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An Eaton system is connected with a decomposition statement for vectors of a linear space and with
a scalar inequality related to the decomposition. The Singular Value Decomposition for the space of
complex matrices associated with von Neumann’s trace inequality is a typical example. In this paper
we present a G-majorization inequality involving two orthoprojectors related to an Eaton system. The
inequality generalizes a variety of majorization results on eigenvalues and singular values of matrices. A
relationship between the inequality and canonical form theorems for certain spaces of matrices is shown.
G-doubly stochastic operators are discussed.
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1. Introduction

The theory of majorization has many applications in pure and applied mathematics.
The best general reference here is [16]. Special attention in the literature is devoted to
majorization inequalities (see e.g. [1, 2, 3, 17, 18, 20, 23]). Many of these inequalities
concern eigenvalues and singular values of matrices. In the current paper we offer a uni-
fied approach to the task of obtaining such inequalities. In addition to this, we show a
correspondence between the inequalities and decomposition theorems for matrices. Our
method is based on the theory of group majorization, Eaton systems and normal decom-
position systems (see the definitions below). We develop some ideas from [1, 13, 14, 18].

Section 1 is expository. We review here some of the standard facts on G-majorization
orderings and related notions. The results are collected in Sections 2-4. In Theorem 2.1
we present a general G-majorization inequality involving two orthoprojectors associated
with an Eaton system. The inequality embraces a variety of known results. Theorem 2.7
concerns Eaton systems connected with finite reflection groups. For such systems we give
simple conditions implying a version of the inequality. In Section 3 we study the notion
of subsystem introduced by Lewis [14]. Each subsystem of an Eaton system provides
a decomposition statement inducing a canonical form of vectors in some subspace. In
Theorem 3.1 we characterize a subsystem by, among others, the mentioned inequality.
Thus there is a close connection between some decomposition results and G-majorization
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orderings. Finally, in Section 4, we show a role of G-doubly stochastic operators in the
theory. Theorems 2.1-4.1 are illustrated in Examples 2.3-4.2 by concrete matrix spaces
and groups.

Throughout the paper V' is a finite-dimensional real linear space with inner product (-, -),
and G is a closed subgroup of the orthogonal group O(V) acting on V. Given points
x,y € V, wewrite y =<¢ z, if y lies in the convex hull C(x) of the orbit Gz = {gx : g € G},
that is

y gz iff y € convGr

(see [4], [16, p. 422]). The relation = is called group majorization w.r.t. G (G-majoriza-
tion for short). It is easy to see that < is a G-invariant ordering on V. For instance,
if G is the group of permutation matrices acting on V' = R", then =<4 is the (classical)
majorization ordering on R" [16, p. 23, p. 113] (see Example 1.1 for details).

It is well known that

y ¢z iff m(z,y) <m(z,z) forzeV, (1)
where m(z,v) = sup,eq(z, gv), 2 € V, is the support function of Cg(v) for v € V' [21,
Section 13]. Assume that there exists a closed convex cone D C V such that [4, 5]

(A1) Gx N D is nonempty for each x € V| or equivalently, V = UgeG gD,
<A2) <$7gy> < <x7y>7 or equivalentIY7 Hl’ o gy” > HiL‘ - y”? for T,y € D and g & G7

where || - || is the norm induced by the inner product (-,-). In this event, a vector x in V'
has its canonical (normal) form

x =gz, forsomegeG. (2)
Here the normal map (), : V' — D is defined by

{z;} =DnNGx forxelV.

By virtue of (A1)-(A2), the intersection D N Gz is a singleton set, and therefore the
vector x| is uniquely determined by z [18, p. 14]. For notational convenience, we ignore
the dependence of the map (), on (V,G, D).

The map (-), is G-invariant and idempotent. Its range is the cone D. The restriction of
(-); to D is the identity. For each x € V, the vectors x| and = are equivalent in the sense
that ) <¢ 2 and = <¢ ;.

