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An Eaton system is connected with a decomposition statement for vectors of a linear space and with
a scalar inequality related to the decomposition. The Singular Value Decomposition for the space of
complex matrices associated with von Neumann’s trace inequality is a typical example. In this paper
we present a G-majorization inequality involving two orthoprojectors related to an Eaton system. The
inequality generalizes a variety of majorization results on eigenvalues and singular values of matrices. A
relationship between the inequality and canonical form theorems for certain spaces of matrices is shown.
G-doubly stochastic operators are discussed.
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1. Introduction

The theory of majorization has many applications in pure and applied mathematics.
The best general reference here is [16]. Special attention in the literature is devoted to
majorization inequalities (see e.g. [1, 2, 3, 17, 18, 20, 23]). Many of these inequalities
concern eigenvalues and singular values of matrices. In the current paper we offer a uni-
fied approach to the task of obtaining such inequalities. In addition to this, we show a
correspondence between the inequalities and decomposition theorems for matrices. Our
method is based on the theory of group majorization, Eaton systems and normal decom-
position systems (see the definitions below). We develop some ideas from [1, 13, 14, 18].

Section 1 is expository. We review here some of the standard facts on G-majorization
orderings and related notions. The results are collected in Sections 2-4. In Theorem 2.1
we present a general G-majorization inequality involving two orthoprojectors associated
with an Eaton system. The inequality embraces a variety of known results. Theorem 2.7
concerns Eaton systems connected with finite reflection groups. For such systems we give
simple conditions implying a version of the inequality. In Section 3 we study the notion
of subsystem introduced by Lewis [14]. Each subsystem of an Eaton system provides
a decomposition statement inducing a canonical form of vectors in some subspace. In
Theorem 3.1 we characterize a subsystem by, among others, the mentioned inequality.
Thus there is a close connection between some decomposition results and G-majorization
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orderings. Finally, in Section 4, we show a role of G-doubly stochastic operators in the
theory. Theorems 2.1-4.1 are illustrated in Examples 2.3-4.2 by concrete matrix spaces
and groups.

Throughout the paper V is a finite-dimensional real linear space with inner product 〈·, ·〉,
and G is a closed subgroup of the orthogonal group O(V ) acting on V . Given points
x, y ∈ V , we write y �G x, if y lies in the convex hull CG(x) of the orbitGx = {gx : g ∈ G},
that is

y �G x iff y ∈ convGx

(see [4], [16, p. 422]). The relation �G is called group majorization w.r.t. G (G-majoriza-

tion for short). It is easy to see that �G is a G-invariant ordering on V . For instance,
if G is the group of permutation matrices acting on V = R

n, then �G is the (classical)
majorization ordering on R

n [16, p. 23, p. 113] (see Example 1.1 for details).

It is well known that

y �G x iff m(z, y) ≤ m(z, x) for z ∈ V, (1)

where m(z, v) = supg∈G〈z, gv〉, z ∈ V , is the support function of CG(v) for v ∈ V [21,
Section 13]. Assume that there exists a closed convex cone D ⊂ V such that [4, 5]

(A1) Gx ∩D is nonempty for each x ∈ V , or equivalently, V =
⋃

g∈G gD,

(A2) 〈x, gy〉 ≤ 〈x, y〉, or equivalently, ‖x− gy‖ ≥ ‖x− y‖, for x, y ∈ D and g ∈ G,

where ‖ · ‖ is the norm induced by the inner product 〈·, ·〉. In this event, a vector x in V

has its canonical (normal) form

x = gx↓ for some g ∈ G. (2)

Here the normal map (·)↓ : V → D is defined by

{x↓} = D ∩Gx for x ∈ V.

By virtue of (A1)-(A2), the intersection D ∩ Gx is a singleton set, and therefore the
vector x↓ is uniquely determined by x [18, p. 14]. For notational convenience, we ignore
the dependence of the map (·)↓ on (V,G,D).

The map (·)↓ is G-invariant and idempotent. Its range is the cone D. The restriction of
(·)↓ to D is the identity. For each x ∈ V , the vectors x↓ and x are equivalent in the sense
that x↓ �G x and x �G x↓.

