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In this paper, we show how convex analysis can be applied to the theory of sets that are “positive” with
respect to a continuous quadratic form on a Banach space. Monotone sets can be considered as a special
case of positive sets, and we show how our results lead to very efficient proofs of a number of results on
monotone sets. One of the key techniques that we use is a generalization of the Fitzpatrick function from
monotone set theory to an analogous function for positive sets.

Introduction

In this paper, we discuss the theory of subsets of Banach space that are “positive� with
respect to a certain quadratic form. In a sense to be made precise in Section 8, this theory
subsumes the theory of monotone subsets of Banach spaces. We will see that this theory
not only produces new results on positive and monotone sets, but also simpler proofs of
some known results on monotone sets.

In Sections 1–2, we discuss the bilinear and quadratic forms on a Banach spaces that will
be the object of this paper, and introduce the other notation that we will need. Bilinear
forms on a Banach space have been studied extensively under the name “indefinite inner
product�. (See, for example, [1].) However, the results presented in this paper are of a
totally different character.

In Section 3, we introduce q–positive sets, maximally q–positive sets, and the operation
π of q–positive relationship. We also show how every q–positive subset, A, gives rise to
a proper, convex, lower semicontinuous function, ΦA. Conversely, we show in Lemma 3.5
how certain convex functions give rise to q–positive sets in a very natural way, deferring
to Section 6 a more detailed discussion of exactly which q–positive sets can be produced
by this procedure. In Theorem 3.6, we find which functions are of the form ΦA for some
q–positive set A and, in Theorem 3.7, we show what happens if we extend the definition
of Φ{·} to arbitrary subsets of F .

In Section 4, we discuss subtler results on maximally q–positive sets. Specifically, we give
(in Theorem 4.1) a criterion for maximal q–positivity, valid under certain conditions on
the basic bilinear form, in terms of an “additive transversal�. We also give (in Theorem
4.3) conditions under which Lemma 3.5 can be used to produce maximally q–positive sets.

In Section 5, we introduce the iterated operation ππ and discuss, (under the name “pre-
maximally q–positive sets�) those q–positive sets that have a unique maximally q–positive
superset.

As promised above, in Section 6 we discuss (under the name “S–q–positive sets�) exactly
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which q–positive sets can be produced by the procedure of Lemma 3.5. (The “S� stands
for “special�.) Given a q–positive set A, we write clS(A) for the smallest S–q–positive
superset of A (which always exists). In Theorem 6.5, we give a number of connections
between clS(A), ΦA and (pre)maximally q–positive subsets. In particular, Theorem 6.5(d)
shows that, under certain circumstances, clS(A) is the largest q–positive set with the same
Φ{·} as A, and Theorem 6.5(b) shows that clS(A) ⊂ Aππ.

Motivated by the result just mentioned, we now consider the fascinating question of
when clS(A) = Aππ. In Section 7, we give a complete solution of this problem in the
finite–dimensional case. We will see in Theorem 7.3 that this depends critically on the
“signature� of the basic bilinear form.

In Section 8, we show how the results of Sections 1–3 specialize to the theory of monotone
sets for Banach spaces, obtaining many results that appeared in [4] and some new ones. In
this case, ΦA becomes the Fitzpatrick function, ϕA,

π becomes the operation of monotone
relationship, µ, and clS(A) becomes the monotone representable closure of A, clR(A),
introduced in [6]. In Theorem 8.2, we find which functions are Fitzpatrick, and in Theorem
8.3 we show what happens if we extend the definition of ϕ{·} to arbitrary subsets of E×E∗.

In Section 9, we show how the results of Section 4 specialize to the theory of monotone sets.
In Theorem 9.2, we deduce a result on maximal monotonicity that implies Rockafellar’s
surjectivity theorem, while in Theorem 9.3, we deduce a result that has been used for
obtaining sufficient conditions for the sum of maximal monotone multifunctions on a
reflexive space to be maximal monotone.

In Section 10, we show how the results of Section 5–6 specialize to the theory of monotone
sets. Lemma 10.2, was motivated by and generalizes a result from [6]. The same comment
can also be made about part of Theorem 10.5, though this theorem also contains some
new results.

In Section 11, we show how the results of Section 7 specialize to the theory of monotone
sets. We will see that the critical fact determining whether clR(A) = Aµµ in the monotone
case is whether the underlying space has finite or infinite dimension. This is in contrast to
the situation for the q–positive case, where, as we have already observed, the determining
feature is the “signature� of the basic bilinear form. We finish the paper by giving (in
Example 11.3) a simple example showing that anR–monotone set

(

that is a representable
monotone set in the notation of [6]

)

does not have to be premaximally monotone (where, as
in [6], a premaximally monotone set is a monotone set with a unique maximally monotone
cover

)

.

Certain very special q–positive sets, A, have the property that the basic quadratic form
is nonnegative on the effective domain of ΦA. These are treated in the series of results
Theorem 2.2, Theorem 5.5, Lemma 7.1, Lemma 7.2, Corollary 7.4, Theorem 10.3, Theorem
11.1, and Theorem 11.2.

It is explained in Example 8.1 exactly how the theory of positive subsets of a Banach
space subsumes the theory of monotone subsets of a Banach space, and the analysis of
Sections 8–11 shows the kind of problem that can be handled successfully using this pos-
itivity approach. What is lacking in the approach as presented here is an analog of the
projection maps of E × E∗ onto E and E∗, respectively, which would seem to preclude
applying our techniques to problems involving the “domain� and “range� of a monotone
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multifunction. However, as pointed out above, Theorem 9.2, implies Rockafellar’s surjec-
tivity theorem which is a “range� result, and many of the applications of Theorem 9.3,
mentioned above are “domain� results.

Fitzpatrick’s seminal work ([4]) on the representation of maximal monotone multifunctions
by convex functions was preceded by work of Krauss ([5]), with a representation in terms
of saddle functions. In this connection, the formula for q in Section 7 is suggestive.
Fitzpatrick’s results were rediscovered by Burachik–Svaiter ([2]) and Mart́ınez-Legaz–
Théra ([7]). The first people to use Fitzpatrick’s techniques to obtain results on monotone
multifunctions other than representing them were Penot ([9]) and Zălinescu ([14]).

Part of the work for this paper was done while the author was visiting the Instituto
Nacional de Matemática Pura e Aplicada in Rio de Janeiro, Brazil, and he would like to
thank the Instituto Nacional de Matemática Pura e Aplicada for its hospitality.

In particular, the author would like to express his sincere and heartfelt thanks to Dr
Benar Fux Svaiter for many very productive discussions during his visit to Rio. Dr
Svaiter showed the author a prototype for the example contained in Theorem 11.2, and
held a long discussion with the author of the problems raised by [6, Theorem 31]. We
revisit this latter result in Theorem 11.1, using totally different techniques.

The author would also like to thank both Dr Svaiter and Dr Juan Enrique Mart́ınez-Legaz
for making available to him a prepublication version of [6].

Finally, the author would like to thank the two referees for a careful reading of the paper,
and for making a number of perceptive comments that have improved the exposition
considerably.

1. Global notation

We will adopt the following notation all through this paper. F will be a nonzero real
Banach space with topological dual F ∗ and b(·, ·) : F ×F 7→ R will be a continuous, sym-
metric, bilinear form that separates the points of F . We define the continuous quadratic
form q by q(x) := 1

2
b(x, x), and the injective linear map ι : F 7→ F ∗ by ι(y) := b(·, y), so

that, for all x, y ∈ F , b(x, y) =
〈

x, ι(y)
〉

.

If h : F 7→ ]−∞,∞] then we write domh := {x ∈ F : h(x) ∈ R}. h is said to be proper
if domh 6= ∅.

2. Certain bilinear forms on real Banach spaces

We start this section by giving some examples that fall or do not fall under the scope of
Section 1.

Examples 2.1. (a) If F is a real Hilbert space with inner product (x, y) 7→ 〈x, y〉 we
can (not surprisingly) take b(x, y) := 〈x, y〉. However, we can also take b(x, y) := −〈x, y〉.
In both these cases, ι is a surjective isometry from F onto F ∗.

(b) If F =
(

R
3, ‖ · ‖2

)

then we can take the map defined by

b
(

(x1, x2, x3), (y1, y2, y3)
)

:= x1y2 + x2y1 + x3y3.

