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1. Preliminaries

Throughout this paper R, R+ and N denote the sets of reals, nonnegative reals and
natural numbers, respectively. A triple (T,Σ, µ) stands for a positive, complete and
σ-finite measure space and L0 = L0(µ) denotes the space of all (equivalence classes of) Σ-
measurable functions x : T → R. For every x ∈ L0, we denote suppx = {t ∈ T : x(t) 6= 0}
and by |x| the absolute value of x, that is, |x|(t) = |x(t)| for µ-a.e. t ∈ T .

By E = (E,≤, ‖ · ‖E) we denote a Köthe space over the measure space (T,Σ, µ), that is,
E is a Banach subspace of L0 which satisfies the following conditions (see [28] and [31]):

(i) if x ∈ E, y ∈ L0 and |y| ≤ |x| (that is, |y(t)| ≤ |x(t)| for µ-a.e. t ∈ T ), then y ∈ E
and ‖y‖E ≤ ‖x‖E,

(ii) there exists a function x in E that is positive on the whole T .

In particular, if we consider the Köthe space E over the non-atomic measure space
(T,Σ, µ), then we shall say that E is a Köthe function space. If we replace the mea-
sure space (T,Σ, µ) by the counting measure space (N, 2N ,m), then we shall say that E
is a Köthe sequence space (denoted by e). In the last case the symbol ei stands for the
i-th unit vector. The symbol E+ stands for the positive cone of E.
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An element x ∈ E is said to be order continuous if ‖xn‖E → 0 for any sequence (xn) in E+

with 0 ≤ xn ≤ |x| and xn → 0 µ-a.e.. The subspace Ea of all order continuous elements
in E is an order ideal of E. A Banach space E is called order continuous (E ∈ (OC) for
short) if Ea = E (see [28] and [31]).

A Banach lattice E with a partial order ≤ is strictly monotone (E ∈ (SM) for short) if
the conditions 0 ≤ y ≤ x ∈ E and y 6= x imply that ‖y‖E < ‖x‖E (see [2]). As usual, E is
said to be lower (upper) locally uniformly monotone (E ∈ (LLUM) (E ∈ (ULUM)) for
short), see [21], whenever for any x ∈ E+ with ‖x‖E = 1 and any ε ∈ (0, 1) (resp. ε > 0)
there is δ = δ(x, ε) ∈ (0, 1) (resp. δ = δ(x, ε) > 0) such that the conditions 0 ≤ y ≤ x
(resp. y ≥ 0) and ‖y‖E ≥ ε imply ‖x− y‖E ≤ 1− δ (resp. ‖x+ y‖E ≥ 1 + δ).

It is useful to formulate the local uniform monotonicity properties sequentially. Clearly,
E ∈ (LLUM) (resp. E ∈ (ULUM)) if and only if for any x ∈ E+, x 6= 0, and each
sequence (xn) in E+ such that xn ≤ x (resp. x ≤ xn) and ‖xn‖E → ‖x‖E, there holds
‖xn − x‖E → 0.

For any Banach space X we denote by B(X) its closed unit ball and by S(X) - the unit
sphere of X. Recall that X is said to be rotund (X ∈ (R)) if for every x, y ∈ S(X) with
x 6= y we have ‖x + y‖ < 2. A Banach space X is said to be locally uniformly rotund
(X ∈ (LUR)) if for each x ∈ B(X) and ε > 0 there is δ = δ(x, ε) > 0 such that for any
y ∈ B(X) the inequality ‖x − y‖ ≥ ε implies that ‖x+ y‖E ≤ 2(1 − δ). This property
has been intensively investigated in many classes of Banach spaces (see [4], [10], [18], [19],
[38]).

In the whole paper ϕ denotes an Orlicz function, that is, ϕ : R → [0,∞], it is convex,
even, vanishing and continuous at zero, left continuous on [0,∞) and not identically equal
to zero. Denote

aϕ = sup{u ≥ 0 : ϕ(u) = 0} and bϕ = sup{u ≥ 0 : ϕ(u) <∞}.

We write ϕ > 0 when aϕ = 0 and ϕ <∞ if bϕ = ∞. Let ϕr be the restriction of ϕ to the
set Gϕ, where

Gϕ =

{

[aϕ, bϕ] if ϕ(bϕ) <∞,

[aϕ, bϕ) otherwise.

The function ϕ is said to be strictly convex on the interval [a, b], where 0 ≤ a < b <∞ if
ϕ((u+ v)/2) < (ϕ(u) + ϕ(v))/2 for all u, v ∈ [a, b] with u 6= v.

Given any Orlicz function ϕ, we define on L0 a convex modular ̺ (see [37]) by

̺ (x) =

{

‖ϕ ◦ x‖E if ϕ ◦ x ∈ E,

∞ otherwise,

where (ϕ ◦ x)(t) = ϕ(x(t)), t ∈ T , and the Calderón-Lozanovskǐı space

Eϕ = {x ∈ L0 : ϕ ◦ λx ∈ E for some λ > 0}

(see [5], [17] and [36]), which becomes a normed space under the Luxemburg norm

‖x‖ϕ = inf{λ > 0 : ̺ (x/λ) ≤ 1}.
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Considering the space Eϕ we shall assume in the whole paper that E has the Fatou
property (E ∈ (FP) for short), that is, for any x ∈ L0 and (xn)

∞
n=1 in E+ such that

xn ր x µ-a.e. and supn ‖xn‖E < ∞, we have x ∈ E and ‖x‖E = limn ‖xn‖E (see [28]
and [31]). Then for any Orlicz function ϕ the modular ̺ is left continuous, that is,
sup{̺ (λx) : |λ| ≤ λ0} = ̺ (λ0x) for any λ0 > 0. We also have ̺ (x) ≤ ‖x‖ϕ ≤ 1 whenever
‖x‖ϕ ≤ 1 or ̺ (x) ≤ 1 and 1 ≤ ‖x‖ϕ ≤ ̺ (x) whenever ‖x‖ϕ > 1 or ̺ (x) ≥ 1 (see [6]).
Consequently Eϕ ∈ (FP) (see [13] and [14]), whence Eϕ is a Banach space (see [34]). For
the theory of Calderón-Lozanovskǐı spaces we refer to [3], [5], [12], [13], [14], [17], [18],
[20], [23], [29], [32], [33], [35], [36] and [39].

If E = L1 (e = l1), then Eϕ (eϕ) is the Orlicz function (sequence) space equipped with the
Luxemburg norm. If E (e) is a Lorentz function (sequence) space Λω (λω) (see page 406),
then Eϕ (eϕ) is the corresponding Orlicz-Lorentz function (sequence) space (Λω)ϕ = Λϕ,ω
((λω)ϕ = λϕ,ω) equipped with the Luxemburg norm (see [4], [17], [19], [26], [27] and [29]).

We say an Orlicz function ϕ satisfies condition ∆2(0) (ϕ ∈ ∆2(0) for short) if there exist
K > 0 and u0 > 0 such that ϕ(u0) > 0 and the inequality ϕ(2u) ≤ Kϕ(u) holds for all
u ∈ [0, u0]. We say an Orlicz function ϕ satisfies condition ∆2(∞) (ϕ ∈ ∆2(∞) for short)
if there exist K > 0, u0 > 0 such that ϕ(u0) < ∞ and the inequality ϕ(2u) ≤ Kϕ(u)
holds for all u ≥ u0. If there exists K > 0 such that ϕ(2u) ≤ Kϕ(u) for all u ≥ 0, then
we say that ϕ satisfies condition ∆2(R+) (ϕ ∈ ∆2(R+) for short).

