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Any finite, separately convex, positively homogeneous function on IR? is convex. This was first established
in [1]. In this paper, we give a new and concise proof of this result, and we show that it fails in higher
dimension. The key of the new proof is the notion of perspective of a convex function f, namely, the
function (z,y) — yf(z/y), y > 0. In recent works [9, 10, 11], the perspective has been substantially
generalized by considering functions of the form (z,y) — g(y)f(z/g(y)), with suitable assumptions on g.
Here, this generalized perspective is shown to be a powerful tool for the analysis of convexity properties
of parametrized families of matrix functions.

1. Introduction
In [1], Dacorogna established the following theorem:

Theorem 1.1. Let f: R? — R be separately convex and positively homogeneous of degree
one. Then f is convew.

A rather natural question then arises: does this theorem remain valid in higher dimension?
As we will see, the answer is negative.

In Section 2 of this paper, we provide a new and concise proof of the above theorem,
which uses the notion of perspective in convex analysis. We then establish that the result
fails for functions on R™ as soon as n > 3. We construct counterexamples in dimension 3
and 4, using ideas from [3]. We also point out that the theorem is false even in dimension 2
if the function is not everywhere finite.

The role of the perspective in the analysis of convexity properties of functions is further
explored in the subsequent sections. An overview of a convex analytic operation recently
introduced by Maréchal in [9, 10, 11, 12], which generalizes the perspective, is given in
Section 3. It is then applied to the study of parametrized families of matrix functions in
Section 4.
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2. Perspective and separately convex homogeneous functions

Throughout, we denote by R* (resp. R*) the set of positive (resp. negative) numbers.

2.1. Perspective functions

A standard way to produce a convex and positively homogeneous function on R™ x R7 is

to form the perspective of some convex function f on R”. This is recalled in the following
lemma, whose proof is provided for the sake of completeness.

Lemma 2.1. Let f: R" — [—o0,00]. Then, the function f defined by

v

L n *
f(x7y):yf<§)7 xE]RvyEIR+
i1s convex if and only if f is conver.

Proof. The only if part is obvious (take y = 1). Conversely, if f is convex, then

(1= Ny + M) f (<1 — N1 + A@)

(1= Ny + Ayo

(1 =My L1 i AYs ﬁ)
(I—=XNy+Ayayr - (1= XN)y1 + Aya vo

< (1=Nuf (%) + Agof (%)

for all (z1,41), (z2,2) € R" x R% and all A € (0,1). O

= (1= Ny ) S (

It is customary to allow y to vanish, in the definition of f , by letting

f(x,0) = f0*(2) :=sup { f(x +2) — f(2) | z € dom f}

Here, f0" is the recession function of f (see [13], Section 8). Recall that, if f is closed
proper convex, then

Vo € dom f, (f01)(x) = lg%lyf (%) ;

and that the latter formula holds for all z € R"™ in the case where the domain of f contains
the origin (see [13], Corollary 8.5.2).

In the remainder of this paper, we will always consider f to be extended in this way. It
is well known that f is then closed if and only if f is closed.

2.2. A new proof of Theorem 1.1

We start with a lemma which allows to obtain convex functions on R and on R? by
repasting pieces of a function which is convex on overlapping domains.
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Lemma 2.2.

(i) Let f: R — R and let a,b € R be such that a < b. If f is convex on (—o0,b) and
on (a,00), then f is conver on R.
(it) Let f: R* — R be continuous and convex on the open half-planes R x R%, R x R*,

R* xR and R* x R. Then f is convex on R?.

Proof. (i) The assumptions imply that f is continuous on R, and that the right (or left)
derivative of f exists at every x € R and is increasing (see [8], Theorems I-3.1.1 and
[-4.1.1 and Remark 1-4.1.2). The convexity of f on R then follows from [8], Theorem
[-5.3.1.

(i) Tt suffices to see that f is convex on every line A C R2 If A is parallel to one of
the axes, then either it is contained in one of the four half-spaces under consideration, in
which case there is nothing to prove, or it is one of the axes, in which case an obvious
continuity argument shows the convexity of f on A. If A is not parallel to any of the
axes, then either it intersects the axes at two distinct points, in which case the convexity
of f on A is an immediate consequence of Part (i), or it passes through the origin, in
which case the convexity of f on A results again from the continuity of f. O]

We are now ready to give our new proof.