Under axioms (A1)-(A2), condition (1) takes the form
y=¢z iffy 2¢x iff (z,y)) <(z,x)) forzeD. (3)
A useful version of (3) is the following
y<¢x iff (z,9y) < (z,z)) forz€ D and g € G. (4)

It is readily seen from (3) that the ordering < restricted to D is the cone ordering
induced by the dual cone of D. For this reason, if (A1) and (A2) are met, the relation
=g is called a group induced cone ordering (GIC ordering for short), and the triple
(V,G, D) is called an Eaton system [24]. It named after M. L. Eaton who introduced it
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in 1984 [4, 5]. Independently, A. S. Lewis [13, 14, 15] introduced the notion of a normal
decomposition (ND) system (V,G,(-);). The above-mentioned notions play a unifying
role in statistics, matrix theory and Lie theory. See [4]-[6], [13]-[15], [17]-[20] and [24] for
examples, properties and applications of GIC orderings, Eaton systems and ND systems.

Recall that a finite group G acting on a linear space V' is called a finite reflection group
[11] if G is generated by some set of reflections. It is known that finite reflection groups
induce GIC orderings and Eaton systems (see [6, Lemma 4.1, (35)], [22, Theorem 4.1]).

In our examples, we shall use the following matrix notation (for the field F = C or R).

R} = the convex cone of nonincreasing vectors in R",
't = the convex cone of nonnegative nonincreasing vectors in R",
M, (F) = the vector space of n x n matrices over F,
H, = the vector space of n x n Hermitian matrices,
S, (F) = the vector space of n X n symmetric matrices over F,
K, (R) = the vector space of n x n real skew-symmetric matrices,
) = the vector space of n x n diagonal matrices over F,
U,, = the group of n x n unitary matrices,
0,, = the group of n x n real orthogonal matrices,
P,, = the group of n x n permutation matrices,
GP,(F) = the group of n x n generalized permutation matrices over I, i.e., matrices
with exactly one nonzero entry with magnitude 1 in each row and column,
DO, = the group of n x n diagonal orthogonal matrices,
DU,, = the group of n x n diagonal unitary matrices,
A(X) = the vector of eigenvalues of Hermitian matrix X stated in nonincreasing
order,
s(X) = the vector of singular values of matrix X stated in nonincreasing order,
d(X) = the vector of diagonal entries of matrix X,
Re X = the real part of matrix X,
Ui(-)Us = the matrix operator of the form X — U; XU,, where X, U; and U,

are madtrices.

Let z) > 290 = ... > 2pn) denote the entries of z € R" in nonincreasing order. For
x,y € R" if 22:1 Yy < 22:1 xy), @ = 1,...,n, then we write y <,, . This is the weak
magorization [16, p. 10]. If, in addition, 22;1 Yy = 2?21 xy), we write y <., x, the
(classical) majorization [16, p. 7].

Example 1.1 ([4, p. 16]). It is known that if V' = R", G = P,, and D = R, then
(V,G, D) is an Eaton system, G is a finite reflection group, and y <¢ = means y <,, .
Furthermore, x| = (zpy, ..., )"

Likewise, replacing V, G, and D with R", GP,(R) and R |, respectively, one obtains
Eaton system (V, G, D) with finite reflection group G. Here y =g x reduces to |y| <., |z,
and, in addition, x| = (|z|py, - . ., [z]p)", where |z| is the vector of absolute values of the
entries of z € R".
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Example 1.2 ([4, p. 17]). Take V' = H,, with the real inner product (X,Y) = Re tr XY
Let G be the group of operators X — UXU*, X € H,,, with U running over U,. Then
(V,G, D) is an Eaton system for D = {Z € D,(R) : d(Z) € R{}. In fact, (Al) is the
Spectral Theorem, and (A2) is Fan-Theobald’s trace inequality [7, 25]. It is known that
X, = diag\(X) for X € H,, and Y <¢ X iff A(Y) <, A(X) for X, Y € H,. So, the
ordering < on D, (R) may be identified with the classical majorization <, on R".