Under axioms (A1)-(A2), condition (1) takes the form

y �G x iff y↓ �G x↓ iff 〈z, y↓〉 ≤ 〈z, x↓〉 for z ∈ D. (3)

A useful version of (3) is the following

y �G x iff 〈z, gy〉 ≤ 〈z, x↓〉 for z ∈ D and g ∈ G. (4)

It is readily seen from (3) that the ordering �G restricted to D is the cone ordering
induced by the dual cone of D. For this reason, if (A1) and (A2) are met, the relation
�G is called a group induced cone ordering (GIC ordering for short), and the triple
(V,G,D) is called an Eaton system [24]. It named after M. L. Eaton who introduced it
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in 1984 [4, 5]. Independently, A. S. Lewis [13, 14, 15] introduced the notion of a normal

decomposition (ND) system (V,G, (·)↓). The above-mentioned notions play a unifying
role in statistics, matrix theory and Lie theory. See [4]-[6], [13]-[15], [17]-[20] and [24] for
examples, properties and applications of GIC orderings, Eaton systems and ND systems.

Recall that a finite group G acting on a linear space V is called a finite reflection group

[11] if G is generated by some set of reflections. It is known that finite reflection groups
induce GIC orderings and Eaton systems (see [6, Lemma 4.1, (35)], [22, Theorem 4.1]).

In our examples, we shall use the following matrix notation (for the field F = C or R).

R
n
↓ = the convex cone of nonincreasing vectors in R

n,

R
n
+↓ = the convex cone of nonnegative nonincreasing vectors in R

n,

Mn(F) = the vector space of n× n matrices over F,

Hn = the vector space of n× n Hermitian matrices,

Sn(F) = the vector space of n× n symmetric matrices over F,

Kn(R) = the vector space of n× n real skew-symmetric matrices,

Dn(F) = the vector space of n× n diagonal matrices over F,

Un = the group of n× n unitary matrices,

On = the group of n× n real orthogonal matrices,

Pn = the group of n× n permutation matrices,

GPn(F) = the group of n× n generalized permutation matrices over F, i.e., matrices

with exactly one nonzero entry with magnitude 1 in each row and column,

DOn = the group of n× n diagonal orthogonal matrices,

DUn = the group of n× n diagonal unitary matrices,

λ(X) = the vector of eigenvalues of Hermitian matrix X stated in nonincreasing

order,

s(X) = the vector of singular values of matrix X stated in nonincreasing order,

d(X) = the vector of diagonal entries of matrix X,

ReX = the real part of matrix X,

U1(·)U2 = the matrix operator of the form X → U1XU2, where X, U1 and U2

are matrices.

Let z[1] ≥ z[2] ≥ . . . ≥ z[n] denote the entries of z ∈ R
n in nonincreasing order. For

x, y ∈ R
n, if

∑i

j=1 y[j] ≤
∑i

j=1 x[j], i = 1, . . . , n, then we write y ≺w x. This is the weak

majorization [16, p. 10]. If, in addition,
∑n

j=1 y[j] =
∑n

j=1 x[j], we write y ≺m x, the
(classical ) majorization [16, p. 7].

Example 1.1 ([4, p. 16]). It is known that if V = R
n, G = Pn and D = R

n
↓ , then

(V,G,D) is an Eaton system, G is a finite reflection group, and y �G x means y ≺m x.
Furthermore, x↓ = (x[1], . . . , x[n])

T .

Likewise, replacing V , G, and D with R
n, GPn(R) and R

n
+↓, respectively, one obtains

Eaton system (V,G,D) with finite reflection group G. Here y �G x reduces to |y| ≺w |x|,
and, in addition, x↓ = (|x|[1], . . . , |x|[n])

T , where |x| is the vector of absolute values of the
entries of x ∈ R

n.
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Example 1.2 ([4, p. 17]). Take V = Hn with the real inner product 〈X, Y 〉 = Re trXY .
Let G be the group of operators X → UXU∗, X ∈ Hn, with U running over Un. Then
(V,G,D) is an Eaton system for D = {Z ∈ Dn(R) : d(Z) ∈ R

n
↓}. In fact, (A1) is the

Spectral Theorem, and (A2) is Fan-Theobald’s trace inequality [7, 25]. It is known that
X↓ = diagλ(X) for X ∈ Hn, and Y �G X iff λ(Y ) �m λ(X) for X, Y ∈ Hn. So, the
ordering �G on Dn(R) may be identified with the classical majorization �m on R

n.

Example 1.3 ([4, p. 17-18]). Let V be Mn(C) with the real inner product 〈X, Y 〉 =
Re trXY ∗. Let G be the group of all linear operators X → U1XU2, X ∈ Mn(C), where
U1 and U2 vary over Un. Put D = {Z ∈ Dn(R) : d(Z) ∈ R

n
+↓}. Then (V,G,D) is an Eaton

system, where (A1) is the Singular Value Decomposition Theorem [16, p. 498], and (A2)
is von Neumann’s trace inequality [16, p. 514]. Moreover, X↓ = diag s(X) for X ∈ Mn(C).
Here Y �G X iff s(Y ) �w s(X) for X, Y ∈ Mn(C). Thus �G restricted to Dn(R) can be
described as the weak majorization ordering �w on R

n.