Again, ι is a surjective isometry from
(

R
3, ‖ · ‖2

)

onto
(

R
3, ‖ · ‖2

)∗
.
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(c) If F =
(

R
3, ‖ · ‖2

)

then we cannot take the map defined by

b
(

(x1, x2, x3), (y1, y2, y3)
)

:= x1y2 + x2y3 + x3y1.

(The bilinear form b is not symmetric.)

(d) Let E be a nonzero real Banach space and E∗ be its topological dual space. We norm
F := E×E∗ by

∥

∥(x, x∗)
∥

∥ :=
√

‖x‖2 + ‖x∗‖2, and define the bilinear form b : F ×F 7→ R

by b
(

(x, x∗), (y, y∗)
)

:= 〈x, y∗〉+〈y, x∗〉. Then ι is an isometry from E×E∗ into (E×E∗)∗

and if, further, E is reflexive then ι is surjective. This example will be considered in much
more detail in Sections 8–11.

If h : F 7→ ]−∞,∞] is proper, convex and lower semicontinuous and h∗ is the Fenchel
conjugate of h then, for all y ∈ F ,

h∗ ◦ ι(y) = h∗
(

ι(y)
)

= supx∈F

[

b(x, y)− h(x)
]

= supx∈F

[

b(y, x)− h(x)
]

, (1)

from which h∗ ◦ ι is lower semicontinuous. If, further, ι : F 7→ F ∗ is surjective then, from
the Fenchel–Moreau theorem ([8]), for all x ∈ F , h(x) = supx∗∈F ∗

[

〈x, x∗〉 − h∗(x∗)
]

=
supy∈F

[〈

x, ι(y)
〉

− h∗ ◦ ι(y)
]

= supy∈F

[〈

y, ι(x)
〉

− h∗ ◦ ι(y)
]

= (h∗ ◦ ι)∗ ◦ ι(x). Thus

h = (h∗ ◦ ι)∗ ◦ ι on F. (2)

The final result in this section, Theorem 2.2, will be used explicitly in Theorem 5.5. As
a general point of notation, we will write I

∗
C instead of the more cumbersome (IC)

∗. We
will adopt a similar convention with S∗

C , Φ
∗
A, etc.

Theorem 2.2. Suppose that ι is surjective and C is a nonempty closed convex subset of
F . Define the indicator function IC : F 7→ ]−∞,∞] by

IC(x) :=

{

0 if x ∈ C;

∞ otherwise,

and (using (1)) the support functional SC : F 7→ ]−∞,∞] by

SC(y) := I
∗
C ◦ ι(y) = supx∈C b(x, y) (y ∈ F ). (3)

The functions IC and SC are proper, convex and lower semicontinuous. Suppose that

q ≥ 0 on C and domSC ⊂ C, (4)

and let H := {y ∈ C : q(y) = 0}. Then

y ∈ domSC =⇒ y ∈ H =⇒ SC(−y) ≤ 0 =⇒ −y ∈ domSC =⇒ y ∈ domSC , (5)

H is a subspace of F, and C = H⊥ :=
{

x ∈ F : b(x,H) = {0}
}

. (6)

Proof. First, let y ∈ domSC . Let λ > 0. Since SC is positively homogeneous, λy ∈
domSC . From (4), λy ∈ C, thus λq(y) = 1

2
λb(y, y) = 1

2
b(λy, y) ≤ 1

2
SC(y) < ∞. It follows

by letting λ → ∞ in this that q(y) ≤ 0 and, using (4) again, that y ∈ H, which gives
the first implication in (5). Next, let y ∈ H and x be an arbitrary element of C. Then,
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for all λ > 0, (x + λy)/(1 + λ) ∈ C, so (4) gives q(x + λy) ≥ 0. Expanding this out,
q(x) + λb(x, y) ≥ 0. Letting λ → ∞, we derive that b(x, y) ≥ 0, from which b(x,−y) ≤ 0.
Taking the supremum over x ∈ C, SC(−y) ≤ 0, which gives the second implication in (5).
It is clear that if SC(−y) ≤ 0 then −y ∈ domSC . Finally, if −y ∈ domSC then, replacing
y by −y in what we have already proved, we see that y ∈ domSC . This completes the
proof of (5).

Since domSC is a cone, (5) implies that domSC is a subspace of F and that H = domSC ,
so H is a subspace of F , as required. (5) also implies that SC ≤ 0 on H. However, SC is
real and sublinear on H, consequently SC = 0 on H. Since SC = ∞ on F \H, in fact SC

is the indicator function of H, IH . (3) and (2) now imply that, for all x ∈ F ,

IC(x) =
(

I
∗
C ◦ ι

)∗ ◦ ι(x) = S∗
C ◦ ι(x) = I

∗
H ◦ ι(x) = supy∈H b(x, y) = IH⊥(x),

where the last equality depends on the fact thatH is a subspace. So, C = H⊥, completing
the proof of (6).

3. Positive sets with respect to certain quadratic forms on Banach spaces

Definition 3.1. Let ∅ 6= A ⊂ F . We say that A is q–positive if

a1, a2 ∈ A =⇒ q(a1 − a2) ≥ 0.

Now let A be q–positive. We define the function ΦA : F 7→ ]−∞,∞] associated with A
by

ΦA(x) := supa∈A
[

b(x, a)− q(a)
]

= q(x)− infa∈A q(x− a).

These definitions imply that ΦA is proper, convex and lower semicontinuous,

ΦA = q on A, and y ∈ F and a ∈ A =⇒ b(y, a) ≤ ΦA(y) + q(a). (7)

If a ∈ A then, from (7), for all y ∈ F , b(a, y)−ΦA(y) ≤ q(a). Taking the supremum over
y ∈ F :

Φ∗
A ◦ ι ≤ q on A. (8)

Let z ∈ F , and write A − z for the q–positive set {a − z : a ∈ A} ⊂ F . By direct
computation,

x ∈ F =⇒ ΦA−z(x) = ΦA(x+ z)− b(x+ z, z) + q(z) (9)

and
y ∈ F =⇒ Φ∗

A−z ◦ ι(y) = Φ∗
A ◦ ι(y + z)− b(z, y)− q(z). (10)

Let x ∈ F . x is said to be q–positively related to A if a ∈ A =⇒ q(x − a) ≥ 0 or,
equivalently, A ∪ {x} is q–positive. We write Aπ for the set of all elements of F that are
q–positively related to A. Then it is clear from the definition of ΦA and (7) that

x ∈ Aπ ⇐⇒ ΦA(x) ≤ q(x), from which A ⊂ Aπ ⊂ domΦA. (11)

We note that if z ∈ F then y ∈ (A− z)π if, and only if, a ∈ A =⇒ q
(

y − (a− z)
)

≥ 0 if,
and only if, a ∈ A =⇒ q(y + z − a) ≥ 0 if, and only if, y + z ∈ Aπ. Thus

(A− z)π = Aπ − z. (12)

Aπ is not generally q–positive — see Lemma 5.4 and Example 11.3.
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Examples 3.2. We now give some examples of q–positive sets. We first make the el-
ementary observation that if x ∈ F and q(x) ≥ 0 then the linear span Rx of {x} is
q–positive.

In Example 2.1(a), every subset of F is q–positive if b(x, y) := 〈x, y〉, and the q–positive
sets are the singletons if b(x, y) := −〈x, y〉.
In Example 2.1(b), If M is any nonempty monotone subset of R × R then M × R is a q–
positive subset of F . The set R(1,−1, 2) is a q–positive subset of F which is not contained
in a set M × R for any monotone subset of R × R. The helix

{

(cos θ, sin θ, θ) : θ ∈ R
}

is
a q–positive subset of F , but if 0 < λ < 1 then the helix

{

(cos θ, sin θ, λθ) : θ ∈ R
}

is not.

In Example 2.1(d), the q–positive sets have been extensively studied. We will return to
this situation in Sections 8–11.

Definition 3.3. We now introduce two very useful pieces of notation. Firstly, let H
consist of all those convex lower semicontinuous functions h : F 7→ ]−∞,∞] such that
h ≥ q on F . Secondly, if h ∈ H, let K(h) :=

{

x ∈ F : h(x) = q(x)
}

.