Example 1.3 ([4, p. 17-18]). Let V be M,,(C) with the real inner product (X,Y) =
Re tr XY*. Let G be the group of all linear operators X — U; XU, X € M,,(C), where
Uy and Us vary over U,,. Put D = {Z € D,(R) : d(Z) € R} }. Then (V,G, D) is an Eaton
system, where (A1) is the Singular Value Decomposition Theorem [16, p. 498], and (A2)
is von Neumann’s trace inequality [16, p. 514]. Moreover, X| = diag s(X) for X € M,,(C).
Here Y <¢ X iff s(Y) <, s(X) for X, Y € M,,(C). Thus =g restricted to D,,(R) can be
described as the weak majorization ordering <,, on R".

2. G-majorization and orthoprojectors

We begin with G-majorization inequality (7) which gives a more conceptual understanding
of some results existing in the literature (see Examples 2.3-2.5, 2.9, 2.10, 3.3 and 4.2).

Theorem 2.1. Let (V,G, D) be an Eaton system. Assume W is a linear subspace of
V', H is a subset of G, and E is a subset of D. Let P and Q) be the orthoprojectors,
respectively, from V onto W and from span D onto span E. If

QD =E, (5)
and W = U hE, (6)
heH
then the following inequality holds:
Pr <¢ Qx, forzelV. (7)

Proof. Fix x € V. By virtue of (3), it is sufficient to show
(z,(Px))) < (z,Qx|) forze D, (8)

since Qx; € £ C D by (5). From (6) it follows that Pz = he for some h € H and e € E.
But E C D and H C G, so (Px); = e and Pz = h(Pz),. Hence (Px), = h™'Px with
h™' € G. We have Qz € E for z € D by (5). Therefore hQz € hE C W by (6). As a
consequence, PhQ)z = hQz.

For z € D we now obtain

(z, (Pz)|) = (Qz, (Px),) = (Qz,h™' Px) = (Qz,h" Px) (9)
= (PhQz,z) = (hQz,x) < (Qz,x)) = (2,Qx)) = (@2, Q).
The last inequality holds by (5) and (A2). Thus (8) and (7) are proved. O

Remark 2.2.

(a) If E = D (or span E = span D) then @ reduces to the identity operator, and
condition (5) can be deleted (see Example 2.3, cf. also Theorem 2.7, (12)).
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(b) Condition (6) says that each vector x € W has its decomposition x = hx| for some
h € H and x| € E (cf. Examples 2.3-2.5).

(¢c) Note that Theorem 2.1 does not require that H is a subgroup of G and E C W
(see Example 2.5). However, if £ C W and (W, H, F) is an Eaton system then (9)
yields Pz <y Qx| for x € V (see Theorem 3.1).

Example 2.3. Assume V|, G and D are defined as in Example 1.2. Letting
W:=S,R), H:={UMU":U€0,} and E:=D
(cf. [14, Example 7.4]), we obtain
PX =ReX for X € H,,.

Condition (6) follows from the Spectral Decomposition for matrices in S,(R). We now
deduce from (7) that (cf. [1, p. 111))

AMRe X) <, A(X)  for X € H,.
Example 2.4. Let V, G and D be defined as in Example 1.3. For 1 < k < n, set

W = Mk(C) EB On—k,
H = {Ul()UQ : Ul, U2 € Uk @D In,k},
FE = {ZGDk(R)@On_k 211 Z szk 20}

Condition (6) amounts to the Singular Value Decomposition for matrices in M (C). The
orthoprojector P is given by

PX:Xll@On_k for X GMR(C),

where X7 is the k£ x k principal submatrix of X. Furthermore, () is the restriction of P
to D,,(R). Therefore inequality (7) becomes

S(Xll) jw <517 trt Sk) for X € Mn((c)a

where s(X) = (s1,...,5,). This is a direct consequence of the interlacing inequalities for
singular values (see [9, Corollary 3.1.3], cf. also [1, p. 101]).