Proof of Theorem 1.1. Since f is finite and separately convex, it is continuous on RR?
(see e.g. [1], Theorem 2.3, page 29). Now, the partial mapping « — f(x,1) is convex by
assumption, and Lemma 2.1 shows that the mapping

(@,y) = yf (g 1) = f(z,y)

is convex on the open half-plane R x R’.. Repeating the same reasoning with the partial
mappings = — f(x,—1), y — f(1,y) and y — f(—1,y) shows that f is also convex on
the open half-planes R x R*, R} x R and R* x R. The theorem then follows from
Lemma 2.2(ii). O

2.3. Counterexamples

Notice first that, in Theorem 1.1, the assumption of finiteness of f is essential. As a
matter of fact, it is clear that the indicator function of the set

E={(z,y) eR?*|ay>0}

is positively homogeneous and separately convex but not convex. Recall that the indicator
function of a set E is the function

6(x|E):{O ifrek,

oo otherwise.

We now turn to higher dimensional considerations. As announced in the introduction of
this paper, Theorem 1.1 fails for functions on R" as soon as n > 3. Our counterexamples
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will all be of the form given in the following proposition. We denote by S™ ! the unit
sphere in R"™ and by £ = {e, ..., e,} the Euclidean basis of R". We also define the sets

C:={(nestxs" | (n=0}

and

S:={(&n)eS " xS (&n) =0,3(t,s) ERxR:tE+snel}.

Proposition 2.3. Let M be an n xn real symmetric matriz, with eigenvalues py < o <

... <y and corresponding orthonormal set of eigenvectors {¢1, va, ..., pn}. Let
Mg, §)
LS e,
&) =9 €l
0 if € =0.
Then
f is conver <= u >0 <= 2uy — pu, >0,
and
f is separately convexr <= v >0,

where

v i 20— MEG} and vi= pin {2Mn0) — (ME)

Proof. Since f is continuous on R", the convexity properties under consideration may
be examined only on every line which does not contain the origin. It follows that f is
convex if and only if

inf  {(V2F(NN)} >0,
EXeR™\{0}

and it is separately convex if and only if

inf {(V?f(EAN)} > 0.

£eR™\ {0}
€&
Straightforward computations show that
(VZFOAN)

- H;”5 (20611 (M2 2) = 411 (ME, M (6. A= €] AN (M. ) +3(E. X)*(ME.€)).

Since the above expression is positively homogeneous of degree —1 in &, one can add the
condition [|£]| = 1 in the previous infima. Furthermore, every A in R™ can be written

A=t&+sn witht,s € R, ||n|| =1and (¢,n) = 0.
We then have:
A =1+ 5%,
(&) =t,

(Mg, A) = t(M¢E, &) + s(M&,n),
(M, ) = t*(ME, €) + 2st(M&,n) + s*(Mn, 1),
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so that
(VZFONN) = 2((ME, &) + 2st(ME, ) + s*(Mn, n))
Therefore, the change of variable (£, ) — (£, n) shows that f is convex if and only if

u= (E’i%fec{%Mn,n) —(M¢,6)} >0, (1)

and that f is separately convex if and only if

v = (5%1;3{2<Mn,?7> —(M£,6)} > 0.

It is clear that both infima are attained, and that the infimum in (1) is attained for n = ¢,
and £ = @,, so that f is convex if and only if

241 — pin = 0.

We now turn to counterexamples to Theorem 1.1 in higher dimension.

Example 2.4 (n = 3). Let v be a nonnegative parameter, let M, := A + B, where

8§ 2 -1 -1 10
A= 2 8 -1 and B := 1 -1 0|,
-1 -1 11 0O 00
and let f be as in the above proposition. Finally, let
= min {2(M. — (M
u’Y (51,7171566{ < ’777777> < 7575)}7
= min §2(M. — (M :
vy = min {2(Mym,m) — (M:8,€)}
The vectors
V2 V3 V6
Y1 = 7(17_170)7 P2 = ?(171’1)7 ¥3 = ?(1717_2)

form an orthonormal system of eigenvectors for both A and B, with eigenvalues {6,9, 12}
and {—2,0, 0}, respectively. We clearly have, as in the proposition,