Definition 3.4. Let ∅ 6= M ⊂ F . We say that M is maximally q–positive if M is q–
positive and not properly contained in any other q–positive set. Since the continuity of q
implies that the closure of any q–positive set is q–positive, any maximally q–positive set
is closed. Now let M be maximally q–positive. Then Mπ ⊂ M , so that if x ∈ F \ M
then (11) gives ΦM(x) > q(x). On the other hand, if x ∈ M then (7) gives ΦM(x) = q(x).
Combining these two observations:

ΦM ∈ H and M = K(ΦM). (13)

It follows from (11) that if A is nonempty and q–positive then

A is maximally q–positive ⇐⇒ Aπ ⊂ A ⇐⇒ Aπ = A. (14)

We will give a nontrivial characterization of maximally q–positive subsets in certain special
but common situations in Theorem 4.1.

Let x ∈ F . Then we see from (1) and (7) that

Φ∗
A ◦ ι(x) ≥ supa∈A

[

b(x, a)− ΦA(a)
]

= supa∈A

[

b(x, a)− q(a)
]

= ΦA(x). (15)

We now show that
Φ∗

A ◦ ι ∈ H and A ⊂ K(Φ∗
A ◦ ι). (16)

To see this, we first use Zorn’s lemma to find a maximally q–positive set M such that
M ⊃ A. Clearly ΦM ≥ ΦA on F , from which Φ∗

A ◦ ι ≥ Φ∗
M ◦ ι on F . From (15) with A

replaced by M , Φ∗
M ◦ ι ≥ ΦM on F and, from (13), ΦM ≥ q on F . The first assertion in

(16) follows by combining the last three inequalities, and the second assertion follows by
combining the first one with (8).

We next give a simple result which enables us to obtain q–positive sets from certain
convex functions. In this result, we use the “parallelogram law�. Lemma 3.5 will be
used explicitly in Theorem 3.6, Theorem 3.7, Theorem 4.3, Theorem 6.5, Lemma 7.2 and
Section 8.
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Lemma 3.5. Let h ∈ H and K(h) 6= ∅. Then K(h) is q–positive.

Proof. This follows from the observation that if a1, a2 ∈ K(h) then

1

4
q(a1 − a2) =

q(a1) + q(a2)

2
− q

(a1 + a2
2

)

≥ h(a1) + h(a2)

2
− h

(a1 + a2
2

)

≥ 0.

We next give a characterization of functions of the form ΦA.

Theorem 3.6. Let f : F 7→ ]−∞,∞] be proper, convex and lower semicontinuous. Then
there exists a nonempty q–positive subset A of F such that f = ΦA on F if, and only if,

f ∗ ◦ ι ∈ H and, for all x ∈ F, f(x) ≤ supz∈K(f∗◦ι)

[

b(x, z)− q(z)
]

. (17)

Proof. (=⇒) If A is a nonempty q–positive subset of F then, from (16), Φ∗
A ◦ ι ∈ H and

A ⊂ K(Φ∗
A ◦ ι). Thus ΦA(x) = supa∈A

[

b(x, a)−q(a)
]

≤ supz∈K(Φ∗
A◦ι)

[

b(x, z)−q(z)
]

. This
gives the desired result.

(⇐=) If f satisfies (17) then clearly K(f ∗ ◦ ι) 6= ∅ thus, from Lemma 3.5, K(f ∗ ◦ ι) is
q–positive. If x ∈ F and z ∈ K(f ∗ ◦ ι) then the Fenchel–Young inequality implies that
b(x, z) = 〈x, ι(z)〉 ≤ f(x) + f ∗ ◦ ι(z) = f(x) + q(z). Consequently, b(x, z)− q(z) ≤ f(x).
Combining this with (17), we obtain that

x ∈ F =⇒ f(x) = supz∈K(f∗◦ι)

[

b(x, z)− q(z)
]

= ΦK(f∗◦ι)(x).

The desired result follows by taking A = K(f ∗ ◦ ι).

We conclude this section with a strange result that shows what happens if we extend the
definition of Φ{·} to arbitrary subsets of F .

Theorem 3.7. Suppose that A is a nonempty q–positive subset of F and D ⊂ F . For all
x ∈ F , let ΦD(x) := supd∈D

[

b(x, d)− q(d)
]

. If ΦD ≤ ΦA on F then D is q–positive.

Proof. If d is an arbitrary element of D then, by hypothesis,

x ∈ F =⇒ b(x, d)− q(d) ≤ ΦA(x) =⇒ b(x, d)− ΦA(x) ≤ q(d),

from which
Φ∗

A ◦ ι(d) = supx∈F

[

b(x, d)− ΦA(x)
]

≤ q(d).

Thus, from (16), d ∈ K(Φ∗
A ◦ ι). Consequently, we have proved that D ⊂ K(Φ∗

A ◦ ι), and
the result follows from Lemma 3.5.

4. An additive transversal for maximally positive sets

For the analysis in this section, it seems necessary to assume that the map ι is an isometry.
This condition is true in Examples 2.1(a,b,d). We note then that, for all x ∈ F ,

|q(x)| = 1
2

∣

∣

〈

x, ι(x)
〉
∣

∣ ≤ 1
2
‖x‖‖ι(x)‖ = 1

2
‖x‖2. (18)

We then define
G =

{

x ∈ F : q(x) = −1
2
‖x‖2

}

. (19)
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Theorem 4.1. Suppose that ι is a surjective isometry and A is a nonempty q–positive
subset of F . Then

A is maximally q–positive ⇐⇒ A+G = F.

Proof. (⇐=) Suppose that y ∈ Aπ. By hypothesis, there exists a ∈ A such that y− a ∈
G. But then q(y− a) ≥ 0, from which 1

2
‖y− a‖2 ≤ 0, and so y = a. Thus we have proved

that Aπ ⊂ A, and (14) now implies that A is maximally q–positive.

(=⇒) Suppose, conversely, that A is maximally q–positive and y is an arbitrary element
of F . Let M = A− y. Clearly, M is maximally q–positive. From (13),

x ∈ F =⇒ ΦM(x) + 1
2
‖x‖2 ≥ 1

2
‖x‖2 + q(x) ≥ 0.

Thus, from Rockafellar’s version of the Fenchel duality theorem (see Rockafellar, [11,
Theorem 1, pp. 82–83] for the original version and Zălinescu, [18, Theorem 2.8.7, pp.

126–127] for more general results), there exists z ∈ F such that Φ∗
M

(

ι(z)
)

+
∥

∥−ι(z)
∥

∥

2 ≤ 0,
that is to say Φ∗

M ◦ ι(z) + ‖z‖2 ≤ 0. Combining this with (18), (13) and (15), we have

0 ≤ 1
2
‖z‖2 + q(z) ≤ ΦM(z) + 1

2
‖z‖2 ≤ Φ∗

M ◦ ι(z) + 1
2
‖z‖2 ≤ 0,

from which we derive that 1
2
‖z‖2 + q(z) = 0 and ΦM(z) = q(z). Thus z ∈ G = −G and,

using (13) again, z ∈ M , that is to say, y+ z ∈ A. But then y = (y+ z)− z ∈ A+G.

Lemma 4.2. Suppose that ι : F 7→ F ∗ is an isometry, y ∈ F and g : F 7→ R is defined
by g(x) := q(x− y) + 1

2
‖x− y‖2 − q(x). Then:

(a) g + q ≥ 0 on F .

(b) The function g is convex and continuous on F .

(c) Let z ∈ F . Then g∗ ◦ ι(−z) = g(z).

Proof. (a) is immediate from (18).

(b) follows from the identity g(x) = −b(x, y) + q(y) + 1
2
‖x− y‖2.

(c) Using the formula in (b) and the fact that
(

1
2
‖ · ‖2

)∗
= 1

2
‖ · ‖2,

g∗ ◦ ι(−z) = supx∈F

[

b(x,−z) + b(x, y)− q(y)− 1
2

∥

∥x− y
∥

∥

2
]

= supw∈F

[

b(w + y,−z) + b(w + y, y)− q(y)− 1
2

∥

∥w
∥

∥

2
]

= supw∈F

[

b(w, y − z)− 1
2

∥

∥w
∥

∥

2
]

− b(y, z) + q(y)

= 1
2
‖y − z

∥

∥

2 − b(y, z) + q(y) = g(z).

Theorem 4.3. Suppose that ι : F 7→ F ∗ is a surjective isometry, h : F 7→ ]−∞,∞] is
proper and convex, h ≥ q on F and h∗ ◦ ι ≥ q on F . Then:

(a) K(h∗ ◦ ι) is maximally q–positive.

(b) If h is lower semicontinuous then K(h) is maximally q–positive.
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Proof. (a) Let y be an arbitrary element of F . Then, using Lemma 4.2(a),

h+ g ≥ q + g ≥ 0 on F.