2. G-majorization and orthoprojectors

We begin with G-majorization inequality (7) which gives a more conceptual understanding
of some results existing in the literature (see Examples 2.3-2.5, 2.9, 2.10, 3.3 and 4.2).

Theorem 2.1. Let (V,G,D) be an Eaton system. Assume W is a linear subspace of

V , H is a subset of G, and E is a subset of D. Let P and Q be the orthoprojectors,

respectively, from V onto W and from spanD onto spanE. If

QD = E, (5)

and W =
⋃

h∈H

hE, (6)

then the following inequality holds:

Px �G Qx↓ for x ∈ V. (7)

Proof. Fix x ∈ V . By virtue of (3), it is sufficient to show

〈z, (Px)↓〉 ≤ 〈z,Qx↓〉 for z ∈ D, (8)

since Qx↓ ∈ E ⊂ D by (5). From (6) it follows that Px = he for some h ∈ H and e ∈ E.
But E ⊂ D and H ⊂ G, so (Px)↓ = e and Px = h(Px)↓. Hence (Px)↓ = h−1Px with
h−1 ∈ G. We have Qz ∈ E for z ∈ D by (5). Therefore hQz ∈ hE ⊂ W by (6). As a
consequence, PhQz = hQz.

For z ∈ D we now obtain

〈z, (Px)↓〉 = 〈Qz, (Px)↓〉 = 〈Qz, h−1Px〉 = 〈Qz, hTPx〉 (9)

= 〈PhQz, x〉 = 〈hQz, x〉 ≤ 〈Qz, x↓〉 = 〈z,Qx↓〉 = 〈Qz,Qx↓〉.

The last inequality holds by (5) and (A2). Thus (8) and (7) are proved.

Remark 2.2.

(a) If E = D (or spanE = spanD) then Q reduces to the identity operator, and
condition (5) can be deleted (see Example 2.3, cf. also Theorem 2.7, (12)).
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(b) Condition (6) says that each vector x ∈ W has its decomposition x = hx↓ for some
h ∈ H and x↓ ∈ E (cf. Examples 2.3-2.5).

(c) Note that Theorem 2.1 does not require that H is a subgroup of G and E ⊂ W

(see Example 2.5). However, if E ⊂ W and (W,H,E) is an Eaton system then (9)
yields Px �H Qx↓ for x ∈ V (see Theorem 3.1).

Example 2.3. Assume V , G and D are defined as in Example 1.2. Letting

W := Sn(R), H := {U(·)UT : U ∈ On} and E := D

(cf. [14, Example 7.4]), we obtain

PX = ReX for X ∈ Hn.

Condition (6) follows from the Spectral Decomposition for matrices in Sn(R). We now
deduce from (7) that (cf. [1, p. 111])

λ(ReX) �m λ(X) for X ∈ Hn.

Example 2.4. Let V , G and D be defined as in Example 1.3. For 1 ≤ k ≤ n, set

W := Mk(C)⊕ 0n−k,

H := {U1(·)U2 : U1, U2 ∈ Uk ⊕ In−k},

E := {Z ∈ Dk(R)⊕ 0n−k : z11 ≥ . . . ≥ zkk ≥ 0}.

Condition (6) amounts to the Singular Value Decomposition for matrices in Mk(C). The
orthoprojector P is given by

PX = X11 ⊕ 0n−k for X ∈ Mn(C),

where X11 is the k × k principal submatrix of X. Furthermore, Q is the restriction of P
to Dn(R). Therefore inequality (7) becomes

s(X11) �w (s1, . . . , sk) for X ∈ Mn(C),

where s(X) = (s1, . . . , sn). This is a direct consequence of the interlacing inequalities for
singular values (see [9, Corollary 3.1.3], cf. also [1, p. 101]).

Example 2.5. Let V be Mn(R) with the trace inner product 〈X, Y 〉 = Re trXY T , and
let

G := {U1(·)U2 : U1, U2 ∈ On} and D := {Z ∈ Dn(R) : d(Z) ∈ R
n
+↓}

(cf. Example 1.3). We put

W := Kn(R), H := {UU0(·)U
T : U ∈ On}

and E := {s1I2 ⊕ . . .⊕ skI2 : s1 ≥ . . . ≥ sk ≥ 0},

where n = 2k is even, I2 :=
(
1 0
0 1

)
, and U0 is the n×n block-diagonal matrix B⊕ . . .⊕B

with B :=
(

0 1
−1 0

)
. Here E 6⊂ W . Condition (6) follows from the Autonne Decomposition

(cf. [14, Example 7.5]).
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It is evident that

PX =
X −XT

2
for X ∈ Mn(R),

and

QX =
s1 + s2

2
I2 ⊕ . . .⊕

sn−1 + sn

2
I2 for X = diag (s1, . . . , sn) ∈ Dn(R).

An application of Theorem 2.1 results in

s

(
X −XT

2

)

�w

(
s1(X) + s2(X)

2
,
s1(X) + s2(X)

2
, . . . ,

sn−1(X) + sn(X)

2
,
sn−1(X) + sn(X)

2

)T

for X ∈ Mn(R) (cf. [1, p. 109]).

