup-feasible).

Clearly, strong feasibility implies feasibility. Inf-normality (B) (and similarly for sup-
normality) of a couple (X, Y ) can be restated in the equivalent form:

(BB) ∀(α, ε) ∈ R× R++ either X ∩ {δ+Y ≤ α+ ε} 6= ∅ or dist (X, {δ+Y ≤ α}) 6= 0.6

Lemma 3.1 (A basic lemma for separation properties). Let A, B be closed convex
sets such that bar +A+ bar+B = E. Then either A ∩B 6= ∅ or dist (A,B) 6= 0.

Proof. Let dist (A,B) = 0. Then there are sequences {an}n ⊂ A and {bn}n ⊂ B such
that limn ‖an− bn‖ = 0 and ‖an− bn‖ ≤ 1. The sequence {an}n is weakly bounded in the
Hilbert space E. In fact, choose an arbitrary a ∈ E. Since bar+A+bar+B = E, there is
(ā, b̄) ∈ bar +A× bar +B such that a = ā+ b̄. Then we have

〈an, a〉 = 〈an, ā〉+ 〈an, b̄〉 = 〈an, ā〉+ 〈an − bn, b̄〉+ 〈bn, b̄〉 ≤ δ+A(ā) + ‖b̄‖+ δ+B(b̄)

for every natural number n. Hence, {an}n is weakly bounded; consequently, it has a
weakly convergent subsequence {ank

}k. Assume {ank
}k weakly convergent to Ýa. Then, by

limk ‖ank
− bnk

‖ = 0, we infer {bnk
}k ⇀ Ýa. Therefore, the closedness of convex sets A and

B implies Ýa ∈ A ∩B. Thus A ∩B 6= 0.

Lemma 3.2. A pair (X, Y ) of nonempty convex sets is inf-normal in any of the following
cases:

(1) X and Y are polyhedral convex subsets of a finite-dimensional space,

(2) X is closed, locally compact and X∞ ∩ Y − = {0},
(3) X is closed and (X, Y ) strongly feasible.

Proof. 1 st case. Without loss of generality, assume E finite dimensional. Since Y is
polyhedral, the support function δ+Y is polyhedral (see [1], p. 98); hence all its level sets
{δ+Y ≤ α} are polyhedral. Therefore the polyhedral setsX and {δ+Y ≤ α} either are disjoint
or have positive distance, because “two nonempty disjoint finite dimensional polyhedral

5Strong feasibility holds, if at least one of the following conditions is satisfied: “eitherX or Y is bounded”,
“intY ∩bar−X 6= ∅”, “Y ∩ int (bar−X) 6= ∅”, “intX ∩bar+Y 6= ∅”, “X ∩ int (bar+Y ) 6= ∅”. In terms of
core, the strong feasibility can be expressed by “either 0 ∈ core(X − bar+Y ) or 0 ∈ core(Y − bar−X)”.
6Recall dist (A,B) := inf{‖a − b‖ : a ∈ A, b ∈ B}; if either A or B is empty, their distance is defined as
equal to +∞.
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sets are strongly separated by some closed hyperplaneÔ (see [10], p. 175). Thus (BB)
hold.

2 nd case. For every non empty sublevel of δ+Y , one has {δ+Y ≤ α}∞ = {δ+Y ≤ 0} = Y −.
Hence for proving (BB) under (2) it is enough to use Dieudonné’s separation theorem:
“two closed nonempty convex subsets of a locally convex vector space having no common
non-null asymptotic vector are strongly separated by some closed hyperplane, whenever
they are disjoint and at least one of them is locally compactÔ (see [5], p. 103).

3 rd case. First subcase: “Let (X, Y ) be strongly sup-feasibleÔ. Strong sup-feasibility
means “coneY − bar −X = EÔ. Since

bar +({δ+Y ≤ α}) ⊃ coneY and bar+X = −bar −X,

we have that bar+({δ+Y ≤ α}) + bar+X = E. Thus, Lemma 3.1 entails (BB). Second
subcase: “Let (X, Y ) be strongly inf-feasibleÔ. Since (X, Y ) is strongly inf-feasible, also
the pair (X, Y ) is strongly inf-feasible. Hence (−Y ,X) is strongly sup-feasible. Applying
the first subcase to (−Y ,X), we have that (−Y ,X) is inf-normal; therefore, since X is
closed, Corollary 1.3 entails that it is a minmax pair. Now, from Theorem 1.1 it follows
that (−Y ,X) is sup-normal; consequently (X, Y ) is inf-normal, that is: (X, Y ) is inf-
normal.

From Lemma 3.2 we get the classical minmax theorem - proved by von Neumann (1928)
for finite dimensions and by Kneser (1952) in the infinite dimensional case - and Fenchel’s
minmax theorem for polyhedral sets (Fenchel 1951, [2], Chap. III, §6), crucial for linear
programming. Besides we get a minmax theorem (for strongly feasible pairs) - one of
the by-products of the Fenchel duality (see [1], Ex. 16, p. 81) - and minmax theorems
for locally compact convex sets and, finally, for polar sets, polar cones and closed vector
subspaces.