For a Köthe space E and an Orlicz function ϕ we say that ϕ satisfies condition ∆E
2

(ϕ ∈ ∆E
2 for short) if:

1) ϕ ∈ ∆2(0) whenever E →֒ L∞,

2) ϕ ∈ ∆2(∞) whenever L∞ →֒ E,

3) ϕ ∈ ∆2(R+) whenever neither L
∞ →֒ E nor E →֒ L∞,

where the symbol E →֒ F stands for the continuous embedding of E into F (see [5] and
[17]). Clearly, if ϕ ∈ ∆2(0), then ϕ > 0 and if ϕ ∈ ∆2(∞), then ϕ <∞.

It is easy to show that if E is a Köthe function space such that E ∈ (FP) and suppEa = T ,
then E ⊂/ L∞.

If e →֒ l∞ and ϕ(bϕ) infi ‖ei‖e = 1, we define a new function ψ by the formula

ψ(u) =

{

ϕ(u) if 0 ≤ u ≤ bϕ,

u+ k for u > bϕ,

where k = 1/ infi ‖ei‖e−bϕ. Notice that eϕ and eψ are isomorphically isometric. However,
ψ is convex on [0, bϕ], nondecreasing on R+ and not necessarily convex on the whole R+.
In the whole paper, if e →֒ l∞ and ϕ(bϕ) infi ‖ei‖e = 1, we always consider ψ and eψ in
place of ϕ and eϕ, respectively.

Sufficient conditions for various properties of Calderón-Lozanovskǐı spaces have been pre-
sented in [5], [13], [14], [17] and [18]. However, in those papers necessity of some among
those conditions was only proved and it was concluded that some of sufficient condi-
tions are not necessary. It has been shown in [5, Remark 3] that geometry of Calderón-
Lozanovskǐı space Eϕ can be "good" even if geometry neither of E nor of ϕ is "good".
For example, there exists a couple of E and ϕ such that ϕ is not strictly convex and E
is not rotund, but Eϕ is locally uniformly rotund. On the base of this phenomena, we
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shall find criteria for local uniform rotundity of Calderón-Lozanovskǐı spaces (it refers to
problem XII posed in [8]). In such a way it has been received an essential generalization
of the criteria from the papers concerning Orlicz-Lorentz spaces ([4] and [19]) and some
improvements of theorems on Calderón-Lozanovskǐı spaces ([18], cf. also [5]). It is worth
mentioning that problem XII from [8] has been solved for rotundity and uniform rotundity
in [29] and for extreme and SU points in [20]. We shall take an inspiration and a general
idea from [29].

2. Introductory results

We start with the fundamental lemma.

Lemma 2.1. Suppose that E is a Köthe space and ϕ is an Orlicz function. Then for any

x ∈ Eϕ and for any sequence (xn) in Eϕ we get:

(i) If ̺ (x) = 1, then ‖x‖ϕ = 1.

(ii) If ̺ (xn) → 1, then ‖xn‖ϕ → 1.

(iii) If ‖xn‖ϕ → 0, then ̺ (xn) → 0.

Lemma 2.2 (see [5], [13], [17] and [29]). Suppose that E is a Köthe function space

such that suppEa = T and ϕ is an Orlicz function. Then the following assertions are

true:

(i) For any x ∈ Eϕ the equality ‖x‖ϕ = 1 implies that ̺ (x) = 1 if and only if ϕ ∈ ∆E
2

and ϕ <∞.

(ii) For any sequence (xn) in Eϕ we have ̺ (xn) → 1 whenever ‖xn‖ϕ → 1 if and only

if ϕ ∈ ∆E
2 and ϕ <∞.

(iii) For any sequence (xn) in Eϕ we have ‖xn‖ϕ → 0 whenever ̺ (xn) → 0 if and only

if ϕ ∈ ∆E
2 and ϕ > 0.

Lemma 2.3 (see [5], [14] and [29]). Suppose that e is a Köthe sequence space with

e ⊂ c0(‖en‖e) and ϕ is an Orlicz function such that ϕ > 0.

(i) For any x ∈ eϕ the equality ‖x‖ϕ = 1 implies that ̺ (x) = 1 if and only if ϕ ∈ ∆e
2

and ϕ(bϕ) infi ‖ei‖e ≥ 1.

(ii) For any sequence (xn) in eϕ we have ̺ (xn) → 1 whenever ‖xn‖ϕ → 1 if and only if

ϕ ∈ ∆e
2 and ϕ(bϕ) infi ‖ei‖e ≥ 1.

(iii) For any sequence (xn) in eϕ we have ‖xn‖ϕ → 0 whenever ̺ (xn) → 0 if and only if

ϕ ∈ ∆e
2.

In investigations on local uniform rotundity of Calderón-Lozanovskǐı spaces Eϕ the es-
sential role play its restriction to couples of comparable elements from the positive cone,
which leads to the notions of LLUM and ULUM (see [18]). These properties have been
introduced in [21] and investigated in Calderón-Lozanovskǐı spaces in [12], [14] and [23].
We shall present criteria for LLUM and ULUM of these spaces basing on several partial
results from those papers. Althogh we often apply similar technics to those elaborated
already we present the whole proof for the sake of completness.

Proposition 2.4.

(i) Let E be a Köthe function space. Then Eϕ ∈ (LLUM) if and only if E ∈ (LLUM),
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ϕ ∈ ∆E
2 , ϕ > 0 and ϕ <∞.

(ii) Let e be a Köthe sequence space. Then eϕ ∈ (LLUM) if and only if e ∈ (LLUM),
ϕ ∈ ∆e

2, ϕ > 0 and ϕ(bϕ) infi∈N ‖ei‖e ≥ 1.

Proof. (i). Sufficiency. Assume that the assumptions are satisfied, x ∈ Eϕ and (xn) is
a sequence in Eϕ such that 0 ≤ xn ≤ x for any n ∈ N , ‖x‖ϕ = 1 and ‖xn‖ϕ → 1. By
ϕ ∈ ∆E

2 and ϕ <∞, we get ̺ (x) = 1 and ̺ (xn) → 1 (see Lemma 2.2 (i) and (ii)). Since
E ∈ (LLUM), the superadditivity of ϕ on R+ implies that ̺ (x− xn) → 0, whence, by
the fact that ϕ > 0, Lemma 2.2(iii) yields ‖x− xn‖ϕ → 0. Thus Eϕ ∈ (LLUM).

Necessity. Assume that Eϕ ∈ (LLUM). Let x ∈ (S(E))+ and (xn) be a sequence
in E such that 0 ≤ xn ≤ x for any n ∈ N and ‖xn‖E → 1. By Lemma 2.5 and
Proposition 2.1(ii) in [29], we have x ≤ ϕ(bϕ)χT when ϕ(bϕ) < ∞. Denote y = ϕ−1

r ◦ x
and yn = ϕ−1

r ◦xn, where ϕr is defined on page 396. By Lemma 2.1, we have y ∈ (S(Eϕ))+,
0 ≤ yn ≤ y and ‖yn‖ϕ → 1. Since Eϕ is LLUM, we get ‖y − yn‖ϕ → 0. Then we find
a subsequence (ynk

) of (yn) such that ynk
(t) → y(t) for µ-a.e. t ∈ T (see [28, p. 138]).

Then ϕ(ynk
(t)) → ϕ(y(t)) for µ-a.e. t ∈ T . Since 0 ≤ ϕ ◦ y − ϕ ◦ ynk

≤ x and x ∈ Ea (see
Lemma 6 and 7 in [23]), we get ‖x− xnk

‖E = ‖ϕ ◦ y − ϕ ◦ ynk
‖E → 0. By the double

extract subsequence theorem, we obtain ‖x− xn‖E → 0, so E ∈ (LLUM).