As we saw in Examples 2.3-2.5, the property (6) in Theorem 2.1 is closely related to
canonical forms of some classes of matrices. On the other hand, (6) is a key assumption
for (7) to hold. In Theorem 2.7 below we shall give some practical conditions for a pair
of Eaton systems to have property (6). In consequence, we shall obtain inequality (7) in
the form (12) (cf. Examples 2.9-2.10; see also [1, 18]).

For this end, we introduce the notion of a reduced system. Given an Eaton system
(V,G,D), set

V0 := spanD and G0 := {g ∈ G : gV0 = V0}.

If G0|V0
is a finite reflection group acting on V0, that is, if (V0, G0, D) is an Eaton system

(see [6, Lemma 4.1, (35)], [22, Theorem 4.1]), then

y �G x iff y �G0
x for x, y ∈ V0 (10)

[18, Theorem 3.2]. In this event, (V0, G0, D) is called the reduced system of (V,G,D)
(cf. [24]). For simplicity of notation, we write here G0 instead of G0|V0

.

Many examples of Eaton system are indeed associated with reduced systems.

Example 2.6. If V ,G andD are as in Example 1.2, then the reduced system is (V0, G0, D)
for V0 = Dn(R), G0 = {S(·)ST : S ∈ Pn} and D = {Z ∈ Dn(R) : d(Z) ∈ R

n
↓}, which can

be identified with the Eaton system (Rn,Pn,R
n
↓ ) via the linear map Dn(R) ∋ Z → d(Z) ∈

R
n (cf. Example 1.1).

In the case of Example 1.3, the reduced system (V0, G0, D) of (V,G,D) consists of V0 =
Dn(R), G0 = {CS(·)ST : S ∈ Pn, C ∈ DOn} and D = {Z ∈ Dn(R) : d(Z) ∈ R

n
+↓}. Here

the reduced system corresponds to the triple (Rn,GPn(R),Rn
+↓) (cf. Example 1.1).

The symbols cl and ri stand, respectively, for the closure operation and for the relative
interior operation of sets [21, Section 6].

Theorem 2.7. Let (V,G,D) and (W,H,F ) be Eaton systems with reduced systems (V0,

G0, D) and (W0, H0, F ), respectively. Assume that W ⊂ V , H ⊂ G and D ⊂ F . If
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W0 = V0 then there exists a subset Ĝ ⊂ G such that

W =
⋃

g∈Ĝ

gD, (11)

and the following inequality holds:

Px �G x↓ for x ∈ V, (12)

where P is the orthoprojector from V onto W .

Proof. The triples (V0, G0, D) and (W0, H0, F ) are Eaton systems with finite reflection
groups G0|V0

and H0|W0
such that W0 = V0 and H0 ⊂ G0. Set

G̃0 := {g ∈ G0 : F ∩ ri (gD) is nonempty}.

Since riD ⊂ D ⊂ F and riD is nonempty [21, Theorem 6.2], the identity operator id

belongs to G̃0, so G̃0 is nonempty.

We first prove that

F =
⋃

g∈G̃0

gD. (13)

To do this, take any g ∈ G̃0. We intend to show that gD ⊂ F . On the contrary, suppose
that gD is not included in F . Then there exists y ∈ gD ⊂ V0 such that y 6∈ F . According
to the definition of G̃0, there exists x ∈ F ∩ ri (gD). Clearly, x ∈ F , x ∈ ri (gD) and
x = gx↓ with x↓ ∈ riD, where the normal map (·)↓ is taken with respect to (V0, G0, D).
Because (W0, H0, F ) is an Eaton system with W0 = V0, and H0|V0

is a finite reflection
group, we have F = {z ∈ V0 : 〈z, ri〉 ≥ 0, i = 1, . . . ,m} for the simple roots ri ∈ V0

of H0|V0
(see [11, Section 1.12], [22, Theorem 4.1]). In consequence, 〈y, r0〉 < 0 and

〈x, r0〉 ≥ 0 for some r0 = ri0 , because y 6∈ F and x ∈ F . Additionally, the real function
t → 〈(1 − t)x + ty, r0〉 is continuous on the interval [0, 1]. For this reason there exists a
point z0 = (1 − t0)x + t0y for some t0 ∈ [0, 1) such that 〈z0, r0〉 = 0. Therefore z0 6= y,
and, consequently, z0 ∈ ri (gD), since x ∈ ri (gD) and y ∈ gD (see [21, Theorem 6.1]).