Proposition 3.3 (Classical minmax theorem). A couple of nonempty convex sets is
minmax, whenever at least one of them is both bounded and closed.

Proof. Let (X, Y ) be a pair of nonempty convex sets. Without loss of generality, letX be
closed and bounded. Boundedness of X amounts to have a full barrier cone bar−X = E;
hence strong feasibility of (X, Y ) obviously holds, because Y is not empty. Hence, by (3)
from Lemma 3.2 it follows that (X, Y ) is inf-normal. On the other hand, boundedness
of X also ensures the continuity of its support functions. Thereby the boundary sup-
negligibility (E) of (X, Y ) holds. Finally, (2) of Theorem 1.2 says that (X, Y ) is a minmax
pair.

Proposition 3.4 (Fenchel minmax theorem for polyhedral sets). Every feasible
couple of nonempty polyhedral convex sets is a minmax pair.

For example, every couple (X, Y ) of nonempty polyhedral sets such that 0 ∈ X ∪ Y , is
feasible; consequently, it is minmax.

Proof. 1 st case : “E has finite dimensionÔ. Let (X, Y ) be a feasible couple of nonempty
polyhedral convex sets7. Applying Lemma 3.2(1) to (X, Y ) and (−Y,X) we get that

7For pairs of polyhedral sets, consistency=feasibility.
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(X, Y ) is normal. Hence, Theorem 1.1 entails that (X, Y ) is a minmax convex pair. 2 nd

case : “E has arbitrary dimensionÔ. By definition, the polyhedral sets X and Y are
intersections of finitely many closed half-spaces: there are {ai}n+m

i=1 ⊂ E and {αi}n+m
i=1 ⊂ R

such that X = ∩n
i=1{x ∈ E : 〈x, ai〉 ≤ αi} and Y = ∩m

i=n+1{y ∈ E : 〈y, ai〉 ≤ αi}. Let E0

be the finite dimensional subspace of E which is spanned by vectors {ai}n+m
i=1 , and let E⊥

0

be its orthogonal complement in E. Clearly,

(∗1) X0 := X ∩E0 and Y0 := X ∩E0 are polyhedral convex sets of the finite dimensional
space E0,

(∗2) X = X0 + E⊥
0 and Y = Y0 + E⊥

0 ,

(∗3) infX δ+Y = infX(δ
+
Y0

+ δE0
) = infX∩E0

δ+Y0
= infX0

δ+Y0

(∗4) supY δ−X = supY (δ
−
X0

− δE0
) = supY ∩E0

δ−X0
= supY0

δ−X0
.

Now, since (X, Y ) is a feasible pair, from (∗3) and (∗4) the feasibility of (X0, Y0) follows.
Therefore, applying the first case to the couple (X0, Y0) of polyhedral sets, we obtain that
(X0, Y0) is a minmax pair in E0. Hence (∗3) and (∗4) imply that (X, Y ) is a minmax
pair.

Proposition 3.5 (Fenchel minmax theorem for strongly feasible pairs of convex
sets). Every strongly feasible couple of nonempty closed convex sets is a minmax pair.

For example, every couple (X, Y ) of nonempty closed convex sets such that 0 ∈ intX ∪
intY , is strongly feasible; consequently, it is minmax.

Proof. Let X and Y be nonempty closed convex sets with (X, Y ) strongly feasible. From
(3) of Lemma 3.2 it follows that (X, Y ) is inf-normal. Hence, Corollary 1.3 yields (X, Y )
is minmax.

Proposition 3.6 (Minmax pairs related to locally compact convex sets). A fea-
sible pair (X, Y ) of nonempty closed convex sets is minmax, if at least one of the following
properties holds:

(4) X is locally compact (in particular, finite dimensional) and X∞ ∩ Y − = {0}
(5) Y is locally compact (in particular, finite dimensional) and Y ∞ ∩ (−X)− = {0}.

Proof. 1 st case: “(4) holdsÔ. From (2) of Lemma 3.2 it follows that (X, Y ) is inf-normal.
Hence, by Corollary 1.3, (X, Y ) is a minmax pair. 2 nd case: “(5) holdsÔ. Applying the 1 st

case to pair (−Y,X) entails (−Y,X) is a minmax pair. Therefore, (X, Y ) is minmax.