Suppose now that bϕ <∞. Since LLUM ⇒ OC (see Proposition 2.1 in [11]), by Lemma
2.5 and Proposition 2.1(i) in [29], we get ϕ(bϕ) = ∞. Let (An) be a sequence of sets such
that An ∈ Σ, An∩Am = ∅ for n 6= m and 0 < ‖χAn

‖E ≤ 1/(2nϕ((1−1/2n)bϕ)) for n ∈ N .
Denoting x =

∑∞
n=2(1 − 1/2n)bϕχAn

and y = (1 − 1/2)bϕχA1
, we have 0 ≤ x ≤ x + y,

x 6= x+ y and ‖x‖ϕ = ‖x+ y‖ϕ = 1, so Eϕ /∈ (SM).

If aϕ > 0, then, by Lemma 2.5 in [29], Eϕ is not (SM). If ϕ /∈ ∆E
2 , then Eϕ contains an

order isomorphically isometric copy of l∞ (see [17]), so Eϕ /∈ (SM).

Part (ii) we prove analogously as (i), applying Lemma 2.9 from [29] and Lemma 2.4 from
[14].

Proposition 2.5.

(i) Let E be a Köthe function space such that E ∈ (OC). Then Eϕ is ULUM if and

only if E ∈ (ULUM), ϕ ∈ ∆E
2 , ϕ > 0 and ϕ <∞.

(ii) Let e be a Köthe sequence space such that e ∈ (OC). Then eϕ is ULUM if and

only if e ∈ (ULUM), ϕ ∈ ∆e
2, ϕ > 0 and ϕ(bϕ) infi∈N ‖ei‖e ≥ 1.

Proof. (i). Sufficiency. Let x and (xn) in Eϕ be such that 0 ≤ x ≤ xn for each
n ∈ N , ‖x‖ϕ=1 and ‖xn‖ϕ → 1. Then, by Lemma 2.2 ((i) and (ii)), we have ̺ (x) = 1
and ̺ (xn) → 1. Since E ∈ (ULUM), the superadditivity of ϕ on R+ implies that
̺ (x− xn) → 0, whence, by Lemma 2.2(iii), we get ‖x− xn‖ϕ → 0, that is, Eϕ ∈
(ULUM).

Necessity. Since E ∈ (OC), we obtain that ϕ ∈ ∆E
2 , ϕ > 0 and ϕ <∞ analogously as in

the proof of Proposition 2.4. We show the implication Eϕ ∈ (ULUM) ⇒ E ∈ (ULUM).
Let x ∈ E and (xn) be a sequence in E such that 0 ≤ x ≤ xn for any n ∈ N and
‖xn‖E → ‖x‖E = 1. Denoting y = ϕ−1

r ◦ x and yn = ϕ−1
r ◦ xn, we have 0 ≤ y ≤ yn

and, by Lemma 2.1, ‖yn‖ϕ → ‖y‖ϕ = 1. Since Eϕ is ULUM, we get ‖yn − y‖ϕ → 0.
Proceeding in the same way as in the proof of Proposition 4 in [23], we obtain ‖x− xn‖E =
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‖ϕ ◦ y − ϕ ◦ yn‖E → 0, so E ∈ (ULUM).

Part (ii) we prove analogously as (i).

In the next theorem we shall consider a Köthe function spaces E over the Lebesgue
measure space ([0, α),Σ, µ) with 0 < α ≤ ∞ and µ being the Lebesgue measure. Recall
that a Köthe space E is called a symmetric space if E is rearrangement invariant in the
sense that if x ∈ E y ∈ L0 and x∗ = y∗, then y ∈ E and ‖x‖E = ‖y‖E (see [9]). Here, x∗

denotes the nonincreasing rearrangement of x given by

x∗(t) = inf{s ≥ 0 : dx(s) ≤ t},

where dx is the distribution function defined by

dx(t) = µ({s ∈ T : |x(s)| > t}), t ≥ 0.

For basic properties of symmetric spaces and rearrangements, we refer to [1], [30] and
[31].

In Section 4 we shall apply the following two theorems.

Theorem 2.6. Suppose that E is a symmetric function space. Then E ∈ (LLUM) if

and only if E ∈ (SM) and E ∈ (OC).

By Proposition 2.1 in [11], we need to prove only sufficiency. It is known that if E is a
separable symmetric space in which an equivalent symmetric norm ‖ · ‖o exists which is
LLUM, then E ∈ (LLUM) if and only if E ∈ (SM) (see [18, Theorem 4]). Consequently,
applying Theorem 4.8 in [10], one can get the proof of sufficiency. We also present an
independent proof.

Let 0 ≤ xn ≤ x and ‖xn‖E → ‖x‖E = 1. Define

Akn = {t ∈ suppx : xn(t) < (1− 1/k)x(t)}

for each n, k ∈ N . We claim that for each k ∈ N

xχAk
n
→ 0 globally in measure as n→ ∞. (1)

Suppose that this is not the case, that is, there is a number k ∈ N such that passing to a
subsequence and relabelling if necessary, one gets that there are positive numbers ε and
δ such that µ(Bn) > ε for any n ∈ N , where Bn = {t ∈ [0, α) : xχAk

n
(t) > δ}. We shall

prove that
a = lim inf

n→∞
‖x− δ

k
χBn

‖E < ‖x‖E. (2)

Denoting yn = x − δ
k
χBn

, we have 0 ≤ yn ≤ x. Hence y∗n ≤ x∗. Applying Helly’s
Theorem and passing to a subsequence and relabelling if necessary, we may assume that
the sequence (y∗n) converges to some non-increasing function y almost everywhere. Then
y ≤ x∗ and consequently ‖y∗n − y‖E → 0, because E ∈ (OC). Suppose now that condition
(2) does not hold. Then ‖y∗n‖E = ‖yn‖E → ‖x∗‖E = ‖x‖E. Since ‖y∗n‖E → ‖y‖E and
y ≤ x∗ we conclude that y = x∗, because E ∈ (SM). Thus ‖y∗n − x∗‖E → 0. Proceeding
analogously as in proof of implication (iii) ⇒ (ii) of Theorem 3.2 in [9], we get that



P. Foralewski, P. Kolwicz / Local Uniform Rotundity in Calderón-Lozanovskǐı ... 401

yn → x globally in measure. But yn − x = − δ
k
χBn

and µ(Bn) > ε. This contradiction
proves (2). Hence, taking an appropriate subsequence and denoting (Akn)

c = [0, α)\Akn,
we get

‖xn‖E = ‖xnχAk
n
+ xnχ(Ak

n)
c‖E ≤ ‖(1− 1/k)xχAk

n
+ xχ(Ak

n)
c‖E

≤ ‖x− δ
k
χBn

‖E → a < ‖x‖E.

This contradiction together with the fact that ‖xn‖E → ‖x‖E finishes the proof of the
claim (1). Since xχAk

n
≤ x, the order continuity of E implies that ‖xχAk

n
‖E → 0 as

n → ∞ for each k ∈ N . Furthermore, the inequality xnχ(Ak
n)

c ≥ (1 − 1/k)xχ(Ak
n)

c yields
that (x− xn)χ(Ak

n)
c ≤ (1/k)xχ(Ak

n)
c and, in consequence, ‖(x− xn)χ(Ak

n)
c‖E ≤ (1/k). Let

ε > 0 and k0 > 2/ε. Taking n0 such that ‖xχ
A

k0
n
‖E < ε/2 for n ≥ n0, we get

‖x− xn‖E ≤ ‖(x− xn)χAk0
n
‖E + ‖(x− xn)χ(A

k0
n )c

‖E < ε

for each n ≥ n0.