Let Sr0 ∈ H0|V0
be the reflection on V0 corresponding to r0. Then Sr0 ∈ G0|V0

, since
H0 ⊂ G0. Moreover, it is not hard to verify that (V0, G0, gD) is an Eaton system. We
therefore get Sr0z = z for all z ∈ span gD = V0, because Sr0z0 = z0 and z0 ∈ ri (gD) (see
[18, Lemma 2.1, Theorem 3.1]). Thus Sr0 is the identity on V0, a contradiction.

We have shown that gD ⊂ F for each g ∈ G̃0. From this
⋃

g∈G̃0
gD ⊂ F . It remains to

prove the opposite inclusion. Assume that x ∈ F . Since F = cl riF [21, Theorem 6.3], the
set Bk(x)∩riF is nonempty for each positive integer k, where Bk(x) is the open ball in V0

with the centre x and the radius 1
k
. But the group G0|V0

is finite, and axiom (A1) holds for
(V0, G0, D), so the open set

⋃
g∈G0

ri (gD) is dense in V0. This implies that the intersection
Bk(x)∩ riF ∩

⋃
g∈G0

ri (gD) is nonempty. So there exists a point xk ∈ Bk(x)∩ riF ∩ ri (gkD)

for some gk ∈ G0. Hence xk ∈ F ∩ ri (gkD), which forces gk ∈ G̃0 for each k. Therefore

xk ∈ ri (gkD) ⊂
⋃

g∈G̃0

ri (gD)
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for each k. Letting k → ∞, we have xk → x as xk ∈ Bk(x). So, finally

x ∈ cl (
⋃

g∈G̃0

ri (gD)) =
⋃

g∈G̃0

cl ri (gD) =
⋃

g∈G̃0

gD.

Thus the inclusion F ⊂
⋃

g∈G̃0

gD is established. This proves (13).

To see (11), apply (13) and (A1) for (W,H,F ) to obtain W =
⋃

g∈Ĝ
gD with Ĝ := HG̃0.

Now, the proof of (12) is completed by using Theorem 2.1.

Remark 2.8. The first part of above proof is similar to the proofs of [8, Lemma 4] and
of [22, Theorem 4.1, parts (ii)-(iii)].

In Examples 2.9 and 2.10, we apply Theorem 2.7 for the reduced systems described in
Example 2.6.

Example 2.9. We take V , G and D to be as in Example 1.3. Setting

W := Hn, H := {U(·)U∗ : U ∈ Un} and F := {Z ∈ Dn(R) : d(Z) ∈ R
n
↓}

yields

PX =
X +X∗

2
for X ∈ Mn(C).

According to Theorem 2.7 and (12), we obtain

s (
X +X∗

2
) �w s(X) for all X ∈ Mn(C),

Fan-Hoffman’s inequality (see [1, p.109], [16, p. 240]).

Example 2.10. Suppose that V , G and D are as in Example 1.2. For 1 ≤ k ≤ n, we put

W := Hk ⊕ Hn−k,

H := {U(·)U∗ : U ∈ Uk ⊕ Un−k},

F := {Z ∈ Dn(R) : z11 ≥ . . . ≥ zkk, zk+1 k+1 ≥ . . . ≥ znn}.

One can now check that

PX = X11 ⊕ X22 for X ∈ Hn,

where X11 and X22 are the k× k and (n− k)× (n− k) diagonal blocks of X, respectively.
Now, Theorem 2.7 implies that

(λ(X11), λ(X22)) �m λ(X) for X ∈ Mn(C).

This is a result of Fan (see [16, p. 225], cf. also [1, p. 97]).
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3. Subsystems of Eaton systems

Remind that the triple (V,G,D) is an Eaton system if axioms (A1)-(A2) hold (see Sec-
tion 1). In this event, the (nonlinear) operator (·)↓ : V → D given by {x↓} = D ∩Gx for
x ∈ V is called a normal map, and the triple (V,G, (·)↓) is called a normal decomposition
(ND) system.