Uy =2(6 — 27) — 12 = —4,

v 2 anin {2040 m) = (A6} =7 max {2Bn.n) = (BE 6} 2 v0 = 2,

since

max {2(Bu,m) = (BE, &)} < max {2(Bn.n) — (BE &)} = 2

Moreover, vy > 0 since ey, €9, e3 & span{p1, ps}. Therefore, choosing v > 0 sufficiently
small guarantees that
vy > 0> u,

which, according to the proposition, shows that f, is separately convex but not convex. [
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Example 2.5 (n =4). Let

O NN O
[eoREN I \V N o]
o O O

and let f be as in the proposition. This function, regarded as a function on the space
of real 2 x 2 matrices, was shown to be rank-one convex but not convex (see [3], Re-
mark 1.9). Since rank one convex functions are trivially separately convex, we have the
desired counterexample. O

Finally, observe that Theorem 1.1 can be generalized to an n-dimensional setting as
follows:

Theorem 2.6. Let f: R™ — R be (n — 1)-partially conver and positively homogeneous
of degree one. Then f is conver.

A function f: R™ — [—o0,00] is said to be k-partially convex if each partial mapping
obtained by assigning any prescribed values to n — k variables is convex. As the reader
may check, the proof of the latter result is a straightforward adaptation of our proof of
Theorem 1.1.

3. Generalized perspective

The notion of perspective has been significantly generalized in [9, 10, 11], where convex
functions on R™*™ are obtained from convex functions on R™ and R™. We recall here the
main features of this construction. Given any function ¢ on R", the convex conjugate of
¢ is denoted by ¢*.

Definition 3.1. (i) Let ¢: R" — (—00,00] be proper convex, with ¢(0) < 0, and let
: R™ — {—o00} U0, 00) be proper concave. The pair (i, ) is then said to be of type I,
and we denote by ¢ A 9 the function given, on R™ x R™, by

Y(y)p (@) if ¥(y) € (0, 00),

(P 20)@:9) 1= 4 po+(a) if (y) = 0,
o0 if ¥(y) = —o0.

(ii) Let ¢: R™ — (—o00, 00] be proper convex with ¢ > ¢07, and let ¢b: R™ — [0, 00| be
proper convex. The pair (p, ) is then said to be of type II, and we denote by ¢ A 9 the
function given, on R™ x R™, by

b <M) if 1(y) € (0, 00).
07

(p D)@ Y) =4 o+ (a) if ¢ (y)
00 if Y(y) = o0
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in the case where ¢ # 0", and by

_ Jp(x) ify € cldomyp,
(@A@D)(%y)‘_{oo if y & cldom

in the case where ¢ = 0.

The condition ¢ = 0T is equivalent to positive homogeneity of ¢. In Case (ii), the
particular definition of ¢ A ¢ for positively homogeneous ¢ coincides with the general
one, except when y € cldom \ dom (the latter set may be nonempty, even if v is
closed). This definition ensures closedness of ¢ A 1) whenever ¢ and v are closed. The
proof of the following theorem can be found in [10].

Theorem 3.2.
(i)  Let (¢,v) be of type 1, and suppose that ¢ and 1 are closed. Then ((—)*, ¢*) is
of type 11, and the following duality relationships hold:
(DY) (&m) = ((=¥)" A ¢*)(0.€)
(=) A ¢") (y,2) = (0 A P)(2,y).
Consequently, ¢ A\ is closed proper convex.
(i)  Let (p,) be of type 11, and suppose that ¢ and ¢ are closed. Then (V*, —¢*) is of
type 1, and the following duality relationships hold:
(e AP (&m) = (V" A (=¢))(1,€)
(" A (=) (y,2) = (¢ A ¥)(z,y).

Consequently, ¢ A1) is closed proper convex.

4. Applications

In the forthcoming developments, we intend to demonstrate the relevance of the gener-
alized perspective as a tool for the study of convexity properties of families of matrix
functions.

We denote by M,,«, the space of real m x n matrices, and we write M,, = M,,«,. Recall
that d(-|C') denotes the indicator function of a set C.