In the case of Köthe sequence spaces it is easy to get more general result. Namely,

Theorem 2.7. For any Köthe sequence space e the following conditions are equivalent:

(i) The space e is strictly monotone and order continuous.

(ii) The space e is lower locally uniformly monotone.

Proof. Since LLUM ⇒ OC (see Proposition 2.1 in [11]), we need only to prove the
implication (i) ⇒ (ii). Let x ∈ e+ and (xn) be a sequence in e such that 0 ≤ xn ≤ x
for any n ∈ N and ‖xn‖e → ‖x‖e. Consequently, all sequences of coordinates (xn(i))

∞
n=1

are bounded for i = 1, 2, ... . Using the diagonal method we can find a subsequence (xnk
)

of (xn) and y ∈ l0 such that xnk
(i) → y(i) for all i ∈ N . We have 0 ≤ y ≤ x. Since

e ∈ (SM), so y = x. Moreover, 0 ≤ x − xnk
≤ x and x − xnk

→ 0 coordinatewise. By
e ∈ (OC), we get ‖x− xnk

‖e → 0. In virtue of the double extract subsequence theorem
we finish the proof.

3. Main results

Set r ∨ s = max{r, s} and r ∧ s = min{r, s} for any r, s ∈ R.

Theorem 3.1. Let E be a Köthe function space. Then Eϕ ∈ (LUR) if and only if:

(a) E ∈ (LLUM), ϕ > 0, ϕ <∞, ϕ ∈ ∆E
2 and

(b) for each u ∈ (S(E))+ and any ε > 0 there is δ = δ(u, ε) ∈ (0, 1) such that for every

v ∈ (S(E))+ with ‖u− v‖E ≥ ε one has:

‖u+ v(1− w)‖E ≤ 2(1− δ) or ‖uw‖E ≥ δ,

where x = ϕ−1
r ◦ u, y = ϕ−1

r ◦ v,

w(t) =

{

1− 2ϕ((x(t)+y(t))/2)
ϕ(x(t))+ϕ(y(t))

if t ∈ Bδ(u, v)

0 otherwise

and

Bδ(u, v) = {t ∈ suppu ∪ suppv : u(t) ∧ v(t) ≤ (1− δ)(u(t) ∨ v(t))}.
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The idea of the approach of Theorems 3.1 and 3.2: Note that if E /∈ (LUR) then S(E)
contains “almost flat areas� denoted by Flat(S(E)). Then Eϕ ∈ (LUR) if and only
if Eϕ ∈ (LLUM) (condition (a)) and either E ∈ (LUR) or ϕ improves (brings into
relief) the set Flat(S(E)) because of its appropriate convexity on the set ϕ−1

r (Flat(S(E))
(condition (b)).

Proof. Sufficiency. Applying Theorem 3 in [18] we only need to prove that (Eϕ)+ ∈
(LUR). Let x ∈ (S(Eϕ))+ and ε > 0. Take arbitrary y ∈ (S(Eϕ))+ with ‖x− y‖ϕ ≥ ε.
Denoting ϕ ◦ x = u and ϕ ◦ y = v we get u, v ∈ (S(E))+ (see Lemma 2.2(i)). By Lemma
2.2(iii) we find η = η(ε) > 0 such that ‖ϕ ◦ (x− y)‖E ≥ η. By superadditivity of the
function ϕ on R+, we get

‖u− v‖E = ‖ϕ ◦ x− ϕ ◦ y‖E ≥ ‖ϕ ◦ (x− y)‖E ≥ η.

Applying assumption (b) with δ = δ(ϕ ◦ x, η(ε)) ∈ (0, 1) we need to consider two cases.

I. Suppose ‖uw‖E ≥ δ. Then, using the definition of the function w, we get

ϕ ◦
(x+ y

2

)

≤
1

2
(ϕ ◦ x+ ϕ ◦ y)−

w

2
(ϕ ◦ x+ ϕ ◦ y)χBδ(u,v)

≤
1

2
(ϕ ◦ x− w ϕ ◦ x) +

1

2
ϕ ◦ y.

Since E ∈ (LLUM), we conclude that ‖ϕ ◦ ((x+ y)/2)‖E ≤ (1 − p)/2 + 1/2 = 1 − p/2,
where p = p(ϕ◦x, δ) > 0 is from the definition of lower local uniform monotonicity. Finally,
it follows from Lemma 2.2(ii) that ‖(x+ y)/2‖ϕ ≤ 1− r1, where r1 = r1(p/2) > 0.

II. If ‖u+ v(1− w)‖E ≤ 2(1−δ), then ̺ ((x+ y)/2) ≤ 1−δ, whence ‖(x+ y)/2‖ϕ ≤ 1−r2,
where r2 = r2(δ) depends only on δ (see Lemma 2.2(ii)).

Thus ‖(x+ y)/2‖ϕ ≤ 1− r with r = min{r1, r2}.

Necessity. If Eϕ ∈ (LUR), then Eϕ ∈ (LLUM) (see [18, Theorem 1]). Hence, by
Proposition 2.4, E ∈ (LLUM), ϕ <∞, ϕ > 0 and ϕ ∈ ∆E

2 .

Suppose now that condition (b) is not satisfied. Then there exist u ∈ (S(E))+, ε > 0 and
a sequence (vn)

∞
n=1 in S(E+) such that, taking x = ϕ−1

r ◦ u, yn = ϕ−1
r ◦ vn, we have

‖u− vn‖E ≥ ε, ‖u+ vn(1− wn)‖E > 2(1− 1/n), and ‖uwn‖E < 1/n (3)

for every n ∈ N , where

wn(t) =

{

1− 2ϕ((x(t)+yn(t))/2)
ϕ(x(t))+ϕ(yn(t))

if t ∈ Bn

0 otherwise

and
Bn = {t ∈ suppu ∪ suppvn : u(t) ∧ vn(t) ≤ (1− 1/n)(u(t) ∨ vn(t))}.

First we claim that
‖ϕ ◦ ((x+ yn)/2)‖E → 1 as n→ ∞. (4)

Since u(t) ∧ vn(t) > (1 − 1/n)(u(t) ∨ vn(t)) for any t ∈ (suppu ∪ suppvn)\Bn, denoting
Cn = (suppu ∪ suppvn)\Bn, we conclude that (u − vn)χCn

→ 0 pointwisely. Then
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(x − yn)χCn
→ 0 pointwisely, because ϕ−1

r is subadditive and continuous. Consequently
(ϕ ◦ (x+yn

2
)− ϕ◦x+ϕ◦yn

2
)χCn

→ 0 pointwisely. Moreover,

∣

∣

∣
ϕ ◦

(x+ yn
2

)

χCn
−

(ϕ ◦ x+ ϕ ◦ yn
2

)

χCn

∣

∣

∣
≤ 3ϕ ◦ xχCn

≤ 3u.

Since E ∈ (OC), we conclude that

∥

∥

∥
ϕ ◦

(x+ yn
2

)

χCn
−
(ϕ ◦ x+ ϕ ◦ yn

2

)

χCn

∥

∥

∥

E
→ 0.

Then, passing to a subsequence, if necessary, and applying (3) we get

∥

∥

∥
ϕ ◦

(x+ yn
2

)
∥

∥

∥

E
=

∥

∥

∥
ϕ ◦

(x+ yn
2

)

χBn
+ ϕ ◦

(x+ yn
2

)

χCn

∥

∥

∥

E

≥
∥

∥

∥
ϕ ◦

(x+ yn
2

)

χBn
+
ϕ ◦ x+ ϕ ◦ yn

2
χCn

∥

∥

∥

E
−

1

n

=
∥

∥

∥

ϕ ◦ x+ ϕ ◦ yn
2

(1− wn)χBn
+
ϕ ◦ x+ ϕ ◦ yn

2
χCn

∥

∥

∥

E
−

1

n

≥ 1−
2

n
−

1

n
= 1−

3

n
.