Example 2.5. Let V be M, (R) with the trace inner product (X,Y) = Retr XY, and
let
G = {Ul()UQ : Ul, U, € ©n} and D := {Z < ]Dn(R) : d(Z) € Ril}

(cf. Example 1.3). We put

W :=K,(R), H:={UU(-)U":U€0,}
and E:={s1L®.. Bsply:8>...> s, >0}

where n = 2k is even, [ := ((1) (1]), and Uy is the n x n block-diagonal matrix B& ... & B

with B := ( % | ). Here E ¢ W. Condition (6) follows from the Autonne Decomposition
(cf. [14, Example 7.5]).
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It is evident that

X —-XT
PX = ——— for X € M,(R),

and

QX = Sl?%@...@@@ for X = diag (s1,. .., sn) € Dy(R).

An application of Theorem 2.1 results in

X - X7
(557)
. <31(X)+32(X) s1(X) + 52(X)  Su1(X) + su(X) sn_l(X)—l—sn(X))T
- 2 ’ 2 Y 2 ’ 2

for X € M, (R) (cf. [1, p. 109]).

As we saw in Examples 2.3-2.5, the property (6) in Theorem 2.1 is closely related to
canonical forms of some classes of matrices. On the other hand, (6) is a key assumption
for (7) to hold. In Theorem 2.7 below we shall give some practical conditions for a pair
of Eaton systems to have property (6). In consequence, we shall obtain inequality (7) in
the form (12) (cf. Examples 2.9-2.10; see also [1, 18]).

For this end, we introduce the notion of a reduced system. Given an Eaton system
(V,G, D), set
Vo:=spanD and Gy:={geG:gVh =W}

If Golv, is a finite reflection group acting on Vp, that is, if (Vg, G, D) is an Eaton system
(see [6, Lemma 4.1, (35)], [22, Theorem 4.1}), then

y =gz iffy=g,z forazyelj (10)

[18, Theorem 3.2]. In this event, (Vg, Gy, D) is called the reduced system of (V,G,D)
(cf. [24]). For simplicity of notation, we write here Gg instead of G|y, .

Many examples of Eaton system are indeed associated with reduced systems.

Example 2.6. If V, G and D are as in Example 1.2, then the reduced system is (Vg, Gg, D)
for Vo = D, (R), Go = {S(:)S" : S € P,} and D = {Z € D,(R) : d(Z) € R}, which can
be identified with the Eaton system (R",P,, RT) via the linear map D, (R) > Z — d(Z) €
R™ (cf. Example 1.1).

In the case of Example 1.3, the reduced system (Vp, G, D) of (V, G, D) consists of V =
D, (R), Go = {CS(:)ST : S € P,,C € DO, } and D = {Z € D,(R) : d(Z) € R’ }. Here
the reduced system corresponds to the triple (R", GP,(R),R" ) (cf. Example 1.1).

The symbols cl and ri stand, respectively, for the closure operation and for the relative
interior operation of sets [21, Section 6.

Theorem 2.7. Let (V,G, D) and (W, H, F') be Eaton systems with reduced systems (Vp,
Go, D) and (Wy, Hy, F), respectively. Assume that W C V, H C G and D C F. If
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Wo = Vi then there exists a subset G C G such that

W= gD, (11)
ge@
and the following inequality holds:
Pr =gz forxeV, (12)

where P is the orthoprojector from V onto W.

Proof. The triples (Vy, Go, D) and (W, Hy, F') are Eaton systems with finite reflection
groups Goly, and Hol|w, such that Wy = Vi and Hy C Gy. Set

Gy :={g € Go : FNri(gD) is nonempty}.

Since riD C D C F and riD is nonempty [21, Theorem 6.2], the identity operator id

belongs to éo, so G is nonempty.
We first prove that
F=|] gD (13)

9660

To do this, take any g € Go. We intend to show that gD C F. On the contrary, suppose
that gD is not included in F'. Then there exists y € gD C V; such that y & F. According
to the definition of Gy, there exists + € F Nri(gD). Clearly, x € F, x € ri(gD) and
x = gx| with x; € ri D, where the normal map (-), is taken with respect to (Vp, Gy, D).
Because (Wy, Hy, F) is an Eaton system with Wy = V4, and Hply, is a finite reflection
group, we have F' = {z € Vi : (2,r;) > 0, ¢ = 1,...,m} for the simple roots r; € V}
of Hyly, (see [11, Section 1.12], [22, Theorem 4.1]). In consequence, (y,79) < 0 and
(x,ro) > 0 for some ¢ = r;,, because y € F and x € F. Additionally, the real function
t — ((1 —t)x + ty,ro) is continuous on the interval [0, 1]. For this reason there exists a
point zg = (1 — tg)x + toy for some tq € [0,1) such that (zy,ry) = 0. Therefore zy # v,
and, consequently, zo € ri(gD), since z € ri (¢gD) and y € gD (see [21, Theorem 6.1]).