Theorem 4.1. Let f: M, — (—o0, 0] be defined by

ladj A" ‘
llady, 201 det A
o (det A)° if det A > 0,
FLA) =4 65(adj, A |{0}) if det A =0,
00 if det A < 0,

in which s € {1,...,n—1} and v > « > 0. Then the following are equivalent:

(i)  f is polyconvex;
(i)  f is rank-one convex;
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(i) v>1+a.

Proof. It is well known that polyconvexity implies rank-one convexity (see [1]). Let us
prove that (ii) implies (¢i7). Assuming that f is rank-one convex, let A € M,, and let
u,v € R™ be such that det (A + tu ® v) > 0 for all ¢ > 0. By assumption, the function

ladj, (A +tu@v)|”

t>0
(det (At tu@o)e '~

o(t) = fl(A+tu®v) =

is convex. By Proposition A.5 (see the appendix),
ladj,(A + tu @ v)||* = at® + bt + ¢,
and det (A + tu ® v) = dt + e with d, e € R. Consequently,
o(t) = (at® + bt 4 c)"*(dt +e) .
Now, a direct computation shows that
¢"(t) = (at® + bt + ¢)"/*72 x (dt +e)"* 2 [P(t) + a?d*(v* — v — 207 + ala + 1))t']

in which P is a polynomial of degree less than or equal to 3. For ¢” to be nonnegative
(on RY), it is necessary that

7 =7 —2ay+ala+1) >0,

that is, that (y — a)? > v — . But this implies in turn that 7 > 1 + a.

It remains to show that (iii) implies (7). On the one hand, it is clear that the function ¢
defined on M¢: by ¢(€) = ||€]|” is convex and satisfies ¢(0) < 0. On the other hand, (4ii)

implies that 3 := a/(y — 1) € (0, 1], and the function ¢ defined on R by

B if
W(y) = {y ity >0,

—o00 otherwise

is closed proper concave and nonnegative on its domain. Theorem 3.2(7) then shows that

I€1" iftd>0

de ’

(P A9)Ed) =\ 5(¢1{0}) ifd=0,
%) ifd<0

is closed proper convex, and the conclusion follows from the fact that
f(A) = (¢ Av)(adj,A, det A).
Notice that, since ¢ A v is lower semi-continuous, so is f. O]

Another application of the generalized perspective is the following.

Theorem 4.2. Let fo(A) := (JA|> + 2| det A|>?*)/2 A € M,, where o is a nonnegative
parameter. Then
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(1) fo is convex if and only if o € {0,1/2};
(2)  fa is polyconvex if and only if fo is rank-one convez if and only if a € {0,1/2} U
[1,00).

Proof. Step 1. We first prove by contradiction that f, rank-one convex implies o €
{0,1/2} U[1,00). So assume that a € (0,1/2) U (1/2,1), and consider

10 0 10
A= [0 O] and w=v:= L} so that A+tu®v:{o t}

Then |A + tu®v|? = 1 + 2 and det (A + tu ® v) = t, so that
¢(t> = fa(A +tu® U) = (1 + t2 + 2(t2)a)1/2‘

We may restrict attention to positive ¢, for which ¢(t) := fa(A+tu®v) = (1+t242t2)1/2)
and show that ¢” takes negative values. A straightforward computation shows that

263 (1)¢" (t) = 2a(2a — D™ + 4(a? — a)t™™ + 2(2a° — 3a + 1) + 2.

Suppose that a € (0,1/2). Then, for small values of ¢, the dominant term in the above
expression is 2a/(2a—1)?“. Since 2a—1 < 0, we see that t2¢3(t)¢” (t) is negative for small
enough ¢ > 0. Suppose now that a € (1/2,1). Then, for large values of ¢, the dominant
term 1s

2(2a% — 3a + 1)t2* 2,

Since 20 — 3a+ 1 < 0, we see that t2¢3(t)¢” (t) is negative for large enough t.

Step 2. Next, we prove that if a € {0,1/2}, then f, is convex. Let A;(A) < A2(A) be the
singular values of A. Then f,(A4) = (A2(A) + A2(A4) + 2(A\1(A)A2(A))?*)Y2. Theorem 7.8
in [5] then shows that the convexity of f, is equivalent to that of

9a(7,y) == (2% + y* + 2(wy)*)/?

on ]Ri. As a matter of fact, g, is clearly symmetric and componentwise increasing.