Thus, from Lemma 4.2(b) and Rockafellar’s version of the Fenchel duality theorem again,
there exists z ∈ F such that h∗ ◦ ι(z) + g∗ ◦ ι(−z) ≤ 0 and so, from Lemma 4.2(c),
h∗ ◦ ι(z) + g(z) ≤ 0. Using (18) and the fact that h∗ ◦ ι ∈ H, we have

0 ≤ q(z − y) + 1
2
‖z − y‖2 = q(z) + g(z) ≤ h∗ ◦ ι(z) + g(z) ≤ 0.

All the inequalities in the line above must be equalities, and so h∗ ◦ ι(z) = q(z), that is to
say z ∈ K(h∗ ◦ ι), and q(z− y) + 1

2
‖z− y‖2 = 0. Thus K(h∗ ◦ ι) 6= ∅ and so, from Lemma

3.5, K(h∗ ◦ ι) is q–positive. Now suppose that y ∈ K(h∗ ◦ ι)π. In this case, q(y − z) ≥ 0,
from which 1

2
‖y−z‖2 ≤ 0, and so y = z. Thus we have proved that K(h∗◦ι)π ⊂ K(h∗◦ι),

and (14) now implies that A is maximally q–positive.

(b) If h is lower semicontinuous then the result follows from (2) by applying (a) with h
replaced by (h∗ ◦ ι)∗.

5. The iterated operation ππ and premaximally q–positive sets

We write y ∈ Aππ if x ∈ Aπ =⇒ q(y−x) ≥ 0. It is immediate from this definition that
Aππ ⊃ A and, from (11) and the fact that the operation π is inclusion–reversing, that
Aππ ⊂ Aπ — which implies that Aππ is q–positive. To sum up:

A ⊂ Aππ ⊂ Aπ and Aππ is q–positive. (20)

It is easy to see from an argument similar to that used in (12) that if z ∈ F then

(A− z)ππ = Aππ − z. (21)

In Section 7, we will consider the nontrivial problem of finding a representation for the set
Aππ. The results contained in Lemma 5.1 below will be critical. Lemma 5.1(c) will be used
explicitly in Theorem 5.5. As will become evident in Section 8, Lemma 5.1(b) generalizes
[6, Proposition 28], Lemma 5.1(c) generalizes [6, Proposition 26] (for monotone A), and
Lemma 5.1(d)

(

which is a special case of Theorem 5.2(b)
)

generalizes [6, Proposition 29].

Lemma 5.1. Suppose that A is a nonempty q–positive subset of F . Then:

(a) ΦA ≤ q on Aππ.

(b) If 0 ∈ Aππ, x ∈ F with q(x) < 0, and κ ∈ ]0, 1[ then

κ2q(x) < κΦA(x) + (1− κ)ΦA(0) and ΦA(x) ≥ 0. (22)

In particular,

ΦA ∨ q ≥ 0 on F. (23)

(c) If 0 ∈ Aππ and ΦA(0) < 0 then q ≥ 0 on domΦA.

(d) If 0 ∈ Aππ and ΦA(0) ≥ 0 then ΦA ≥ 0 on F . Consequently, Φ∗
A(0) ≤ 0.
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Proof. (a) is immediate from (20) and (11).

(b) Write w = κx = κx+(1−κ)0. Then q(w) = κ2q(x) < 0. Since 0 ∈ Aππ, it follows that
w 6∈ Aπ, and (11) then implies that q(w) < ΦA(w). We now obtain the first part of (22)
from the convexity of ΦA. (a) now gives us that κ2q(x) < κΦA(x), and so κq(x) < ΦA(x),
and the second part of (22) follows by letting κ → 0.

(c) Suppose that there exists x ∈ domΦA such that q(x) < 0. We derive the contradiction
ΦA(0) ≥ 0 by letting κ → 0+ in the first assertion in (22).

(d) Let y ∈ F and λ ∈ ]0, 1[ . If a ∈ A, write x = λy + (1− λ)a. Then, from (7),

ΦA(x) ≤ λΦA(y) + (1− λ)ΦA(a) = λΦA(y) + (1− λ)q(a).

On the other hand, noting from (7) (again) that b(y, a) ≤ ΦA(y) + q(a), we have

q(x) = q
(

λy + (1− λ)a
)

= λ2q(y) + λ(1− λ)b(y, a) + (1− λ)2q(a)

≤ λ2q(y) + λ(1− λ)ΦA(y) + λ(1− λ)q(a) + (1− λ)2q(a)

= λ2q(y) + λ(1− λ)ΦA(y) + (1− λ)q(a).

(23) now implies that

[

λΦA(y) + (1− λ)q(a)
]

∨
[

λ2q(y) + λ(1− λ)ΦA(y) + (1− λ)q(a)
]

≥ 0,

and so λΦA(y) ∨
[

λ2q(y) + λ(1 − λ)ΦA(y)
]

≥ −(1 − λ)q(a). However, supa∈A
[

−q(a)
]

=
ΦA(0) ≥ 0 thus, taking the supremum of the right hand side over a ∈ A,

λΦA(y) ∨
[

λ2q(y) + λ(1− λ)ΦA(y)
]

≥ 0.

Consequently, ΦA(y) ∨
[

λq(y) + (1 − λ)ΦA(y)
]

≥ 0, and letting λ → 0 implies that
ΦA(y) ≥ 0, as required. The final observation follows since Φ∗

A(0) = supy∈F
[

−ΦA(y)
]

.

Theorem 5.2(b) will be used explicitly in Theorem 6.5(b), and both parts of Theorem 5.2
will be used in Section 8.

Theorem 5.2. Suppose that A is a nonempty q–positive subset of F . Then:

(a) ΦA ∨ q ≥ ΦAππ on F .

(b) If z ∈ Aππ and ΦA(z) ≥ q(z) then ΦA ≥ ι(z)− q(z) on F and Φ∗
A ◦ ι(z) ≤ q(z).

Proof. (a) Let w ∈ F and z ∈ Aππ. From (21), 0 ∈ (A − z)ππ and so (23) gives
us that ΦA−z(w − z) ∨ q(w − z) ≥ 0. Using (9), we can rewrite this conclusion as:
[

ΦA(w) − b(w, z) + q(z)
]

∨
[

q(w) − b(w, z) + q(z)
]

≥ 0, that is to say, ΦA(w) ∨ q(w) ≥
b(w, z)− q(z). (a) follows since supz∈Aππ

[

b(w, z)− q(z)
]

= ΦAππ(w).

(b) As in (a), 0 ∈ (A−z)ππ and ΦA−z(0) ≥ 0, and so Lemma 5.1(d) implies that ΦA−z ≥ 0
on F and Φ∗

A−z(0) ≤ 0. It now follows from (9) and (10) that ΦA ≥ ι(z)− q(z) on F and
Φ∗

A ◦ ι(z) ≤ q(z), as required.

As will become evident in Section 8, Definition 5.3 below is a generalization of [6, Defi-
nition 35], and Lemma 5.4 is a generalization of most of [6, Proposition 36]. Lemma 5.4
will be used explicitly in Theorem 5.5, Theorem 6.5(c), and Corollary 7.4.
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Definition 5.3. Suppose that A is a nonempty q–positive subset of F . We say that M
is a maximally q–positive cover for A if M is maximally q–positive and M ⊃ A. We say
that A is premaximally q–positive if A has a unique maximally q–positive cover.

Lemma 5.4. Suppose that A is a nonempty q–positive subset of F . Then the conditions
(24)–(28) are equivalent.

A is premaximally q–positive, (24)

Aπ = Aππ, (25)

Aπ is q–positive, (26)

Aπ is maximally q–positive, (27)

Aππ is maximally q–positive. (28)

Furthermore, in this case Aππ = Aπ is the unique maximally q–positive cover for A.

Proof. If (24) is true, let M be the unique maximally q–positive cover of A. Now let x be
an arbitrary element of Aπ. Since A∪ {x} is q–positive, Zorn’s lemma gives a maximally
q–positive cover M ′ of A ∪ {x}. Since M ′ is then a maximally q–positive cover of A, the
uniqueness of M implies that M ′ = M . So we have proved that Aπ ⊂ M . It follows from
this that Mπ ⊂ Aππ, and so (20) (applied to both A and M) gives (25).

It is immediate from (20) that (25) implies (26).

If (26) is true then (14) (applied to Aπ) and (20) give (27).