Let S,, € Hyly, be the reflection on Vj corresponding to ro. Then S,, € Gyly,, since
Hy C Gy. Moreover, it is not hard to verify that (Vg, Go,gD) is an Eaton system. We
therefore get S,z = z for all z € span gD =V, because S,,z0 = 29 and 2y € ri(gD) (see
[18, Lemma 2.1, Theorem 3.1]). Thus S,, is the identity on Vj, a contradiction.

We have shown that gD C F' for each g € CNJO. From this Ugeéo gD C F. It remains to

prove the opposite inclusion. Assume that € F. Since F' = clri F' [21, Theorem 6.3], the

set By(x)Nri F' is nonempty for each positive integer k, where By(z) is the open ball in V;

with the centre 2 and the radius . But the group G|y, is finite, and axiom (A1) holds for

(Vo, Go, D), so the open set |J,q, 11 (¢D) is dense in V;. This implies that the intersection

Br(z)Nri N Y ri(gD) is nonempty. So there exists a point xy € By (z)Nri F'Nri (g D)
9€Go

for some g, € Gy. Hence z, € F'Nri(gpD), which forces gi € éo for each k. Therefore

xp € 1i(gpD) C U ri(gD)

QGéo
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for each k. Letting k — oo, we have z;, — = as xy € By(x). So, finally

x € cl( U ri(gD)) = U clri(¢gD) = U gD.

9€Co 9€Co g9€Go
Thus the inclusion ' C |J ¢D is established. This proves (13).
geéo
To see (11), apply (13) and (A1) for (W, H, F) to obtain W =,z gD with G := HG.
Now, the proof of (12) is completed by using Theorem 2.1. Il

Remark 2.8. The first part of above proof is similar to the proofs of [8, Lemma 4] and
of [22, Theorem 4.1, parts (ii)-(iii)].

In Examples 2.9 and 2.10, we apply Theorem 2.7 for the reduced systems described in
Example 2.6.

Example 2.9. We take V', G and D to be as in Example 1.3. Setting
W:=H, H:={U(U":UeclU,} and F:={ZecD,(R):d(2)ecR]}

yields

X+ X
PX = i

for X € M,,(C).
According to Theorem 2.7 and (12), we obtain

X*
s (X+2 ) <w s(X) for all X € M,,(C),

Fan-Hoffman’s inequality (see [1, p.109], [16, p. 240]).

Example 2.10. Suppose that V', G and D are as in Example 1.2. For 1 < k < n, we put

W = Hk s> Hn—ka
H:={UQ)U":U € U, ® Up_},
F = {Z € Dn(R) D212 e 2 Bhky Bhlk4l = e 2 Znn}-

One can now check that
PX:XHEB X22 fOI"XGHn,

where X;; and Xy are the k X k and (n — k) x (n — k) diagonal blocks of X, respectively.
Now, Theorem 2.7 implies that

()\(XH), )\(XQQ)) —_<m )\(X) for X € MH(C)

This is a result of Fan (see [16, p. 225], cf. also [1, p. 97]).
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3. Subsystems of Eaton systems

Remind that the triple (V, G, D) is an Eaton system if axioms (A1)-(A2) hold (see Sec-
tion 1). In this event, the (nonlinear) operator (), : V' — D given by {z;} = D N Gz for
x € V is called a normal map, and the triple (V, G, (-),) is called a normal decomposition
(ND) system.

