The Role of Perspective Functions in Convexity, Polyconvexity, Rank-One Convexity and Separate Convexity

Bernard Dacorogna
Section de Mathématiques, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland bernard.dacorogna@epfl.ch
Pierre Maréchal
Institut de Mathématiques, Université Paul Sabatier, 31062 Toulouse 4, France
marechal@mip.ups-tlse.fr

Received: November 3, 2006
Revised manuscript received: October 4, 2007

Abstract

Any finite, separately convex, positively homogeneous function on \mathbb{R}^{2} is convex. This was first established in [1]. In this paper, we give a new and concise proof of this result, and we show that it fails in higher dimension. The key of the new proof is the notion of perspective of a convex function f, namely, the function $(x, y) \rightarrow y f(x / y), y>0$. In recent works $[9,10,11]$, the perspective has been substantially generalized by considering functions of the form $(x, y) \rightarrow g(y) f(x / g(y))$, with suitable assumptions on g. Here, this generalized perspective is shown to be a powerful tool for the analysis of convexity properties of parametrized families of matrix functions.

1. Introduction

In [1], Dacorogna established the following theorem:
Theorem 1.1. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be separately convex and positively homogeneous of degree one. Then f is convex.

A rather natural question then arises: does this theorem remain valid in higher dimension? As we will see, the answer is negative.

In Section 2 of this paper, we provide a new and concise proof of the above theorem, which uses the notion of perspective in convex analysis. We then establish that the result fails for functions on \mathbb{R}^{n} as soon as $n \geq 3$. We construct counterexamples in dimension 3 and 4 , using ideas from [3]. We also point out that the theorem is false even in dimension 2 if the function is not everywhere finite.

The role of the perspective in the analysis of convexity properties of functions is further explored in the subsequent sections. An overview of a convex analytic operation recently introduced by Maréchal in $[9,10,11,12]$, which generalizes the perspective, is given in Section 3. It is then applied to the study of parametrized families of matrix functions in Section 4.

2. Perspective and separately convex homogeneous functions

Throughout, we denote by \mathbb{R}_{+}^{*} (resp. \mathbb{R}_{-}^{*}) the set of positive (resp. negative) numbers.

2.1. Perspective functions

A standard way to produce a convex and positively homogeneous function on $\mathbb{R}^{n} \times \mathbb{R}_{+}^{*}$ is to form the perspective of some convex function f on \mathbb{R}^{n}. This is recalled in the following lemma, whose proof is provided for the sake of completeness.
Lemma 2.1. Let $f: \mathbb{R}^{n} \rightarrow[-\infty, \infty]$. Then, the function \breve{f} defined by

$$
\breve{f}(x, y)=y f\left(\frac{x}{y}\right), \quad x \in \mathbb{R}^{n}, y \in \mathbb{R}_{+}^{*}
$$

is convex if and only if f is convex.

Proof. The only if part is obvious (take $y=1$). Conversely, if f is convex, then

$$
\begin{aligned}
& \left((1-\lambda) y_{1}+\lambda y_{2}\right) f\left(\frac{(1-\lambda) x_{1}+\lambda x_{2}}{(1-\lambda) y_{1}+\lambda y_{2}}\right) \\
= & \left((1-\lambda) y_{1}+\lambda y_{2}\right) f\left(\frac{(1-\lambda) y_{1}}{(1-\lambda) y_{1}+\lambda y_{2}} \frac{x_{1}}{y_{1}}+\frac{\lambda y_{2}}{(1-\lambda) y_{1}+\lambda y_{2}} \frac{x_{2}}{y_{2}}\right) \\
\leq & (1-\lambda) y_{1} f\left(\frac{x_{1}}{y_{1}}\right)+\lambda y_{2} f\left(\frac{x_{2}}{y_{2}}\right)
\end{aligned}
$$

for all $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{n} \times \mathbb{R}_{+}^{*}$ and all $\lambda \in(0,1)$.

It is customary to allow y to vanish, in the definition of \breve{f}, by letting

$$
\breve{f}(x, 0)=f 0^{+}(x):=\sup \{f(x+z)-f(z) \mid z \in \operatorname{dom} f\}
$$

Here, $f 0^{+}$is the recession function of f (see [13], Section 8). Recall that, if f is closed proper convex, then

$$
\forall x \in \operatorname{dom} f,\left(f 0^{+}\right)(x)=\lim _{y \downharpoonright 0} y f\left(\frac{x}{y}\right),
$$

and that the latter formula holds for all $x \in \mathbb{R}^{n}$ in the case where the domain of f contains the origin (see [13], Corollary 8.5.2).