If (27) is true then Aππ = Aπ, from which (28) is immediate.

If, finally, (28) is true, suppose that M is a maximally q–positive cover of A. Then
Mππ ⊃ Aππ, and the maximality of Aππ gives Mππ = Aππ. However, two applications of
(14) imply that Mππ = M , and so M is uniquely determined, which gives (24), and the
final observation that M = Aππ = Aπ.

Theorem 5.5 will be used explicitly in Lemma 7.1, Lemma 7.2, Corollary 7.4 and Theorem
10.3.

Theorem 5.5. Suppose that ι is surjective and A is a nonempty q–positive subset of F .
Consider the condition

q ≥ 0 on domΦA, (29)

and write H = {y ∈ domΦA : q(y) = 0}.
(a) If (29) is satisfied then A is premaximally q–positive and domΦA is the unique

maximally q–positive cover of A. Further, domΦA and H are both subspaces of F
and domΦA = H⊥.

(b) If 0 ∈ Aππ and ΦA(0) < 0 then (29) is satisfied, q ≥ 0 on H⊥ and H ∩ A = ∅.

Proof. (a) Let C = domΦA. It follows from (29) and the continuity of the map q that
the first assertion in (4) is satisfied. Further, if y ∈ domSC then, using the first assertion
in (4) and (7),

∞ > SC(y) = supx∈C b(x, y) ≥ supx∈C

[

b(x, y)− q(x)
]

≥ supa∈A

[

b(a, y)− q(a)
]

= ΦA(y),
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so domSC ⊂ domΦA ⊂ C, and thus all of (4) is satisfied. We now deduce from Theorem
2.2 that C is a subspace of F . If now d1, d2 ∈ C then d1 − d2 ∈ C, and so, from (4), C
is q–positive. Now (11) implies that Aπ ⊂ domΦA ⊂ C, and so Aπ is q–positive. From
Lemma 5.4, A is premaximally q–positive and Aπ is the unique maximally q–positive
cover of A. The inclusion Aπ ⊂ domΦA ⊂ C now implies that Aπ = domΦA = C. The
remaining assertions follow by making the substitution C = domΦA in (6).

(b) is immediate from Lemma 5.1(c), (a) and the fact that ΦA(0) = supa∈A
[

−q(a)
]

.

6. S–q–positive sets

In this section, we investigate those q–positive sets that are produced by the procedure
of Lemma 3.5.

Lemma 6.1.

(a) Suppose that A is a nonempty q–positive subset of F , and define θA : F 7→ ]−∞,∞]
by

θA = sup{h : h ∈ H, K(h) ⊃ A}.
Then θA ∈ H and K(θA) ⊃ A. If h ∈ H and K(h) ⊃ A then h ≤ θA on F .
Furthermore, θA ≥ Φ∗

A ◦ ι on F .

(b) If ι is surjective and A ⊂ F is nonempty and q–positive then θA = Φ∗
A ◦ ι.

Proof. (a) is immediate from the definitions and (16).

(b) If h ∈ H and K(h) ⊃ A then h = q on A. Thus, from (1), for all y ∈ F ,

h∗ ◦ ι(y) ≥ supa∈A

[

b(y, a)− h(a)
]

= supa∈A

[

b(y, a)− q(a)
]

= ΦA(y),

and (2) now implies that h = (h∗ ◦ ι)∗ ◦ ι ≤ Φ∗
A ◦ ι on F . Taking the supremum over h,

θA ≤ Φ∗
A ◦ ι on F . The opposite inequality was established in (a).

Definition 6.2. Suppose that A is a nonempty q–positive subset of F . We say that A is
S–q–positive if there exists h ∈ H such that A = K(h).

Theorem 6.3.

(a) Every maximally q–positive subset of F is S–q–positive.
(b) If A ⊂ F is nonempty and q–positive then K(θA) is the smallest S–q–positive su-

perset of A.

Proof. This is immediate from (13) and Lemma 6.1(a).

Definition 6.4. Suppose that A is a nonempty q–positive subset of F . We write clS(A)
for the smallest S–q–positive subset of F containing A, that is to say, clS(A) = K(θA).
clS(·) can be thought of as an abstract closure operation. (16) implies that clS(A) ⊂
K(Φ∗

A ◦ ι), and Lemma 6.1(b) that if ι is surjective then clS(A) = K(Φ∗
A ◦ ι) — in this

case, Theorem 6.5(a) below gives another characterization of clS(A).

Suppose that z ∈ F and A is a nonempty q–positive subset of F . It is easy to see from
the definitions that, for all x ∈ F , θA−z(x) = θA(x+z)−b(x, z)−q(z), thus y ∈ clS(A−z)
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if, and only if, θA(y + z) − b(y, z) − q(z) = q(y) if, and only if, θA(y + z) = q(y + z), if
and only if y + z ∈ clS(A). Consequently,

clS(A− z) = clS(A)− z.

Theorem 6.5 will be used explicitly in Theorem 7.3, Corollary 7.5 and Theorem 10.5.

Theorem 6.5. Suppose that A is a nonempty q–positive subset of F . Then:

(a) ΦK(Φ∗
A◦ι) = ΦA on F and K(Φ∗

A ◦ ι) is the largest q–positive subset B of F such that
ΦB = ΦA on F .

(b)
{

z ∈ Aππ : ΦA(z) ≥ q(z)
}

⊂ K(Φ∗
A ◦ ι) ⊂ Aππ. Consequently, clS(A) ⊂ Aππ.

(c) If K(Φ∗
A ◦ ι) is maximally q–positive then ΦA ∈ H. If, conversely, ΦA ∈ H then

K(Φ∗
A ◦ ι) = Aππ, A is premaximally q–positive, and K(Φ∗

A ◦ ι) is the unique maxi-
mally q–positive cover of A.

(d) ΦclS(A)
= ΦA on F . If clS(A) is maximally q–positive then ΦA ∈ H. If ι is surjective

then clS(A) is the largest q–positive subset B of F such that ΦB = ΦA on F and if,
further, ΦA ∈ H then clS(A) is the unique maximally q–positive cover of A.

Proof. If x ∈ F and z ∈ K(Φ∗
A ◦ ι) then the Fenchel–Young inequality implies that

b(x, z) = 〈x, ι(z)〉 ≤ ΦA(x) + Φ∗
A ◦ ι(z) = ΦA(x) + q(z). Consequently,

x ∈ F =⇒ ΦK(Φ∗
A◦ι)(x) = supz∈K(Φ∗

A◦ι)

[

b(x, z)− q(z)
]

≤ ΦA(x) (30)

and, from (11),

z ∈ K(Φ∗
A ◦ ι) and x ∈ Aπ =⇒ b(x, z) ≤ ΦA(x) + q(z) ≤ q(x) + q(z)

=⇒ q(z − x) ≥ 0.

}

(31)

(a) Since K(Φ∗
A ◦ ι) ⊃ A, it is obvious that ΦK(Φ∗

A◦ι) ≥ ΦA on F , and so (30) implies
that ΦK(Φ∗

A◦ι) = ΦA on F . If, on the other hand, B ⊂ F is nonempty and q–positive and
ΦB = ΦA on F then Φ∗

B ◦ ι = Φ∗
A ◦ ι on F , and so B ⊂ K(Φ∗

B ◦ ι) = K(Φ∗
A ◦ ι).

(b) It is clear from (31) that K(Φ∗
A ◦ ι) ⊂ Aππ. If z ∈ Aππ and ΦA(z) ≥ q(z) then, from

Theorem 5.2(b), Φ∗
A ◦ ι(z) ≤ q(z). On the other hand, (15) implies that Φ∗

A ◦ ι(z) ≥
ΦA(z) ≥ q(z). Thus Φ∗

A ◦ ι(z) = q(z), and so z ∈ K(Φ∗
A ◦ ι).

(c) The first assertion is immediate from (a), and (13) with M = K(Φ∗
A ◦ ι). As for the

converse, it is clear from (b) that K(Φ∗
A ◦ ι) = Aππ. On the other hand, ΦA ∈ H and, from

(11), Aπ ⊂ K(ΦA). Thus Lemma 3.5 implies that Aπ is q–positive and so, from Lemma
5.4, Aππ = K(Φ∗

A ◦ ι) is the unique maximally q–positive cover of A.

(d) This is immediate from (a)–(c) and the remarks in Definition 6.4.