Lewis [13, 14, 15] showed the usefulness of ND systems in convex matrix analysis and Lie
theory. Following his ideas, we now introduce the notion of a subsystem. Let (V,G, D)
be an Eaton system. Assume H is a closed subgroup of G, W is an H-invariant subspace
of V' (with the inherited inner product), and F is a closed convex subcone of D. The
triple (W, H, E) is called a subsystem of (V,G, D), if (W, H, E) is an Eaton system (see
Examples 2.3-2.4). For notation simplicity, we write (W, H, E) in place of (W, H|w, E).
A special class of subsystems is formed by the reduced systems (see Example 2.6).

In Theorem 3.1 we give a characterization of a subsystem of an Eaton system (cf. [18,
Theorem 3.2]).

Theorem 3.1. Suppose (V,G, D) is an Eaton system. Let H be a closed subgroup of G,
let W be an H-invariant subspace of V', and let E C W be a closed convex subcone of D.
Let P and @ be the orthoprojectors, respectively, from V. onto W and from span D onto
span K. Assume QD = E. Then the following statements are mutually equivalent:

(a) (W,H,E) is a subsystem of (V,G, D).
(b)  The following inequality holds

Pr Xy Qx; forxzeV. (14)
(¢)  The following inclusion holds
wc | JgE, (15)
geG

and, in addition, the orderings <y and =g coincide on W, i.e.
y=wr iffy=cr forz,yeW. (16)

(d)  The following decomposition holds

W= |]JhE. (17)

heH

Proof. (a) = (b): Analysis similar to that in the proof of Theorem 2.1 shows that (see
9), (y, (Px);) < (y,Qz) for x € V and y € E. Consequently, using (3) applied for the
Eaton system (W, H, E'), we conclude that Pr <y Qx| for z € V.

(b) = (c¢): To see (15), fix arbitrarily x € W. It follows from (2) that x = gz, for some
g € G. It suffices to show that x| € E. Since Pr = x = gz, (14) gives gz| <y Q.
Hence ||z|| = ||gz,]] < [|Qz|| < ||z;]|]. The first inequality follows from the convexity
and H-invariance of the norm map || - ||. The second is due to Pythagorean Theorem.
Therefore ||Qz|| = ||z|||, which implies Qx| = z|. From this x| € E, because QD = E.
This proves (15).

In order to prove (16), let z € W. The implication y <y = = y =g = for y € W is
obvious, because H C G and Cy(x) C Cg(x).
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For the reverse implication, let y € W be such that y <¢ 2. Then y =< x; with
x, € E C W by (15). We thus get y = >, \ig;x|, a finite convex combination for some
gi € G. Hence y = Py = ), \;Pg;x|. However, Pg;x) <y Qx| = x| by (14). Therefore
Y i ANiPgix) € conv Hry = Cy(z)). In this way y € Cy(x)), that is y <y x|.

In particular, for y = z we find that <y z;. But ||z|| = ||z|||. So we may conclude that
x € Hx| by the strict convexity of the norm || - ||. This means that there exists an h € H
satisfying = hx|. Hence Cy(x)) = Cu(z).

Consequently, y € Cy(x), that is y < . Thus we have obtained the wanted inequality.

(¢) = (d): Let x € W be arbitrarily chosen. By (2) and (15), x = gz for some g € G
and x| € E C W. For this reason = <¢ x| and z; <¢ z. It now follows from (16) that
x =g x; and | <y z. Hence x = hx| for some h € H. Therefore z € UheH hE.

By using the arbitrariness in choice of z € W, we can obtain W C |J, .y hE. The opposite
inclusion is clear by the H-invariance of W. Thus (17) is proved.

(d) = (a): Axioms (Al) and (A2) for (W, H, E) are implied by, respectively, (17) and
(A2) used for (V,G, D). So (W, H, E) is an Eaton system, and therefore it is a subsystem
of (V,G, D). O

Remark 3.2.

(a) In view of Theorem 3.1, given an Eaton system (V, G, D) and its subsystem (W, H,
E), the normal map (-), for (W, H, E) is the restriction to W of the one for (V, G, D)
(cf. [18, Lemma 2.1]). Therefore we use the same symbol for them.