Lewis [13, 14, 15] showed the usefulness of ND systems in convex matrix analysis and Lie
theory. Following his ideas, we now introduce the notion of a subsystem. Let (V,G,D)
be an Eaton system. Assume H is a closed subgroup of G, W is an H-invariant subspace
of V (with the inherited inner product), and E is a closed convex subcone of D. The
triple (W,H,E) is called a subsystem of (V,G,D), if (W,H,E) is an Eaton system (see
Examples 2.3-2.4). For notation simplicity, we write (W,H,E) in place of (W,H|W , E).
A special class of subsystems is formed by the reduced systems (see Example 2.6).

In Theorem 3.1 we give a characterization of a subsystem of an Eaton system (cf. [18,
Theorem 3.2]).

Theorem 3.1. Suppose (V,G,D) is an Eaton system. Let H be a closed subgroup of G,

let W be an H-invariant subspace of V , and let E ⊂ W be a closed convex subcone of D.

Let P and Q be the orthoprojectors, respectively, from V onto W and from spanD onto

spanE. Assume QD = E. Then the following statements are mutually equivalent:

(a) (W,H,E) is a subsystem of (V,G,D).

(b) The following inequality holds

Px �H Qx↓ for x ∈ V . (14)

(c) The following inclusion holds

W ⊂
⋃

g∈G

gE, (15)

and, in addition, the orderings �H and �G coincide on W , i.e.

y �H x iff y �G x for x, y ∈ W. (16)

(d) The following decomposition holds

W =
⋃

h∈H

hE. (17)

Proof. (a) ⇒ (b): Analysis similar to that in the proof of Theorem 2.1 shows that (see
(9)), 〈y, (Px)↓〉 ≤ 〈y,Qx↓〉 for x ∈ V and y ∈ E. Consequently, using (3) applied for the
Eaton system (W,H,E), we conclude that Px �H Qx↓ for x ∈ V .

(b) ⇒ (c): To see (15), fix arbitrarily x ∈ W . It follows from (2) that x = gx↓ for some
g ∈ G. It suffices to show that x↓ ∈ E. Since Px = x = gx↓, (14) gives gx↓ �H Qx↓.
Hence ‖x↓‖ = ‖gx↓‖ ≤ ‖Qx↓‖ ≤ ‖x↓‖. The first inequality follows from the convexity
and H-invariance of the norm map ‖ · ‖. The second is due to Pythagorean Theorem.
Therefore ‖Qx↓‖ = ‖x↓‖, which implies Qx↓ = x↓. From this x↓ ∈ E, because QD = E.
This proves (15).

In order to prove (16), let x ∈ W . The implication y �H x ⇒ y �G x for y ∈ W is
obvious, because H ⊂ G and CH(x) ⊂ CG(x).
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For the reverse implication, let y ∈ W be such that y �G x. Then y �G x↓ with
x↓ ∈ E ⊂ W by (15). We thus get y =

∑
i λigix↓, a finite convex combination for some

gi ∈ G. Hence y = Py =
∑

i λiPgix↓. However, Pgix↓ �H Qx↓ = x↓ by (14). Therefore∑
i λiPgix↓ ∈ convHx↓ = CH(x↓). In this way y ∈ CH(x↓), that is y �H x↓.

In particular, for y = x we find that x �H x↓. But ‖x‖ = ‖x↓‖. So we may conclude that
x ∈ Hx↓ by the strict convexity of the norm ‖ · ‖. This means that there exists an h ∈ H

satisfying x = hx↓. Hence CH(x↓) = CH(x).

Consequently, y ∈ CH(x), that is y �H x. Thus we have obtained the wanted inequality.

(c) ⇒ (d): Let x ∈ W be arbitrarily chosen. By (2) and (15), x = gx↓ for some g ∈ G

and x↓ ∈ E ⊂ W . For this reason x �G x↓ and x↓ �G x. It now follows from (16) that
x �H x↓ and x↓ �H x. Hence x = hx↓ for some h ∈ H. Therefore x ∈

⋃
h∈H hE.

By using the arbitrariness in choice of x ∈ W , we can obtainW ⊂
⋃

h∈H hE. The opposite
inclusion is clear by the H-invariance of W . Thus (17) is proved.

(d) ⇒ (a): Axioms (A1) and (A2) for (W,H,E) are implied by, respectively, (17) and
(A2) used for (V,G,D). So (W,H,E) is an Eaton system, and therefore it is a subsystem
of (V,G,D).

Remark 3.2.

(a) In view of Theorem 3.1, given an Eaton system (V,G,D) and its subsystem (W,H,

E), the normal map (·)↓ for (W,H,E) is the restriction to W of the one for (V,G,D)
(cf. [18, Lemma 2.1]). Therefore we use the same symbol for them.