Remark 6.6. In general, it is not true that clS(A) = Aππ. For instance, let F be a
nonzero Hilbert space, b be the inner product of F , z ∈ H and h : F 7→ R be defined
by h(x) := q(x) + q(x − z). Then h ∈ H and K(h) = {z}. So {z} is S–q–positive and,
consequently, clS({z}) = {z}. On the other hand, {z}π = F , and so {z}ππ = F . When
can we assert that clS(A) = Aππ? Even in the finite–dimensional case, this is a very
interesting question, which will be the subject of Section 7.
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7. clS(A) and Aππ in the finite–dimensional case

We suppose throughout this section that m ≥ 1, p+n = m, F = R
m and b(·, ·) : F ×F 7→

R is defined by b
(

(x1, . . . , xm), (y1, . . . , ym)
)

:=
∑p

i=1 xiyi −
∑m

i=p+1 xiyi. Then ι : R
m 7→

R
m is defined by ι(y1, . . . , ym) := (y1, . . . , yp,−yp+1, . . . ,−ym), and ι is surjective. The

classical theorem of Sylvester tells us that any symmetric bilinear form on R
m ×R

m that
separates points can always be put in the above form by a suitable change of variable.
Define the linear maps P : R

m 7→ R
p and N : R

m 7→ R
n by P (x1, . . . , xm) := (x1, . . . , xp)

and N(x1, . . . , xm) := (xp+1, . . . , xm). Then, for all x ∈ R
m, ‖P (x)‖2 = 1

2
‖x‖2 + q(x).

A consequence of this (which we will not use) is that, if G is as defined in (19), then
G = {x ∈ F : P (x) = 0}, and so G is a subspace of F .

Lemma 7.1. Suppose that p ≤ n and A is a nonempty q–positive subset of R
m. Then

ΦA ≥ q on Aππ.

Proof. By virtue of (9) and (21), it suffices to prove that 0 ∈ Aππ =⇒ ΦA(0) ≥ 0.
Suppose, on the contrary, that 0 ∈ Aππ and ΦA(0) < 0. LetH = {y ∈ domΦA : q(y) = 0}.
From Theorem 5.5, H is a subspace of R

m, q ≥ 0 on H⊥ = domΦA and H ∩ A = ∅. We
now prove that

z ∈ R
n and

〈

N(H), z
〉

= {0} =⇒ z = 0. (32)

To this end, let z = (z1, . . . , zn) and write x = (0, . . . , 0,−z1, . . . ,−zn) ∈ R
n. Then, by

direct computation, for all y ∈ H, b(x, y) =
〈

N(y), z
〉

= 0, thus x ∈ H⊥. Since q ≥ 0 on
H⊥, q(x) ≥ 0, from which 1

2
‖x‖2 ≤ ‖P (x)‖2 = 0. Thus x = 0, and so z = 0, which gives

(32). It follows from (32) that N(H) = R
n, so dim H ≥ n.

It is clear that if y ∈ domΦA and P (y) = 0 then 1
2
‖y‖2 = ‖P (y)‖2− q(y) ≤ 0, from which

y = 0, consequently P is injective on domΦA. Since A ⊂ domΦA, H ⊂ domΦA and
H ∩ A = ∅, we must have P (H) ∩ P (A) = ∅, and so P (H) is a proper subspace of R

p,
from which dimH = dimP (H) < p ≤ n. This contradiction to the result of the previous
paragraph completes the proof of Lemma 7.1.

Lemma 7.2. Let p > n. Write e1, . . . , em for the usual basis elements of R
m, define

f : R
n 7→ R

m by f(v) := e1 +
∑n

i=1 vi(e1+i + ep+i) for v = (v1, . . . , vn) ∈ R
n, let A =

f(Rn) ⊂ R
m, and write H = {y ∈ domΦA : q(y) = 0}. Then A is S–q–positive, 0 ∈ Aππ,

q ≥ 0 on domΦA, A is premaximally q–positive, domΦA is the unique maximally q–
positive cover of A, domΦA and H are both subspaces of F , and domΦA = H⊥.

Proof. A is clearly a closed convex subset of R
m. If v = (v1, . . . , vn) ∈ R

n then

q
(

f(v)
)

= 1
2

[

1 +
∑n

i=1 v
2
i −

∑n

i=1 v
2
i

]

= 1
2
.

Define h : R
m 7→ ]−∞,∞] by

h(x) :=

{

1
2

if x ∈ A;

∞ otherwise.

Then, in the notation of Definition 3.3, h ∈ H and A = K(h). Lemma 3.5 now implies
that A is S–q–positive. Now let x ∈ Aπ. From (11), ΦA(x) < ∞. But

ΦA(x) = sup
v∈R

n

[

b(x, f(v))− 1
2

]

= x1 − 1
2
+ sup

v∈R
n

∑n

i=1(x1+i − xp+i)vi.
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Consequently, for all i = 1, . . . , n, x1+i − xp+i = 0, that is to say, xp+i = x1+i, and so
q(x) = 1

2

[

x2
1 +

∑n

i=1 x
2
1+i +

∑p

i=n+2 x
2
i −

∑n

i=1 x
2
1+i

]

= 1
2

[

x2
1 +

∑p

i=n+2 x
2
i

]

≥ 0. Thus we
have proved that x ∈ Aπ =⇒ q(x) ≥ 0, and so 0 ∈ Aππ. The above computation also
shows that ΦA(0) = −1

2
< 0, and the result follows from Theorem 5.5.

Theorem 7.3. clS(A) = Aππ for every nonempty q–positive subset, A, of R
m if, and only

if, p ≤ n.

Proof. Suppose first that p ≤ n and A is a nonempty q–positive subset of R
m. Then it

follows from Lemma 7.1 and Theorem 6.5(b) that clS(A) = Aππ.

Conversely, suppose that p > n. Consider the example A of Lemma 7.2. Then clS(A) =
A 6∋ 0 and Aππ ∋ 0. So clS(A) 6= Aππ.

Corollary 7.4. clS(A) is a maximally q–positive subset of R
m (or, equivalently, ΦA ∈ H)

for every premaximally q–positive subset, A, of R
m if, and only if, p ≤ n.

Proof. Suppose first that p ≤ n and A ⊂ R
m is premaximally q–positive. Then Theorem

7.3 and Lemma 5.4 give us that clS(A) = Aππ and that Aππ is maximally q–positive.

Conversely, suppose that p > n. Then, since clS(A) 6= Aππ in the example of Lemma 7.2,
clS(A) cannot be maximally q–positive. On the other hand, Theorem 5.5 implies that A
is premaximally q–positive.

Corollary 7.5. Suppose that p ≤ n and A is a nonempty q–positive subset of R
m. Then

A is premaximally q–positive if, and only if, ΦA ∈ H.

Proof. This is immediate from Corollary 7.4 and Theorem 6.5(d).

8. The monotone case

Example 8.1. We now assume that E is a nonzero real Banach space and E∗ is its
topological dual space. As in Examples 2.1(d), we norm F = E × E∗ by

∥

∥(x, x∗)
∥

∥ :=
√

‖x‖2 + ‖x∗‖2, and define the bilinear form b : F × F 7→ R by b
(

(x, x∗), (y, y∗)
)

:=
〈x, y∗〉 + 〈y, x∗〉. Then ι is an isometry from E × E∗ into (E × E∗)∗ and if, further, E
is reflexive then ι is surjective. We define c : E × E∗ 7→ R by c(x, x∗) := 〈x, x∗〉 —
then q = c on E × E∗.

(

c is identical with the function π as defined in [6].
)

Any of the
examples in Definition 2.1(a,b) that are of finite odd dimension cannot be of the special
form discussed here. Let ∅ 6= A ⊂ E × E∗. Then A is q–positive (resp. maximally q–
positive) exactly when A is monotone (resp. maximally monotone) in the classical sense.
Let A be nonempty and monotone. Let ϕA be the Fitzpatrick function associated with
A, defined by

ϕA(x, x
∗) := sup(a,a∗)∈A

[

〈a, x∗〉+ 〈x, a∗〉 − 〈a, a∗〉
]

.

(The function ϕA was introduced by Fitzpatrick in [4, Definition 3.1, p. 61] under the
notation LA.) ϕA is identical with ΦA as defined in Definition 3.1. (7), (15) and (16)
imply that

ϕA = ϕ∗
A ◦ ι = c on A and ϕ∗

A ◦ ι ≥ ϕA ∨ c on E × E∗.