Proposition 3.7 (Minmax pairs related to polar sets, polar cones and vector
spaces). Let X, Y be nonempty convex sets with Y closed and 0 ∈ Y . Then (X, Y ) is
minmax iff

∀ (α, ε) ∈ R++ × R++ either X ∩ (α+ ε)Y ◦ 6= ∅ or dist (X,αY ◦) 6= 0. (6)

In particular, if Y is a closed cone, the pair (X, Y ) is minmax iff

either X ∩ Y − 6= ∅ or dist (X, Y −) 6= 0. (7)

Consequently, if Y is a closed vector space, the pair (X, Y ) is minmax iff

either X ∩ Y ⊥ 6= ∅ or dist (X, Y ⊥) 6= 0. (8)
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Proof. First case: “Y is a polar setÔ (i.e. Y is closed convex and 0 ∈ Y ). The pair
(X, Y ) is feasible, because 0 ∈ Y ∩ bar −X. Moreover, since 0 ∈ Y , one has δ+Y ≥ 0.
Hence, inf-normality (BB) of (X, Y ) is expressed by (6), because µY ◦ = {δ+Y ≤ µ} for
µ > 0. Now, since Y is closed, Corollary 1.3 entails the required equivalence. Second
case: “Y is a polar coneÔ (i.e. it is a closed nonempty convex cone). In this case we have
Y − = Y ◦ and µY ◦ = Y − for µ > 0. Therefore, from the first case follows the required
equivalence. Third case: “Y is a closed vector spaceÔ. We have Y − = Y ⊥. Therefore, the
second case gives the desired equivalence.

Remark 3.8 (Minmax pairs with respect to whole space). By Proposition 3.7 we
have that (X,E) is a minmax pair iff either 0 ∈ X or 0 6∈ X. In particular, (X,E) and
(E,X) are minmax pairs.

This “elementaryÔ fact provides a proof of the well known formula on Fenchel bicon-
jugation of indicator functions: “(δ+Y )

∗ = δY for every convex set Y Ô. To wit, for ev-
ery Ýy ∈ E one has: (δ+Y )

∗(Ýy) := supx∈E
(

〈x, Ýy〉 − δ+Y (x)
)

= supx∈E infy∈Y 〈x, Ýy − y〉 =
supx∈E infy∈Ýy−Y 〈x, y〉 = infy∈Ýy−Y supx∈E〈x, y〉 = δY (Ýy). £

4. A characterization of bounded sets by minmax convex pairs

In this section both boundedness and closedness of convex subsets of a Hilbert space are
characterized by minmax pairs.

Proposition 4.1 (Boundedness characterization). A nonempty convex set X of a
Hilbert space E is bounded if and only if (X, Y ) is minmax for every nonempty bounded
convex set Y of E.

Proof. To verify the “only if partÔ, let Y and X be bounded, nonempty convex set and
observe two facts. First, by Classical Minmax Theorem (see Prop. 3.3) the pair (X,Y ) is
minmax; hence

inf
x∈X

sup
y∈Y

〈x, y〉 = inf
x∈X

sup
y∈Y

〈x, y〉 = sup
y∈Y

inf
x∈X

〈x, y〉. (∗1)

Second, by Hormander’s Theorem [6] the support function δ−X of the bounded set X is
continuous, hence (X, Y ) is boundary sup-negligible, i.e.

sup
y∈Y

inf
x∈X

〈x, y〉 = sup
y∈Y

inf
x∈X

〈x, y〉. (∗2)

In conclusion, combining (∗1) and (∗2) we have that (X, Y ) is a minmax pair.

To verify the “if partÔ, let (X, Y ) be minmax for every nonempty, bounded convex set
Y . We will show that X is weakly bounded. Let v be an arbitrary non-null element of
E. The segment Yv := {tv : 0 < t < 1} is nonempty convex and bounded; hence, by
hypothesis, (X, Yv) is minmax, that is:

inf
X

δ+Yv
= sup

Yv

δ−X . (∗3)

Since δ+Yv
≥ 0, from (∗3) it follows that supYv

δ−X > −1; consequently, δ−X(t̄v) ≥ −1 for
some real number t̄ > 0. Therefore, infx∈X〈x, v〉 > −1

t̄
. Now, v being an arbitrary element

of E, one has that X is weakly bounded and, consequently, norm bounded, in virtue of
Banach-Steinhaus theorem.



G. H. Greco / Minmax Convex Pairs 111

Proposition 4.2 (Closedness characterization). A nonempty convex set X of a Hil-
bert space E is closed, if and only if (X − v, E) is a minmax pair for every v ∈ E.

Proof. Applying (8) of Proposition 3.7 with the couple (X − v, E) we infer: “∀v∈E (X −
v, E) is minmaxÔ ⇐⇒ “∀v∈E either v ∈ X or v 6∈ XÔ ⇐⇒ “X is closedÔ.

Theorem 4.3 (Boundedness and closedness characterization). A nonempty con-
vex set X of a Hilbert space E is both bounded and closed, if and only if (X − v, Y ) is a
minmax pair for every nonempty convex set Y of E and for every v ∈ E.

Proof. The “only if partÔ follows from Proposition 3.3, the Classical Minmax Theorem.
The “if partÔ follows from Proposition 4.1 and 4.2.
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