(b) If Q is the restriction to spanD of P then (14) can be written as

Px �H Px↓ for x ∈ V . (18)

On the other hand, in the case E = D the orthoprojector Q is the identity, so the
assumption QD = E and inclusion (15) in Theorem 3.1 can be dropped, and (14)
leads to

Px �H x↓ for x ∈ V (19)

(see Example 3.3). Furthermore, if the system (W,H,E) has its reduced system (W0, H0,

E), then �H can be replaced on W0 by �H0
according to (10).

Example 3.3. Put

W := Dn(C), H := {CS(·)ST : S ∈ Pn, C ∈ DUn} and E := D

with V , G and D as in Example 1.3. Condition (17) is met by the Polar Decomposition
for diagonal matrices. The orthoprojector P is given by

PX = diag (x11, . . . , xnn) for X ∈ Mn(C).

Using (19), one has

(|x11|, . . . , |xnn|) �w (s1, . . . , sn) for X ∈ Mn(C),

where s(X) = (s1, . . . , sn). This is Fan’s result [16, p. 228] (cf. also [23, Corollary 1.1]).
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4. G-doubly stochastic operators

In this section we show that some G-doubly stochastic operators induce subsystems of
Eaton systems. Let (V,G,D) be an Eaton system. A linear operator L : V → V is called
G-doubly stochastic if

Lx �G x for x ∈ V.

Using (3) and axioms (A1)-(A2), it is not difficult to check that L is G-doubly stochastic
if and only if so is its adjoint L∗ defined by 〈Lx, y〉 = 〈x, L∗y〉 for all x, y ∈ V .

For instance, if V = R
n, G = Pn and D = R

n
↓ as in Example 1.1, and if L is an n × n

matrix, then the last inequality amounts to Lx �m x for x ∈ R
n, which is equivalent to

the conditions L ≥ 0, Le = e and LT e = e, where e = (1, . . . , 1)T ∈ R
n (see [2, p. 169,

Theorem 3.1]). In other words, L is a matrix with nonnegative entries and with row and
column sums equal to 1. Such matrices L are said to be doubly stochastic. Clearly, L is
doubly stochastic if and only if so is LT .

Recall that the symbols ri (·) and cl (·) mean "the relative interior of" and "the closure
of", respectively. It is known that if A ⊂ V is convex then cl riA = clA [21, Theorem 6.3].
Given an Eaton system (V,G,D), denote Vr :=

⋃
g∈G g riD. Since G is compact and (A1)

holds, the set Vr is dense in V , that is clVr = V . A point x ∈ V is said to be regular if
x ∈ Vr.

Theorem 4.1. Suppose (V,G,D) is an Eaton system. Let W be a subspace of V such

that D ⊂ W , and let H := {h ∈ G : hD ⊂ W}. Then the following statements are

equivalent:

(a) W =
⋃

h∈H hD.

(b) There exists a G-doubly stochastic operator L : V → V such that W = {x ∈ V :
Lx = x}, and, in addition, the set Vr ∩W is dense in W .

Under condition (a), the set H is a group if and only if H = {h ∈ G : hW = W}. In this

event, the triple (W,H,D) is a subsystem of (V,G,D).

Proof. (a) ⇒ (b): To see the first part of (b), it is sufficient to define L := P , where P

denotes the orthoprojector from V onto W . Indeed, by using Theorem 2.1 for E := D

and Remark 2.2, part (a), one has Px �G x↓ �G x for x ∈ V . This means that P is
G-doubly stochastic. Clearly, the fixed points of P are exactly those in W . So, P has the
required properties.

To prove that the set Vr ∩W is dense in W , note that D is convex and closed, and that
each h ∈ H is a continuous operator. Hence hD = h cl riD = clh riD. From (a) we find
that

W =
⋃

h∈H

hD =
⋃

h∈H

clhriD ⊂ cl (
⋃

h∈H

h riD) ⊂ cl (Vr ∩W ) ⊂ W.

Thus W = cl (Vr ∩W ) is established as desired.

(b) ⇒ (a): We first prove Vr∩W =
⋃

h∈H h riD. It suffices to show Vr∩W ⊂
⋃

h∈H h riD,
because the opposite inclusion is straightforward. Let z ∈ Vr ∩W . Then z = gw ∈ W for
some g ∈ G and w ∈ riD. We only need to prove that g ∈ H. Clearly, Lgw = gw and
w− g−1Lgw = 0. Therefore 〈y, w− g−1Lgw〉 = 0 and 〈y− g−1L∗gy, w〉 = 0 for all y ∈ D.
On the other hand, Lgv �G v for all v ∈ D, since L is G-doubly stochastic, and �G is
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G-invariant. Making use of (4) we deduce that 〈y, g−1Lgv〉 ≤ 〈y, v〉 for all v ∈ D, which
means y − g−1L∗gy ∈ dual D. It now follows that y − g−1L∗gy is orthogonal to spanD,
because y − g−1L∗gy is orthogonal to w ∈ riD. In particular, 〈y − g−1L∗gy, y〉 = 0, and
further 〈y, y − g−1Lgy〉 = 0. Hence, by Cauchy-Schwarz inequality,