We write F for the set of all those convex lower semicontinuous functions f : E × E∗ 7→
]−∞,∞] such that f ≥ c on E × E∗ and, if f ∈ F , we define

L(f) :=
{

(x, x∗) ∈ E × E∗ : f(x, x∗) = 〈x, x∗〉
}

.
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Then F and L(·) are identical with H and K(·) as defined in Definition 3.3. It is clear
from (13) that if M is maximally monotone then

ϕM ∈ F and M = L(ϕM)

(see [4, Corollary 3.9, p. 62]). Lemma 3.5 implies that if f ∈ F and L(f) 6= ∅ then L(f)
is monotone.

Theorem 3.6 gives the following characterization of Fitzpatrick functions.

Theorem 8.2. Let f : E ×E∗ 7→ ]−∞,∞] be proper, convex and lower semicontinuous.
Then there exists a nonempty monotone subset A of E×E∗ such that f = ϕA on E×E∗

if, and only if, f ∗ ◦ ι ∈ F and

for all (x, x∗) ∈ E × E∗, f(x, x∗) ≤ sup(z,z∗)∈K(f∗◦ι)

[

〈z, x∗〉+ 〈x, z∗〉 − 〈z, z∗〉
]

.

Theorem 3.7 gives the following strange result generalizing [6, Proposition 24], in which
“=� was assumed rather than “≤�. Theorem 8.3 shows what happens if we extend the
definition of ϕ{·} to arbitrary subsets of E × E∗.

Theorem 8.3. Let E be a nonzero real Banach space and A be a nonempty monotone
subset of E × E∗. Let D ⊂ E × E∗ and, for all (x, x∗) ∈ E × E∗, let ϕD(x, x

∗) :=
sup(d,d∗)∈D

[

〈d, x∗〉+ 〈x, d∗〉 − 〈d, d∗〉
]

. If ϕD ≤ ϕA on E × E∗ then D is monotone.

Let (x, x∗) ∈ E × E∗. We write (x, x∗) ∈ Aµ if (x, x∗) is monotonically related to A, that
is to say,

(a, a∗) ∈ A =⇒ 〈x− a, x∗ − a∗〉 ≥ 0.

This concept goes back at least as far as [10]. The set Aµ is identical with the set Aπ as
defined in Section 3. Then it is clear from (11) and (20) that

(x, x∗) ∈ Aµ ⇐⇒ ϕA(x, x
∗) ≤ 〈x, x∗〉, A ⊂ Aµ ⊂ domϕA, (33)

A ⊂ Aµµ ⊂ Aµ, and Aµµ is a monotone subset of E × E∗.

Theorem 5.2 implies that
ϕA ∨ c ≥ ϕAµµ on E × E∗,

and
(z, z∗) ∈ Aµµ and ϕA(z, z

∗) ≥ 〈z, z∗〉 =⇒ ϕ∗
A ◦ ι(z, z∗) ≤ 〈z, z∗〉.

The transformation A 7→ Aµ was studied as a polarity operation in [6, Section 4].

9. Applications of the additive transversal to the monotone case

Remark 9.1. Let E be a nonzero reflexive real Banach space and the notation be as in
Example 8.1. With F = E × E∗, we now identify the set G introduced in (19). Indeed,

(x, x∗) ∈ G ⇐⇒ 〈x, x∗〉 = −1
2

∥

∥(x, x∗)
∥

∥

2 ⇐⇒ 1
2
‖x‖2 + 1

2
‖x∗‖2 + 〈x, x∗〉 = 0,

thus, writing J : E ⇉ E∗ for the duality map, G = Graph(−J). So Theorem 4.1 implies
the following result, which first appeared in [13, Theorem 10.6, p. 37], and which implies
Rockafellar’s surjectivity theorem (see [13, Theorem 10.7, p. 38]):
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Theorem 9.2. Let E be a nonzero reflexive real Banach space and A be a monotone
subset of E × E∗. Then

A is maximally monotone ⇐⇒ A+Graph(−J) = E × E∗.

Theorem 4.3 implies the following result (see [15, Theorem 1.4]). [15, Theorem 1.4(a)] was
used to give many sufficient conditions for the sum of maximal monotone multifunctions
on a reflexive Banach space to be maximal monotone. [15, Theorem 1.4(b)] was first
proved by Burachik and Svaiter in [3, Theorem 3.1]. The approach given here shows
how [3, Theorem 3.1] can be established without (indirectly) having to use a renorming
theorem. The interest of Theorem 9.3(a) is that the function h is not required to be lower
semicontinuous, a fact which was very useful in the applications in [15].

Theorem 9.3. Let E be a nonzero reflexive real Banach space, f : E × E∗ 7→ ]−∞,∞]
be proper and convex, and f ≥ c and f ∗ ◦ ι ≥ c on E × E∗. Then:

(a) L(f ∗ ◦ ι) is a maximal monotone subset of E × E∗.

(b) If f is lower semicontinuous then L(f) is a maximal monotone subset of E × E∗.

10. Premaximally monotone sets

The idea of premaximally monotone sets goes back to [12, Theorem 19, pp. 189–190],
though the first systematic study of them was made in [6]. Lemma 10.2 below appears in
[6, Proposition 36]. Lemma 10.2 and Theorem 10.3 are immediate from Lemma 5.4 and
Theorem 5.5, respectively.

Definition 10.1. Let E be a nonzero real Banach space and A be a nonempty monotone
subset of E×E∗. We say thatM is a maximally monotone cover for A ifM is a maximally
monotone subset of E × E∗ and M ⊃ A. We say that A is premaximally monotone if A
has a unique maximally monotone cover.

Lemma 10.2. Let E be a nonzero real Banach space and A be a nonempty monotone
subset of E × E∗. Then the conditions (34)–(38) are equivalent.

A is premaximally monotone, (34)

Aµ = Aµµ, (35)

Aµ is monotone, (36)

Aµ is maximally monotone, (37)

Aµµ is maximally monotone. (38)

Furthermore, in this case Aµµ = Aµ is the unique maximally monotone cover for A.

Theorem 10.3. Let E be a nonzero reflexive real Banach space and A be a nonempty
monotone subset of E × E∗. Consider the condition

c ≥ 0 on domϕA (39)

and write H = {(x, x∗) ∈ domϕA : 〈x, x∗〉 = 0}.
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(a) If (39) is satisfied then A is premaximally monotone and domϕA is the unique
maximally monotone cover of A. Further, domϕA and H are both subspaces of
E × E∗ and

domϕA = H⊥ =
{

(y, y∗) ∈ E × E∗ : (x, x∗) ∈ H =⇒ 〈x, y∗〉+ 〈y, x∗〉 = 0
}

.

(b) If (0, 0) ∈ Aµµ and ϕA(0, 0) < 0 then (39) is satisfied and H ∩ A = ∅.

Remark 10.4. Example 11.3 shows what can happen if (39) is not satisfied.

Most of the results in this paragraph, which follow immediately from Lemma 6.1 – Def-
inition 6.4, appear in [6, Section 3], with minor differencies in notation. We say that
A is R–monotone if there exists f ∈ F such that A = L(f). This concept was stud-
ied in [6] under the name “representable (monotone)�. R–monotonicity is identical with
S–q–positivity as defined in Definition 6.2. Every maximally monotone subset of F is
R–monotone. If A is any nonempty monotone subset of E × E∗, we write clR(A) for
the smallest R–monotone subset of F that contains A. clR(·) is identical with clS(·) as
defined in Definition 6.4. Then L(ϕ∗

A ◦ ι) ⊃ clR(A), with equality if E is reflexive. The
transformation A 7→ clR(A) was studied as a closure operation in [6].

Theorem 6.5 gives us the following result. The characterization of clR(A) in the reflexive
case given by Theorem 10.5(a) is interesting, since it shows that clR(A) can be defined
by a maximizing condition, as well as by the minimizing condition used in [6]. Theorem
10.5(c) gives [6, Lemma 37 and Proposition 39] and part of [6, Lemma 38].

Theorem 10.5. Let E be a nonzero real Banach space and A be a nonempty monotone
subset of E × E∗. Then:

(a) ϕclR(A)
= ϕA on E × E∗ and if E is reflexive then clR(A) is the largest monotone

subset B of E × E∗ such that ϕB = ϕA on E × E∗.

(b) If E is reflexive then
{

(z, z∗) ∈ Aµµ : ϕA(z, z
∗) ≥ 〈z, z∗〉

}

⊂ clR(A) ⊂ Aµµ.