Therefore, we need only check the convexity of go and gy/2. But go(x,y) = (2+ 2% +y?)Y/?

and g1/2(x,y) =  +y on RZ. The convexity of both functions being clear, the desired
result is established.

Step 3. We now prove that, if « > 1, then f, is polyconvex. Let
o) = (@*+2)"2, 2R and $(d) = ||~

Both functions are closed proper convex and nonnegative. Furthermore, the recession
function of ¢ is given by ¢07(x) = |z|. Thus ¢ > ¢0%, and the function h := ¢ A ¢
satisfies:
2
bla0) = 01 (s )+ 2 = @ 200
By Theorem 3.2, h is convex. Now, there is no doubt that x — h(x,d) is an increasing
function. Consequently,

(A4,0) — h(|[All, )
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is convex on My x R, and the polyconvexity of f, follows.

Step 4. Finally, we prove that f, is not convex for & > 1. In order to achieve this goal,
we consider again the function g, defined in Step 2, and show that its Hessian matrix H
fails to be positive semi-definite. We have:

H — |:goéa:ac ga:vy:| ,

Jazy Yoy
in which g, = 0%, /02, Joary = 02go/0x0dy and Jayy = 0?94/ 0y? satisfy
2203 (2, ) Garps (T, 7) = 2(40” — 4o + 1)z + da(a — 1)2®* + 2%,
T2 Go (2, T) oy (v, 2) = 4a(2a — 1)2"*"? + 40?2 — 2,
22 G2 (2, %) Gay, (T, ) = 2(40” — da + 1)z + da(a — 1)2** + 2*.
We see that, if w:= (—1,1), then
2 g3 (z, ) (w, H(z, z)w) = 4((1 = 2a)z"*" — 202 + ).
For small values of x, the dominant term is —4ax®*. This shows that (w, H(z,z)w) takes
negative values, and the proof is complete. O
A. Appendix: Adjugate matrix, polyconvex and rank-one convex functions

We recall here a few basic facts about adjugate matrices, polyconvex and rank-one convex
matrix functions. For a more complete exposition, the reader is referred to [1]. Some of
the missing proofs may also be found in [6].

A.1. Adjugate matrices
Let m € IN*. For all s € {1,...,m}, we endow the set
Lys = {(i1,...,is) eEN* | 1<ip <...<ig<m}

with the inverse lexicographical order, which we denote by <. It is clear that,

|
card Im,s = C,rsn = ﬁ

Let & = ayp s be the unique bijection from {1,...,C% } to I,, s such that
i>] = Qms(i) = ams(d).
Let A € M,,x,. The adjugate of order s of A is the C7, x C?-matrix adj,A given by
(a’dJSA)’L] = <_1)l+j det (Aam,s(i)an,s(j)) ?

in which A, ,(i)a,.(j) denotes the submatrix corresponding to o, 4(i) = (i1,...,4,) and
ans(7) = (J1,---,7Js), that is,

Ai1j1 Ai1js

Avs@ans() == | D | € Mixs.
Aigr - Aig,
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NOW, let Aan = Man X MC,,QRXO% X ... X MCmAnXC”rln/\n, and let

adj:  Myxn — Amxn
A — adjA = (A,adj,A, ..., adj,a,A)-

The space A,,x,, is isomorphic to R”, where m A n := min{m,n} and

mAn
7 =71(m,n) =mn+CoCl+ -+ Cp""C"" = Y " CECY.
k=1
We identify A,,«, with the set of bloc diagonal matrices
bloc(m x n; C2 x C2;...; O™\ x O™\

and adjA with the bloc matrix

A 0 e 0
0 adj,A ... 0
: : - : € Mingxcno
0 0 ... adj,,A
where mq := ' CF and ng := Y\ C%. In the case where m = n, 7= ,_, (Cﬁ)2

and mo = ng = Y _,_, C*. In this case, we put A, := A,x, and 7(n) := 7(m,n). Let us
review a few basic facts about adjugate matrices.