It proves condition (4) and consequently, by Lemma 2.1, ‖(x+ yn)/2‖ϕ → 1 as n → ∞.
Clearly, since ‖ϕ ◦ x‖E = ‖ϕ ◦ yn‖E = 1, so ‖x‖ϕ = ‖yn‖ϕ = 1 (n ∈ N). Proceeding in the
same way as in the proof of Theorem 2.11 in [29], we find η > 0 such that ‖x− yn‖ϕ ≥ η
for infinitely many n ∈ N , i.e. Eϕ /∈ LUR.

Theorem 3.2. Let e be a Köthe sequence space. Then eϕ ∈ (LUR) if and only if:

(a) e ∈ (LLUM), ϕ > 0, ϕ(bϕ) infi∈N ‖ei‖e ≥ 1, ϕ ∈ ∆e
2 and

(b) for each u ∈ (S(e))+ and any ε > 0 there is δ = δ(u, ε) ∈ (0, 1) such that for every

v ∈ (S(e))+ with ‖u− v‖e ≥ ε one has:

‖u+ v(1− w)‖e ≤ 2(1− δ) or ‖uw‖e ≥ δ,

where x = ϕ−1
r ◦ u, y = ϕ−1

r ◦ v,

w(i) =

{

1− 2ϕ((x(i)+y(i))/2)
ϕ(x(i))+ϕ(y(i))

if i ∈ Bδ(u, v)

0 otherwise

and

Bδ(u, v) = {i ∈ suppu ∪ suppv : u(i) ∧ v(i) ≤ (1− δ)(u(i) ∨ v(i))}.

Proof. We proceed analogously as in the proof of Theorem 3.1. However, in the proof of
the necessity, to show that there is a number η > 0 such that ‖x− yn‖ϕ ≥ η for infinitely
many n ∈ N , we need to proceed as in the proof Theorem 2.12 in [29]. Note that if
eϕ ∈ (LUR), then eϕ ∈ (LLUM) and eϕ ∈ (ULUM). Consequently, by Propositions
2.4(ii) and 2.5(ii), we conclude that e ∈ (LLUM) and e ∈ (ULUM).

Then we may imitate the proof of Theorem 2.12 in [29] (necessity) replacing e ∈ (UM)
by e ∈ (LLUM) or by e ∈ (ULUM). Namely, since e ∈ (LLUM), so for any x ∈ e+
and each q ∈ (0, 1) there is p = p(x, q) ∈ (0, 1) such that for each y ∈ e+ with y ≤ x the
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condition ‖x‖e − ‖y‖e < p implies that ‖x− y‖e < q. Similarly, from e ∈ (ULUM), we
conclude that for any x ∈ e+ and every q ∈ (0, 1) there is p = p(x, q) ∈ (0, 1) such that
for each y ∈ e+ with y ≥ x the condition ‖y‖e − ‖x‖e < p implies that ‖x− y‖e < q.

Then we follow as in the proofs of Theorems 2.11 and 2.12 in [29] considering two cases:

1. ‖(ϕ ◦ x− ϕ ◦ yn)χAn
‖e ≥ ε/2 for infinitely many n ∈ N or

2. ‖(ϕ ◦ x− ϕ ◦ yn)χN\An
‖e ≥ ε/2 for infinitely many n ∈ N ,

where An = {i ∈ N : ϕ(x(i)) ≥ ϕ(yn(i))}. In Case 1 we apply the fact that e ∈ (LLUM),
and in Case 2 we use e ∈ (ULUM), respectively. Notice also that we get in this way that
the number η depends only on x and ε and η does not depend on the sequence (yn).

From the Theorems 3.1 and 3.2 one can get immediately.

Corollary 3.3.

(i) Suppose that E is a Köthe function space. If E ∈ (LUR), ϕ > 0, ϕ < ∞ and

ϕ ∈ ∆E
2 , then Eϕ ∈ (LUR).

(ii) Suppose that e is a Köthe sequence space. If e ∈ (LUR), ϕ > 0, ϕ(bϕ) infi∈N ‖ei‖e ≥
1 and ϕ ∈ ∆e

2, then eϕ ∈ (LUR).

It has been shown in [18] that Eϕ ∈ (LUR) whenever E ∈ (UM), ϕ ∈ ∆E
2 and ϕ is a

strictly convex function. We shall show below that one can replace the assumption that
E ∈ (UM) by the two essentially weaker ones that E ∈ (LLUM) and E ∈ (ULUM).
We shall present the example of the space that is both ULUM and LLUM and is not
UM in Section 4 (see Example 4.3, page 407).

Corollary 3.4.

(i) Suppose that E is a Köthe function space. If E ∈ (LLUM), E ∈ (ULUM), ϕ ∈ ∆E
2

and ϕ is strictly convex, then Eϕ ∈ (LUR).

(ii) Suppose that e is a Köthe sequence space. If e ∈ (LLUM), e ∈ (ULUM),
ϕ(bϕ) infi∈N ‖ei‖e ≥ 1, ϕ ∈ ∆e

2 and ϕ is strictly convex on the interval [0, ϕ−1
r

(1/ infi∈N ‖ei‖e)), then eϕ ∈ (LUR).

The proof of Corollary 3.4 will be preceeded by two lemmas.

Lemma 3.5. Suppose that E is a Köthe space. If E ∈ (ULUM), then for each u ∈
(S(E))+ and any ε > 0 there is δ = δ(u, ε) ∈ (0, 1) such that for every v ∈ (S(E))+
with ‖(u− v)χA(u,v)‖E ≥ ε there holds ‖(u− v)χT\A(u,v)‖E ≥ δ, where A(u, v) = {t ∈ T :
u(t) ≤ v(t)}.

Proof. Suppose for the contrary that E ∈ (ULUM) and there are u ∈ (S(E))+, ε > 0
and sequence (vn) in (S(E))+ such that ‖(u− vn)χA(u,vn)‖E ≥ ε and ‖(u− vn)χT\A(u,vn)‖E
< 1/n for each n ∈ N . Denote An = A(u, vn) for simplicity. Since E ∈ (ULUM), there
is a number p = p(u, ε) > 0 such that ‖u+ (vn − u)χAn

‖E ≥ 1 + p for each n ∈ N . Since

‖uχT\An
+ vnχAn

‖E − ‖vnχT\An
+ vnχAn

‖E ≤ ‖uχT\An
− vnχT\An

‖E < 1/n,
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we get

1 = ‖vn‖E = ‖vnχT\An
+ vnχAn

‖E ≥ ‖uχT\An
+ vnχAn

‖E − 1/n

= ‖u+ (vn − u)χAn
‖E − 1/n ≥ 1 + p− 1/n

for each n ∈ N . This contradiction for sufficiently large n finishes the proof.

The following easy observation will be useful in the next lemma.

Remark 3.6. Let E be a Köthe space and ε > 0 be given. Then for any u, v ∈ (S(E))+
such that ‖(u− v)χA0

‖E ≥ ε, we have ‖(u− v)χAε
‖E ≥ ε/2, where A0 = {t ∈ T : v(t) <

u(t)} and Aε = {t ∈ A0 : v(t) ≤ (1− ε/3)u(t)}.