(c) If clR(A) is a maximally monotone subset of E ×E∗ then ϕA ∈ F . If ϕA ∈ F then
A is premaximally monotone and L(ϕ∗

A ◦ ι) is the unique maximally monotone cover
of A. If clR(A) is a maximally monotone subset of E × E∗, or E is reflexive and
ϕA ∈ F , then clR(A) is the unique maximally monotone cover of A.

Remark 10.6. The condition “ϕA ∈ F� that appears in Theorem 10.5(c) can be rewrit-
ten in the form “for all (x, x∗) ∈ E × E∗, inf(a,a∗)∈A〈x − a, x∗ − a∗〉 ≤ 0�. When E is
reflexive, this is a specialization of a condition that has proved very useful in studying
maximal monotone multifunctions on general Banach spaces, namely that A be of “type
(NI)�. See [12, Definition 10, p. 183], [13, Definition 25.5, p. 99], and, more recently, [16].

11. clR(A) and Aµµ

Theorem 11.1 should be compared with [6, Theorem 31 and Proposition 40], the proofs
of which rely on totally different techniques.

Theorem 11.1. Let E be a nonzero finite–dimensional real Banach space and A be a
nonempty monotone subset of E × E∗. Then clR(A) = Aµµ. If, further, A is premaxi-
mally monotone then clR(A) is the unique maximally monotone cover of A. Finally, A is
premaximally monotone if, and only if, ϕA ∈ F , that is to say, A is of type (NI).
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Proof. For convenience, we renorm E as the Euclidean space R
k. If x = (x1, . . . , xk),

x∗ = (x∗
1, . . . , x

∗
k), y = (y1, . . . , yk) and y∗ = (y∗1, . . . , y

∗
k) ∈ R

k then, according to the

convention of Example 8.1, b
(

(x, x∗), (y, y∗)
)

=
∑k

i=1 xiy
∗
i +

∑k

i=1 yix
∗
i . Let us represent

the pair (x, x∗) as the single element (x1, x
∗
1, . . . , xk, x

∗
k) of R

2k. Then

b
(

(x1, x
∗
1, . . . , xk, x

∗
k), (y1, y

∗
1, . . . , yk, y

∗
k)
)

=
∑k

i=1(xiy
∗
i + x∗

i yi)

=
k

∑

i=1

xi + x∗
i√

2

yi + y∗i√
2

−
k

∑

i=1

xi − x∗
i√

2

yi − y∗i√
2

.

Thus, after the appropriate changes of variable, we are in the situation of Section 7 with
p = n = k. The results now follow from Theorem 7.3, Corollary 7.4 and Corollary 7.5.

The example given in Theorem 11.2 is based rather loosely on an example shown to the
author by Dr Benar Fux Svaiter [17].

Theorem 11.2. Let E be an infinite–dimensional Hilbert space, T be a linear isometry
of E onto a proper subspace of E and p ∈ T (E)⊥ with ‖p‖ = 1. Let

A =
{

(p+ T (v) + v, p+ T (v)− v) : v ∈ E
}

and write H =
{

(x, x∗) ∈ domϕA : 〈x, x∗〉 = 0
}

. Then A is a R–monotone subset of
E × E, (0, 0) ∈ Aµµ, c ≥ 0 on domϕA, A is premaximally monotone, domϕA is the
unique maximally monotone cover of A, domϕA and H are both subspaces of E × E∗,
and domϕA =

{

(y, y∗) ∈ E × E∗ : (x, x∗) ∈ H =⇒ 〈x, y∗〉+ 〈y, x∗〉 = 0
}

. Last, but not
least, clR(A) 6= Aµµ.

Proof. A is clearly a nonempty convex subset of E ×E, and it is not hard to see that A
is closed. If v ∈ E then, since p ∈ T (E)⊥ and T is an isometry,

〈

p+ T (v) + v, p+ T (v)− v
〉

=
∥

∥p+ T (v)
∥

∥

2 − ‖v‖2 = 1 +
∥

∥T (v)
∥

∥

2 − ‖v‖2 = 1.

We define f : E × E 7→ ]−∞,∞] by

f(x, x∗) :=

{

1 if (x, x∗) ∈ A;

∞ otherwise.

Then f ∈ F and A = L(f), thus A is R–monotone. Now let (x, x∗) ∈ Aµ. Then (33)
implies that ϕA(x, x

∗) < ∞. But (writing T ∗ for the adjoint of T ),

ϕA(x, x
∗) = sup(a,a∗)∈A

[

〈a, x∗〉+ 〈x, a∗〉 − 〈a, a∗〉
]

= supv∈E

[〈

p+ T (v) + v, x∗
〉

+
〈

x, p+ T (v)− v
〉

− 1
]

= 〈p, x∗〉+ 〈x, p〉 − 1 + supv∈E

〈

v, x∗ − x+ T ∗(x+ x∗)
〉

.

So x∗ − x+ T ∗(x+ x∗) = 0, that is to say, x− x∗ = T ∗(x+ x∗). In this case, noting that
‖T ∗‖ = ‖T‖ = 1,

〈x, x∗〉 = 1
4

[

‖x+ x∗‖2 − ‖x− x∗‖2
]

= 1
4

[

‖x+ x∗‖2 −
∥

∥T ∗(x+ x∗)
∥

∥

2
]

≥ 0.

Thus we have proved that (x, x∗) ∈ Aµ =⇒ 〈x, x∗〉 ≥ 0, from which (0, 0) ∈ Aµµ. The
above argument also shows that ϕA(0, 0) = −1 < 0, and the result now follows from
Theorem 10.3 and the fact that, since p 6= 0, (0, 0) 6∈ A = clR(A).
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Example 11.3. Let E = R, D be the doubleton
{

(−1, 0), (1, 0)
}

and A be the line–
segment

[

(−1, 0), (1, 0)
]

in E × E∗ = R
2. Both D and A are monotone. By direct

computation,

Dµ =
(

]−∞,−1 ]× ]−∞, 0 ]
)

∪ A ∪
(

[ 1,∞[× [ 0,∞[
)

,

and Dµµ = A. Thus, from Theorem 11.1, clR(D) = A. In particular, A is R–monotone.
This can also be seen directly, since IA ∈ F and A = L(IA). On the other hand, A is
obviously not premaximally monotone. For instance, R × {0} and

(

{−1}× ]−∞, 0 ]
)

∪ A ∪
(

{1} × [ 0,∞[
)

are different maximally monotone covers of A.

Added in proof. The author is grateful to Dr Mart́ınez-Legaz for pointing out that the
proof of Theorem 11.2 can be modified to give the result stated below. This has two
advantages. Firstly, A is actually a closed subspace of E, and secondly, it provides some
explicit elements of Aµµ \ A.
Theorem. Let E be an infinite-dimensional Hilbert space, T be a linear isometry of E
onto a proper subspace of E and

A =
{

(T (v) + v, T (v)− v) : v ∈ E
}

.

Then A is a R–monotone subset of E×E and
{

(p, p) : p ∈ T (E)⊥\{0}
}

⊂ Aµµ\ A. Fur-
thermore, A is premaximally monotone. In fact, the unique maximal monotone superset
of A is the set

{

(x, x∗) ∈ E × E : x− x∗ = T ∗(x+ x∗)
}

.

References

[1] J. Bognár: Indefinite Inner Product Spaces, Ergebnisse der Mathematik und ihrer Grenz-
gebiete 78, Springer, Berlin (1974).

[2] R. S. Burachik, B. F. Svaiter: Maximal monotone operators, convex functions and a special
family of enlargements, Set-Valued Anal. 10 (2002) 297–316.

[3] R. S. Burachik, B. F. Svaiter: Maximal monotonicity, conjugation and the duality product,
Proc. Amer. Math. Soc. 131 (2003) 2379–2383.

[4] S. Fitzpatrick: Representing monotone operators by convex functions, in: Functional Anal-
ysis and Optimization, Workshop / Miniconference (Canberra, 1988), Proc. Cent. Math.
Anal. Aust. Natl. Univ. 20, Australian National University, Canberra (1988) 59–65.

[5] E. Krauss: A representation of maximal monotone operators by saddle functions, Rev.
Roum. Math. Pures Appl. 30 (1985) 823–837.

[6] J.-E. Mart́ınez-Legaz, B. F. Svaiter: Monotone operators representable by l.s.c. convex
functions, Set-Valued Anal. 13 (2005) 21–46.
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