(b) If @ is the restriction to span D of P then (14) can be written as
Px <y Px; forxzelV. (18)

On the other hand, in the case £ = D the orthoprojector () is the identity, so the
assumption QD = E and inclusion (15) in Theorem 3.1 can be dropped, and (14)
leads to

Pr<ygx forxeV (19)

(see Example 3.3). Furthermore, if the system (W, H, F) has its reduced system (Wy, Ho,
E), then <y can be replaced on Wy by <y, according to (10).

Example 3.3. Put
W :=D,(C), H:={CS+)ST":S€P, CcDU,} and E:=D

with V', G and D as in Example 1.3. Condition (17) is met by the Polar Decomposition
for diagonal matrices. The orthoprojector P is given by

PX = diag (z11,...,2n,) for X € M, (C).
Using (19), one has
(lz11ls - oy |Tnn]) Sw (S1,...,8,) for X € M, (C),

where s(X) = (s1,...,s,). This is Fan’s result [16, p. 228] (cf. also [23, Corollary 1.1]).
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4. (G-doubly stochastic operators

In this section we show that some G-doubly stochastic operators induce subsystems of
Eaton systems. Let (V, G, D) be an Eaton system. A linear operator L : V' — V is called
G-doubly stochastic if

Lx <Xqgx forzelV.

Using (3) and axioms (A1)-(A2), it is not difficult to check that L is G-doubly stochastic
if and only if so is its adjoint L* defined by (Lx,y) = (x, L*y) for all z,y € V.

For instance, if V = R", G = P, and D = R as in Example 1.1, and if L is an n x n
matrix, then the last inequality amounts to Lz =<,, x for x € R", which is equivalent to
the conditions L > 0, Le = e and LTe = e, where e = (1,...,1)T € R" (see [2, p. 169,
Theorem 3.1]). In other words, L is a matrix with nonnegative entries and with row and
column sums equal to 1. Such matrices L are said to be doubly stochastic. Clearly, L is
doubly stochastic if and only if so is L.

Recall that the symbols ri(-) and cl(-) mean "the relative interior of" and "the closure
of", respectively. It is known that if A C V is convex then clri A = cl A [21, Theorem 6.3].
Given an Eaton system (V, G, D), denote V;. := J,c, g1i D. Since G is compact and (Al)
holds, the set V, is dense in V, that is clV, = V. A point x € V is said to be reqular if
zeV,.

Theorem 4.1. Suppose (V,G, D) is an Eaton system. Let W be a subspace of V' such
that D C W, and let H := {h € G : hD C W}. Then the following statements are

equivalent:

(a) W =Upep hD.
(b)  There exists a G-doubly stochastic operator L : V. — V such that W = {x € V :
Lz = x}, and, in addition, the set V., "W s dense in W.

Under condition (a), the set H is a group if and only if H ={h € G : kW = W}. In this
event, the triple (W, H, D) is a subsystem of (V,G, D).

Proof. (a) = (b): To see the first part of (b), it is sufficient to define L := P, where P
denotes the orthoprojector from V' onto W. Indeed, by using Theorem 2.1 for £ := D
and Remark 2.2, part (a), one has Px <¢ x; <¢ = for x € V. This means that P is
G-doubly stochastic. Clearly, the fixed points of P are exactly those in W. So, P has the
required properties.

To prove that the set V., N W is dense in W, note that D is convex and closed, and that
each h € H is a continuous operator. Hence hD = hclriD = clhri D. From (a) we find
that

W= |JhrD=|]JdmiDced(|JhrriD)ccd(V,nW)cCW.

heH heH heH
Thus W = cl(V, N W) is established as desired.