‖y‖2 = 〈g−1Lgy, y〉 ≤ |〈g−1Lgy, y〉| ≤ ‖g−1Lgy‖ ‖y‖. (20)

However the relation g−1Lgy �G y forces ‖g−1Lgy‖ ≤ ‖y‖, since ‖ ·‖ is a G-invariant con-
vex function on V . As a consequence, |〈g−1Lgy, y〉| = ‖g−1Lgy‖ ‖y‖ by (20). Therefore
there exists a real number λ such that g−1Lgy = λy. But 〈y, y − g−1Lgy〉 = 0, so λ = 1.
This gives Lgy = gy. For this reason gy ∈ W , because W = {x ∈ V : Lx = x}. Now,
the arbitrariness of y ∈ D implies gD ⊂ W . This yields g ∈ H. Remind that z = gw for
some w ∈ riD. Consequently we conclude that z ∈

⋃
h∈H h riD, as was to be proved.

Summarizing, we have Vr ∩W =
⋃

h∈H h riD. Hence

W = cl (Vr ∩W ) = cl
⋃

h∈H

h riD. (21)

Next we claim that
cl

⋃

h∈H

h riD =
⋃

h∈H

clh riD. (22)

In fact, the inclusion
⋃

h∈H clh riD ⊂ cl
⋃

h∈H h riD is evident. To see the opposite
inclusion, fix arbitrarily x ∈ cl

⋃
h∈H h riD. Then x = lim

n→∞
hnzn for some sequences

hn ∈ H and zn ∈ riD, n ≥ 1. Because H is a closed subset of the compact group G, H
is also compact. So, there exists a subsequence hnk

, k ≥ 1, converging to some h0 ∈ H.
Moreover, x = lim

k→∞
hnk

znk
, whence

‖x‖ = lim
k→∞

‖hnk
znk

‖ = lim
k→∞

‖znk
‖.

We now have

‖h0znk
− x‖ ≤ ‖h0 − hnk

‖ · ‖znk
‖+ ‖hnk

znk
− x‖, k ≥ 1,

which implies x = lim
k→∞

h0znk
. Therefore

x ∈ clh0 riD ⊂
⋃

h∈H

clh riD,

yielding the desired inclusion.

Combining (21) and (22), the required equality W =
⋃

h∈H hD follows.

The proof of the last part of the theorem is immediate and is therefore omitted.

In some cases, the role of the set H in Theorem 4.1 can be played by a smaller set H0.

Example 4.2. Define V , G and D as in Example 1.3. Set W := Sn(C). Let H be defined
as in Theorem 4.1, and let

H0 := {h0 = U(·)UT : U ∈ Un}.
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Then

W =
⋃

h0∈H0

h0D

by the Takagi Decomposition for complex symmetric matrices (see [9, Cor. 4.4.4], [12,
Theorem 2], cf. also [13, Example 3.5]). It can be derived by a straightforward calculation
that

H = {h = U(·)AUT : U ∈ Un, A = diag (a1, . . . , an), |ai| = 1}.

So, H0 ⊂ H, and therefore
⋃

h0∈H0
h0D ⊂

⋃
h∈H hD. Additionally, for each h = U(·)AUT

inH there exists h0 = U1(·)U
T
1 with U1 = UB, B = diag (b1, . . . , bn), b

2
i := ai such that the

restrictions to D of h and h0 are the same. Finally, W =
⋃

h0∈H0
h0D =

⋃
h∈H hD. Thus

condition (a) in Theorem 4.1 is fulfilled. Consequently, part (b) of this theorem follows.
For instance, one can consider the operator L : V → V given by LX = XT . Then
W = {X ∈ V : LX = X} and L is G-doubly stochastic, since the equality s(XT ) = s(X)
[10, p. 154] gives LX �G X for X ∈ V .

On the other hand, an easy computation shows that the orthoprojector from V onto W

is given by

PX =
X +XT

2
for X ∈ Mn(C).

It follows from Theorem 4.1 that the Takagi’s Decomposition and Theorems 2.1 and 3.1
imply

s (
X +XT

2
) �w s(X) for X ∈ Mn(C).

This is an analogue of Fan-Hoffman’s inequality (see Example 2.9). Conversely, the last
inequality can be used to derive the decomposition.
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