Lemma 3.7. Suppose that E is a Köthe space. If E ∈ (ULUM), then for each u ∈
(S(E))+ and any ε > 0 there is δ = δ(u, ε) ∈ (0, 1) such that for every v ∈ (S(E))+
with ‖u− v‖E ≥ ε there holds ‖(u− v)χAδ(u,v)‖E ≥ δ, where Aδ(u, v) = {t ∈ T : v(t) ≤
(1− δ)u(t)}.

Proof. Take arbitrary u ∈ (S(E))+ and ε > 0. Let v ∈ (S(E))+ be such that ‖u− v‖E ≥
ε. Denote A0 = {t ∈ T : v(t) < u(t)}. We will consider two cases.

1. If ‖(u− v)χA0
‖E ≥ ε/2, then ‖(u− v)χAε

‖E ≥ ε/4, where Aε = {t ∈ A0 : v(t) <
(1− (ε/6))u(t)} (see Remark 3.6).

2. Suppose that ‖(u− v)χT\A0
‖E ≥ ε/2. Then ‖(u− v)χA0

‖E ≥ δ1, where δ1 = δ(u, ε/2)
is from Lemma 3.5. Thus ‖(u− v)χAδ1

‖E ≥ δ1/2, where Aδ1 = {t ∈ A0 : v(t) < (1 −
(δ1/3))u(t)}.

Combining Cases 1 and 2, we get ‖(u− v)χAδ(u,v)‖E ≥ δ with δ = min{ ε
6
, δ1

3
}.

Proof of Corollary 3.4. (i). Since strict convexity of ϕ gives that ϕ > 0 and ϕ < ∞,
it is enough to show that our assumptions guarantee that condition (b) in Theorem 3.1 is
satisfied. Assuming that condition (b) in Theorem 3.1 does not hold we shall show that ϕ
must be affine on some interval. Suppose that condition (b) is not satisfied. Then there
exist an element u ∈ (S(E))+, a number ε > 0 and a sequence (vn)

∞
n=1 in (S(E))+ such

that, taking x = ϕ−1
r ◦ u, yn = ϕ−1

r ◦ vn, we have

‖u− vn‖E ≥ ε, (5)

‖u+ vn(1− wn)‖E > 2(1− 1/n), and ‖uwn‖E <
1

n
(6)

for every n ∈ N , where

wn(t) =

{

1− 2ϕ((x(t)+yn(t))/2)
ϕ(x(t))+ϕ(yn(t))

if t ∈ Bn

0 otherwise

and
Bn = {t ∈ suppu ∪ suppvn : u(t) ∧ vn(t) ≤ (1− 1/n)(u(t) ∨ vn(t))}.

Following the proof of necessity of Theorem 2.11 in [29] and passing to a subsequence, if
necessary, we conclude that

‖x− yn‖ϕ ≥ η(ε) (7)
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for each n, where η = η(ε) > 0 depends only on ε. Since E ∈ (OC) (see Proposition 2.1
in [11]), E ∈ (ULUM), ϕ > 0, ϕ <∞ and ϕ ∈ ∆E

2 , by Proposition 2.5, Eϕ ∈ (ULUM).
It follows from condition (7) and Lemma 3.7 that there is δ = δ(x, η) ∈ (0, 1) such that
‖(x− yn)χAδ(x,yn)‖ϕ ≥ δ for each n, where Aδ(x, yn) = {t ∈ T : yn(t) ≤ (1 − δ)x(t)}.
Put An = Aδ(x, yn) for simplicity. The convexity of ϕ yields that vn(t) ≤ (1− δ)u(t) for
each t ∈ An. Hence An ⊂ Bn for each n > 1/δ. Moreover, ‖xχAn

‖ϕ ≥ δ/2 for each n.
Thus ‖uχAn

‖E ≥ δ1 for each n, where δ1 > 0 depends only on δ. Since E ∈ (OC), we
find a number C > 0 with ‖uχT\T0‖E < δ1/2, where T0 = {t ∈ T : 1/C ≤ u(t) ≤ C}.
Hence ‖uχT0∩An

‖E ≥ δ1/2 for each n. We claim that for each k ∈ N there is nk ∈ N and
tk ∈ T0 ∩ Ank

with wnk
(tk) < 1/k. Indeed, if not, we find a number k0 ∈ N such that

‖wnuχT0∩An
‖E ≥ 1/k0‖uχT0∩An

‖E ≥ δ1/2k0 for each n, but this contradicts inequality
(6) for sufficiently large n. Note that we can take the sequence (nk)

∞
k=1 that is strictly

increasing. By the definition of the function wnk
we get

ϕ

(

x(tk) + ynk
(tk)

2

)

>
1− 1/k

2
{ϕ(x(tk)) + ϕ(ynk

(tk))}

for each k. Moreover, since tk ∈ T0, ϕ
−1
r (1/C) ≤ x(tk) ≤ ϕ−1

r (C) and consequently
the sequence (x(tk))

∞
k=1 contains a convergent subsequence (x(tkl))

∞
l=1. Similarly, the se-

quence (ynkl
(tkl))

∞
l=1 contains a convergent subsequence (ynklp

(tklp ))
∞
p=1. Denoting these

subsequences by xk, yk, we get xk → x0, yk → y0 and

ϕ
(xk + yk

2

)

>
1− 1/k

2
{ϕ(xk) + ϕ(yk)}

for each k. Passing to the limit we obtain ϕ
(

x0+y0
2

)

= 1
2
{ϕ(x0) + ϕ(y0)}. Hence it is

enough to show that x0 6= y0. By the definition of the set An we get x(t)− yn(t) ≥ δx(t)
for each t ∈ An. Hence, xk − yk ≥ δϕ−1

r (1/C) for each k. Passing to the limit, we get
x0 − y0 ≥ δϕ−1

r (1/C).

(ii). The proof goes in the same way as in Case (i). Note only that the number η in
inequality (7) depends only on ε and x (see the proof of Theorem 3.2).

4. Applications to Orlicz-Lorentz spaces

In this section we shall consider the Lebesgue measure space ([0, α),Σ, µ) with 0 < α ≤ ∞
and µ being the Lebesgue measure or the counting measure space (N, 2N ,m). Let ω :
[0, α) → R+ (respectively ω : N → R+) be a nonincreasing, nonnegative, locally integrable
function (resp. nonincreasing, nonnegative sequence), called a weighted function (resp. a
weighted sequence). Then the Lorentz function space Λω (resp. Lorentz sequence space
λω) is defined as follows (see [30] and [31])

Λω = {x ∈ L0 : ‖x‖ω =

∫ α

0

x∗(t)ω(t)dt <∞}

(resp. λω = {x ∈ l0 : ‖x‖ω =
∞
∑

i=1

x∗(i)ω(i) <∞}). (8)

Recall that if E = Λω (resp. e = λω), then the Calderón-Lozanovskǐı space Eϕ (resp. eϕ)
is the corresponding Orlicz-Lorentz function (resp. sequence) space Λϕ,ω (resp. λϕ,ω) (see
[4], [17], [19], [26], [27] and [29]).
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We say that E has the Kadec-Klee property for global convergence in measure if for any
x ∈ E and any sequence (xm) in E such that ‖xm‖E → ‖x‖E and xm → x globally in
measure, we have ‖xm − x‖E → 0 (see [9]).

We shall need in sequel the following results.

Proposition 4.1. The following conditions are equivalent:

(i) ω is positive on [0, α) and
∫∞

0
ω(t)dt = ∞ whenever α = ∞.

(ii) The Lorentz function space Λω is strictly monotone.

(iii) The Lorentz function space Λω is lower locally uniformly monotone.

(iv) The Lorentz function space Λω is upper locally uniformly monotone.