(b) = (a): We first prove V,NW = |J, oy hri D. It suffices to show V,NW C ey hri D,
because the opposite inclusion is straightforward. Let z € V, NW. Then z = gw € W for
some g € G and w € ri D. We only need to prove that g € H. Clearly, Lgw = gw and
w — g ' Lgw = 0. Therefore (y,w — ¢ 'Lgw) = 0 and (y — g ' L*gy,w) = 0 for all y € D.
On the other hand, Lgv <4 v for all v € D, since L is G-doubly stochastic, and < is
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G-invariant. Making use of (4) we deduce that (y, g~*Lgv) < (y,v) for all v € D, which
means y — g~ ' L*gy € dual D. It now follows that y — g~ !L*gy is orthogonal to span D,
because y — g~'L*gy is orthogonal to w € ri D. In particular, (y — g 'L*gy,y) = 0, and
further (y,y — g 'Lgy) = 0. Hence, by Cauchy-Schwarz inequality,

Iyl = (¢7" Ly, v) < (g~ Lgy, )| < g~ Lgyl| llyl|- (20)

However the relation g~ Lgy =<¢ y forces [|g7 Lgy|| < ||y, since || - || is a G-invariant con-
vex function on V. As a consequence, [{(¢g7*Lgy,v)| = |l¢7*Lgy|| |ly|]| by (20). Therefore
there exists a real number \ such that ¢~ 'Lgy = A\y. But (y,y — g 'Lgy) =0, so A = 1.
This gives Lgy = gy. For this reason gy € W, because W = {x € V : Lz = z}. Now,
the arbitrariness of y € D implies gD C W. This yields g € H. Remind that z = gw for
some w € ri D. Consequently we conclude that z € |,y h1i D, as was to be proved.

Summarizing, we have V., N W = J, ., h1i D. Hence

W=c(V,nW)=d | JhriD. (21)
heH
Next we claim that
cl | JhriD= ] clhriD. (22)
heH heH

In fact, the inclusion J,cyclhriD C cl |J,cyhriD is evident. To see the opposite
inclusion, fix arbitrarily € cl J,cp h1iD. Then x = lim h,z2, for some sequences

n—oo
h, € H and z, € riD, n > 1. Because H is a closed subset of the compact group G, H
is also compact. So, there exists a subsequence h,,, k > 1, converging to some hy € H.
Moreover, z = lim h,, z,,, whence

k—o0

[z = lim Ay, 2, || = lim ||z, |-
k—o0 k—o0

We now have
1hozn, — [l < |lho = hny || - (20, | + [[ony 20y, — 2], k=1,
which implies z = klim hozp,,. Therefore
xeclhyriD C U clhriD,
heH

yielding the desired inclusion.
Combining (21) and (22), the required equality W = (J, o, hD follows.

The proof of the last part of the theorem is immediate and is therefore omitted. ]

In some cases, the role of the set H in Theorem 4.1 can be played by a smaller set H.

Example 4.2. Define V', G and D as in Example 1.3. Set W :=§,,(C). Let H be defined
as in Theorem 4.1, and let

Hy:=1{hy=UU": U €U,}.
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Then

by the Takagi Decomposition for complex symmetric matrices (see [9, Cor. 4.4.4], [12,
Theorem 2|, cf. also [13, Example 3.5]). It can be derived by a straightforward calculation
that

H={h=UMNAU" :U € U,, A=diag(ay,...,a,),|a;| =1}.

So, Ho C H, and therefore |, .7, hoD C Upey hD. Additionally, for each h = U(-)AU"
in H there exists hg = U, (-)U{ with U; = UB, B = diag (b1, ..., b,), b? := a; such that the
restrictions to D of h and hg are the same. Finally, W =, cu, hoD = U,y hD. Thus
condition (a) in Theorem 4.1 is fulfilled. Consequently, part (b) of this theorem follows.
For instance, one can consider the operator L : V — V given by LX = X?. Then
W ={X €V :LX =X} and L is G-doubly stochastic, since the equality s(X7) = s(X)
[10, p. 154] gives LX =g X for X € V.

On the other hand, an easy computation shows that the orthoprojector from V' onto W
is given by

X 4+ X7
PX — +T for X € M,(C).

It follows from Theorem 4.1 that the Takagi’s Decomposition and Theorems 2.1 and 3.1
imply
X+ X7
s <+T) <, s(X) for X € M,(C).
This is an analogue of Fan-Hoffman’s inequality (see Example 2.9). Conversely, the last
inequality can be used to derive the decomposition.
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