Theorem A.1. Let A € My, and B € M,,«,. Then,
Vs € {1, ...,min{l, m, n}}, adj,AB = adj,Aadj,B .
Theorem A.2. Let A € Myxn(R) and s € {1,...,m An}. Then
adj, A" = (adj,A)".

Theorem A.3. Let A € M,(R) and s € {1,...,n}. If A is diagonal, then so is adj,A.
More precisely,

adj,diaga = diag H Ajy vy H aj |

jea(l) j€a(CR)

where o = au, 5 15 defined as above. In particular, adj, [, = Ics.

Theorem A.4. Let A € M,(R).

(1) IfA € GL(n), then adj,A € GL(C?) and (adj,A)~' = adj, A~ foralls € {2,...,n},
so that adjA € GL(}_"_, C%) and (adjA)~! = adjA~".

(it) IfA € O(n), thenadj,A € O(C?) foralls € {2,...,n}, sothatadjA € O3> "_, C?).

(ii) If A € SO(n), then adj,A € SO(C:) for all s € {2,...,n}, so that adjA €
SO Cn)-
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Proposition A.5. Let A € M,, u,v € R" and s € {1,...,n}. Then, for allt € R,
adj,(A+tu®@v)=(1—-t)adj,A+tadj,(A+u®v).

In particular,
det (A+tu®wv)=(1—t)det A+ tdet (A+u®w).

Proof. Let us write u @ v = PEP™! where P € GL(n) and E = (FE;;) is such that
FE11 = 1 and all other entries are zero. We then have

A+tuv=PA +tE)P,

and Theorems A.1 and A.4(i) show that

adj, (A +tu ®v) = adj, P adj, (A’ +tE)(adj,P)"".
It is clear that adj (A’ + tE) depends affinely on ¢:

adj, (A" +tE) = Agt + By, with Ay, By € M.
Therefore, letting & := adj, P Ag(adj,P)~! and n := adj,P By(adj,P)~!, we see that

adj,(A+tu®v) =&+
and the choices t = 0 and ¢ = 1 yield the desired formula. O]
A.2. Polyconvex and rank-one convex functions
A function f: My, — [—00,00] is said to be polyconvex if there exist a convex function
F: Anyxn — [—00, 9]

such that f = F o adj. As in convex analysis, we will say that a function f: My, —
[—00, 00] is proper if it is nowhere equal to —oo and not identically equal to oco.

Let f: Myyxn, — [—00,00]. Following [1], we define the polyconvex conjugate of f as the
function f¥: Anxn — [—00,00] given for all X € Anx, by

JE(X) :=sup {(X,adjA) — f(A) | A€ Myxn}.
As the supremum of a family of affine functions, it is a closed convex function. We will see

below that, if f is proper and minorized by a polyaffine function, then f¥ is also proper.

Proposition A.6. Let f: Myy, — (—o0,00]| be proper. The following conditions are
equivalent.

(i)  There exists a convex function c: Ayxxn — (—00,00] such that, for all A € My,
f(A) > c(adjA) (f has a polyconver minorant);

(ii) there exists Xog € Anxn and K € R such that, for all A € Myyn, f(A) >
(Xo,adjA) — K (f has a polyaffine minorant).

Under these equivalent conditions, the fonction f¥ is closed proper conve.
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The polyconvex biconjugate of f is defined to be the function ff*: My, — [—o0, o]
given by

FPP(A) == (fF)*(adjA) = sup { (X, adjA) — f7(X) | X € Anxn } -

If f is proper and minorized by some polyaffine function, then f¥ and (f¥)* are closed
proper convex, and 7 is closed proper polyconvex.

Proposition A.7. Let f: Myy, — (—00,00].

(@) fPPL<S

(i1) if f is proper and has a polyaffine minorant, then fFXY .= (fFP)F = P,

(@ii) if there exists F': Anxn — (—00,00] closed proper convex such that f = F o adj,
then fFf = f.

Finally, a function f: Myx, — R is said to be rank-one convex if it is convex in every
direction of rank one, that is to say, if

flag+ 1 —a)n) <af(©)+(1—a)f(n)
for every o € (0,1), &, € My, with k[ —n] < 1.

Recall that convezity implies polyconvezity, which in turn implies rank-one convexity [1].
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