Proof. The equivalence (i) ⇔ (ii) has been proved in [29, Lemma 3.1]. By Lemma 3.2 in
[29] and Theorem 2.6, we have the equivalence (ii) ⇔ (iii). Since Λω has the Kadec-Klee
property for global convergence in measure (see Corollary 1.3 in [9], cf. also the proof
of Theorem 1 in [22]), by Theorem 3.2 in [9] and Lemma 3.2 in [29], we conclude that
(ii) ⇔ (iv).

Proposition 4.2. The following conditions are equivalent:

(i)
∑∞

i=1 ω(i) = ∞.

(ii) The Lorentz sequence space λω is strictly monotone.

(iii) The Lorentz sequence space λω is lower locally uniformly monotone.

(iv) The Lorentz sequence space λω is upper locally uniformly monotone.

Proposition 4.2 we prove analogously as Proposition 4.1, applying Theorem 2.7. We
mention only the proof of the equivalence (ii) ⇔ (iv). First note that Theorem 3.2 in
[9] can be proved analogously replacing the symmetric function space by the symmetric
sequence space. Furthermore, the Lorentz sequence space λω has the Kadec-Klee property
for global convergence in measure (one can show it using similar techniques as in the proof
of Theorem 1 in [22]).

The below example shows that in Lorentz spaces uniform monotonicity is essentially
stronger than lower and upper local uniform monotonicity.

Example 4.3. Let ω(t) = 1
n
for t ∈ [n − 1, n) and n ∈ N (ω(i) = 1

i
for i ∈ N). Then,

by Proposition 4.1 (4.2), the Lorentz space Λω (λω) is LLUM and ULUM. However, by
Theorem 1 in [16], Λω (λω) is not UM.

The criteria for strict monotonicity of Orlicz-Lorentz spaces can be deduced from Corollary
1, Theorems 7 and 8 in [24]. Furthermore, from the Propositions 2.4, 2.5, 4.1 and 4.2 one
can get immediately two stronger results.

Corollary 4.4. The following conditions are equivalent:

(i) ω is positive on [0, α) and
∫∞

0
ω(t)dt = ∞ whenever α = ∞, ϕ ∈ ∆Λω

2 and ϕ > 0.

(ii) The Orlicz-Lorentz function space Λϕ,ω is strictly monotone.

(iii) The Orlicz-Lorentz function space Λϕ,ω is lower locally uniformly monotone.

(iv) The Orlicz-Lorentz function space Λϕ,ω is upper locally uniformly monotone.

Corollary 4.5. The following conditions are equivalent:
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(i)
∑∞

i=1 ω(i) = ∞, ϕ ∈ ∆2(0) and ϕ(bϕ)ω(1) ≥ 1.

(ii) The Orlicz-Lorentz sequence space λϕ,ω is strictly monotone.

(iii) The Orlicz-Lorentz sequence space λϕ,ω is lower locally uniformly monotone.

(iv) The Orlicz-Lorentz sequence space λϕ,ω is upper locally uniformly monotone.

Finally, we will present new proofs of two theorems that has been already obtained in the
papers [4] and [19]. These new proofs are based on the general result from this paper and
they are much more simpler than the original ones.

Theorem 4.6 ([19], Theorem 12). For the Orlicz-Lorentz function space Λϕ,ω the fol-

lowing conditions are equivalent:

(i) ω is positive on [0, α),
∫∞

0
ω(t)dt = ∞ whenever α = ∞, ϕ ∈ ∆Λω

2 and ϕ is strictly

convex on R+.

(ii) Λϕ,ω is locally uniformly rotund.

(iii) Λϕ,ω is rotund.

Proof. By Proposition 4.1 and Corollary 3.4(i), we get the implication (i) ⇒ (ii). The
implication (ii) ⇒ (iii) is obvious. Finally, (iii) ⇒ (i) has been proved in Corollary 3.3
in [29] (originally it was shown in [26]).

For any Orlicz function ϕ, by ϕ∗ we denote its complementary function, that is, ϕ∗(v) =
supu≥0{u|v| − ϕ(u)} for v ∈ R. If ϕ(bϕ)ω(1) ≥ 1, we define γ1 = ϕ−1

r (1/ω(1)) and
γ2 = ϕ−1

r (1/(ω(1) + ω(2))).

Theorem 4.7 ([4], Theorem 11). The Orlicz-Lorentz sequence space λϕ,ω is LUR if

and only if the following two conditions are satisfied:

1.
∑∞

i=1 ω(i) = ∞, ϕ ∈ ∆2(0), ϕ(bϕ)ω(1) ≥ 1 and

2. (i) ϕ is strictly convex on [0, γ1] or
(ii) ϕ∗ ∈ ∆2(0) and ϕ is strictly convex on [0, γ2].

Proof. Sufficiency. Since
∑∞

i=1 ω(i) = ∞, by Proposition 4.2, we get λω ∈ (LLUM) and

λω ∈ (ULUM). Simultaneosly λω →֒ co and condition ∆2(0) means condition ∆λω
2 . Since

ϕ ∈ ∆2(0), we have ϕ > 0. It is enough to show that our assumptions guarantee that
condition (b) in Theorem 3.2 is satisfied. Suppose that condition (b) does not hold. Then
there exist an element u ∈ (S(λω))+, a number ε > 0 and a sequence (vn)

∞
n=1 in (S(λω))+

such that, taking x = ϕ−1
r ◦ u, yn = ϕ−1

r ◦ vn, we have

‖u− vn‖ω ≥ ε, ‖u+ vn(1− wn)‖ω > 2(1− 1/n) and ‖uwn‖ω < 1/n (9)

for every n ∈ N , where

wn(i) =

{

1− 2ϕ((x(i)+yn(i))/2)
ϕ(x(i))+ϕ(yn(i))

if i ∈ Bn

0 otherwise

and
Bn = {i ∈ suppu ∪ suppvn : u(i) ∧ vn(i) ≤ (1− 1/n)(u(i) ∨ vn(i))}.

Following the proof of Corollary 3.4 we conclude that there exist numbers δ ∈ (0, 1) and
y0, x0 ≥ 0 with y0 ≤ (1− δ)x0 such that ϕ is affine on the interval [y0, x0]. We can assume
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that γ2 ≤ y0 and ϕ∗ ∈ ∆2(0). Let (in) be a sequence from the proof of Corollary 3.4
for which limn→∞ x(in) = x0 and limn→∞ yn(in) = y0. Since γ2 < x0, there is exactly
one io ∈ N such that x(io) = x(in) for each n ≥ no with some no ∈ N . Furthermore
x0 = x(io) = x∗(1).

First we assume that there exist a number η > 0, a subsequence of natural numbers (nm)
and a sequence (im), im 6= io for any m ∈ N , such that ynm

(im) ≥ η and (ynm
(im) ∧

x(im)) ≤ (1 − η)(ynm
(im) ∨ x(im)). In virtue of Lemmas 5 or 6 in [25] there exists

p = p(η) ∈ (0, 1) such that for all m ∈ N we have

2ϕ
(

x(im)+ynm (im)
2

)

ϕ(x(im)) + ϕ(ynm
(im))

< 1− p.

Let k be the smallest natural number for which (1 − p)ϕ(η)
∑k

i=1 ω(i) ≥ 1. Then, for
nm > 1/η, we get im ∈ Bnm

and

‖u+ vnm
(1− wnm

)‖ω ≤ ‖u‖ω + ‖vnm
(1− wnm

)‖ω

≤ ‖u‖ω + ‖vnm
χN\{im} + (1− p)vnm

χ{im}‖ω

≤ ‖u‖ω + ‖vnm
‖ω − pϕ(η)ω(k) = 2− pϕ(η)ω(k),

which contradicts to (9) for suffitiently large m.

Let now for each k ∈ N there exists mk such that for all n ≥ mk and each i ∈ N\{io}
we have (yn(i) ∧ x(i)) > (1 − 1/k)(yn(i) ∨ x(i)) whenever yn(i) ≥ 1/k. Denoting b =
ϕ(x0)ω(1)−ϕ(y0)ω(1), we have b ∈ (0, 1). Without loss of generality we can assume that
yn(io) = y∗n(1) and ϕ(yn(io))ω(1) ≤ ϕ(x0)ω(1) − b/2 for any n ∈ N . We consider two
cases.

1. First we suppose that m(suppx) = s < ∞. If s = 1, then
∑∞

i=2 v
∗
n(i)ω(i) ≥ b/4. If

s > 1 we find k ∈ N such that x∗(s) ≥ 1/k and (see Lemma 1.1 in [15])

ϕ

(

k

k − 1
t

)

≤

(

1 +
b

4

)

ϕ(t)

for t ∈ [0, γ2]. It is easy to show that yn(i) < 1/k for each n ≥ mk, i ∈ N\suppx and
y∗n(i) <

k
k−1

x∗(i) for n ≥ mk and i = 2, 3, . . . , s. Therefore

s
∑

i=1

ϕ(y∗n(i))ω(i) = ϕ(y∗n(1))ω(1) +
s

∑

i=2

ϕ(y∗n(i))ω(i) (10)

≤ ϕ(x∗(1))ω(1)− b/2 +
s

∑

i=2

ϕ

(

k

k − 1
x∗(i)

)

ω(i)

≤ ϕ(x∗(1))ω(1)− b/2 +

(

1 +
b

4

) s
∑

i=2

ϕ(x∗(i))ω(i) ≤ 1−
b

4

for n ≥ mk. Since
∑∞

i=s+1 ϕ(y
∗
n(i))ω(i) ≥ b/4 for n ≥ mk, we have

∑∞
i=1 ϕ(z

∗
n(i))ω(i+s) ≥

b/4 for n ≥ mk, where zn = ynχN\suppx. Since ϕ∗ ∈ ∆2(0) and ϕ is strictly convex on
[0, γ2], by Lemma 1.1 in [7], we have 2ϕ(t/2)/ϕ(t) ≤ 1 − q for some q ∈ (0, 1) and any
t ∈ [0, γ2]. Hence

‖u+ vn(1− wn)‖ω ≤ ‖u‖ω + ‖vnχsuppx + (1− q)vnχN\suppx‖ω ≤ 2− qb/4
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for n ≥ mk, which contradicts to (9) for suffitiently large n.

2. Let now m(suppx) = ∞. Defining Ak = {i ∈ suppx : x(i) ≥ 1/k} and pk =
m(suppxχAk

), we have pk < ∞ for any k ∈ N and limk→∞

∑∞
i=1 ϕ((xχN\Ak

)∗(i))ω(i +
pk) = 0. Since, by (9), limk→∞ ‖vmk

(1− wmk
)‖ω = 1, proceeding analogously as in (10),

we get
∑∞

i=1(vmk
(1 − wmk

)χN\Ak
)∗(i)ω(i + pk) ≥ b/8 beginnig from some k = k1. Since

ϕ∗ ∈ ∆2(0) and ϕ is strictly convex on [0, γ2] there exist a, r ∈ (0, 1) such that

ϕ

(

t+ s

2

)

≤
1− r

2
(ϕ(t) + ϕ(s))

for all t, s ∈ [0, γ2], whenever s ≤ at (see Example 1.7 in [7]). Let n be the smallest
natural number for which 1/a ≤ 2n. Then there exists k2 ≥ k1 such that 2na/(k−1) ≤ γ1,
a < 1 − 1/mk and

∑∞
i=1 ϕ((xχN\Ak

)∗(i))ω(i + pk) ≤ b/(16Kn), for k ≥ k2, where K is
the constant from the ∆2(0) condition for the function ϕ. Denoting Dk = {i ∈ (suppx ∪
suppymk

)\Ak : x(i) ≤ aymk
(i)} and Ck = N\(Ak ∪Dk), we have

ϕ(ymk
(i)) ≤ ϕ(2naymk

(i)) ≤ Knϕ(aymk
(i)) ≤ Knϕ((x(i))

for i ∈ Ck and k ≥ k2. Therefore
∑

{i:σ(i)∈Ck}
(vmk

(1−wmk
)χN\Ak

)∗(i)ω(i+pk) ≤ b/16 and,

in consequence,
∑

{i:σ(i)∈Dk}
(vmk

(1 − wmk
)χN\Ak

)∗(i)ω(i + pk) ≥ b/16 whenever k ≥ k2,

where σ is a bijection from N to N0 ⊂ N such that (vmk
(1 − wmk

)χN\Ak
)∗ = vmk

(1 −
wmk

)χN\Ak
◦ σ. Hence, for k ≥ k2, we get

‖u+ vmk
(1− wmk

)‖ω

≤ ‖u‖ω + ‖vmk
χAk

+ (1− r)vmk
χDk

+ vmk
(1− wmk

)χN\(Ak∪Dk)‖ω ≤ 2− rb/16.

This contradiction with (9) for suffitiently large k finishes the proof of sufficiency.

Necessity. We observe that if λϕ,ω ∈ (LUR), then, by Theorem 3.2, ϕ ∈ ∆λω
2 , ϕ(bϕ)ω(1)

≥ 1 and λω ∈ LLUM, whence, by Propositon 4.2,
∑∞

i=1 ω(i) = ∞. Therefore λω →֒ co
and condition ∆λω

2 means condition ∆2(0). Since LUR ⇒ R, from Corollary 3.3 in [29],
we get that ϕ is strictly convex on [0, γ2]. Thus, in order to finish the proof we need only
to show that ϕ is strictly convex on [γ2, γ1] whenever ϕ

∗ /∈ ∆2(0).

Suppose that ϕ fails to be strictly convex on [γ2, γ1] and ϕ∗ /∈ ∆2(0). Then there are
a, b ∈ [γ2, γ1), a < b, and sequences d(i) ↓ 0, p(i) ↓ 0 such that

ϕ

(

a+ b

2

)

=
ϕ(a) + ϕ(b)

2
, and ϕ

(

d(i)

2

)

≥ (1− p(i))
ϕ(d(i))

2

for any i ∈ N . Let c ∈ (0, γ2) be such that ϕ(b)ω(1) + ϕ(c)ω(2) = 1. For any n ∈ N we
find d(in) and mn such that d(i1) < a, d(in+1) < d(in), mn+1 > mn and

1−
1

n
≤ ϕ(a)ω(1) + ϕ(c)ω(2) + ϕ(d(in))

mn
∑

k=3

ω(k) ≤ 1

< ϕ(a)ω(1) + ϕ(c)ω(2) + ϕ(d(in))
mn+1
∑

k=3

ω(k).

Define

u = ϕ(b)e1 + ϕ(c)e2, vn = ϕ(a)e1 + ϕ(c)e2 + ϕ(d(in))
mn
∑

k=3

ek + fnemn+1,
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where fn < ϕ(d(in)) is choosen in such a way that ‖vn‖ω = 1. We have

‖u− vn‖ω ≥ (ϕ(b)− ϕ(a))ω(1) > 0, ‖uwn‖ω = 0

for any n ∈ N and

‖u+ vn(1− wn)‖ω ≥ (ϕ(b) + ϕ(a))ω(1) + 2ϕ(c)ω(2) + (1− p(in))ϕ(d(in))
mn
∑

k=3

ω(k) → 2

as n→ ∞. So, by Theorem 3.2, λϕ,ω /∈ (LUR).
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