In the remainder of this paper, we will always consider f to be extended in this way. It is well known that f is then closed if and only if f is closed.

2.2. A new proof of Theorem 1.1

We start with a lemma which allows to obtain convex functions on \mathbb{R} and on \mathbb{R}^{2} by repasting pieces of a function which is convex on overlapping domains.

Lemma 2.2.

(i) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and let $a, b \in \mathbb{R}$ be such that $a<b$. If f is convex on $(-\infty, b)$ and on (a, ∞), then f is convex on \mathbb{R}.
(ii) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be continuous and convex on the open half-planes $\mathbb{R} \times \mathbb{R}_{+}^{*}, \mathbb{R} \times \mathbb{R}_{-}^{*}$, $\mathbb{R}_{+}^{*} \times \mathbb{R}$ and $\mathbb{R}_{-}^{*} \times \mathbb{R}$. Then f is convex on \mathbb{R}^{2}.

Proof. (i) The assumptions imply that f is continuous on \mathbb{R}, and that the right (or left) derivative of f exists at every $x \in \mathbb{R}$ and is increasing (see [8], Theorems I-3.1.1 and I-4.1.1 and Remark I-4.1.2). The convexity of f on \mathbb{R} then follows from [8], Theorem I-5.3.1.
(ii) It suffices to see that f is convex on every line $\Delta \subset \mathbb{R}^{2}$. If Δ is parallel to one of the axes, then either it is contained in one of the four half-spaces under consideration, in which case there is nothing to prove, or it is one of the axes, in which case an obvious continuity argument shows the convexity of f on Δ. If Δ is not parallel to any of the axes, then either it intersects the axes at two distinct points, in which case the convexity of f on Δ is an immediate consequence of Part (i), or it passes through the origin, in which case the convexity of f on Δ results again from the continuity of f.

We are now ready to give our new proof.
Proof of Theorem 1.1. Since f is finite and separately convex, it is continuous on \mathbb{R}^{2} (see e.g. [1], Theorem 2.3, page 29). Now, the partial mapping $x \mapsto f(x, 1)$ is convex by assumption, and Lemma 2.1 shows that the mapping

$$
(x, y) \mapsto y f\left(\frac{x}{y}, 1\right)=f(x, y)
$$

is convex on the open half-plane $\mathbb{R} \times \mathbb{R}_{+}^{*}$. Repeating the same reasoning with the partial mappings $x \mapsto f(x,-1), y \mapsto f(1, y)$ and $y \mapsto f(-1, y)$ shows that f is also convex on the open half-planes $\mathbb{R} \times \mathbb{R}_{-}^{*}, \mathbb{R}_{+}^{*} \times \mathbb{R}$ and $\mathbb{R}_{-}^{*} \times \mathbb{R}$. The theorem then follows from Lemma 2.2(ii).

2.3. Counterexamples

Notice first that, in Theorem 1.1, the assumption of finiteness of f is essential. As a matter of fact, it is clear that the indicator function of the set

$$
E=\left\{(x, y) \in \mathbb{R}^{2} \mid x y \geq 0\right\}
$$

is positively homogeneous and separately convex but not convex. Recall that the indicator function of a set E is the function

$$
\delta(x \mid E)= \begin{cases}0 & \text { if } x \in E \\ \infty & \text { otherwise }\end{cases}
$$

We now turn to higher dimensional considerations. As announced in the introduction of this paper, Theorem 1.1 fails for functions on \mathbb{R}^{n} as soon as $n \geq 3$. Our counterexamples
will all be of the form given in the following proposition. We denote by S^{n-1} the unit sphere in \mathbb{R}^{n} and by $\mathcal{E}=\left\{e_{1}, \ldots, e_{n}\right\}$ the Euclidean basis of \mathbb{R}^{n}. We also define the sets

$$
\mathcal{C}:=\left\{(\xi, \eta) \in S^{n-1} \times S^{n-1} \mid\langle\xi, \eta\rangle=0\right\}
$$

and

$$
\mathcal{S}:=\left\{(\xi, \eta) \in S^{n-1} \times S^{n-1} \mid\langle\xi, \eta\rangle=0, \exists(t, s) \in \mathbb{R} \times \mathbb{R}: t \xi+s \eta \in \mathcal{E}\right\} .
$$

Proposition 2.3. Let M be an $n \times n$ real symmetric matrix, with eigenvalues $\mu_{1} \leq \mu_{2} \leq$ $\ldots \leq \mu_{n}$ and corresponding orthonormal set of eigenvectors $\left\{\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n}\right\}$. Let

$$
f(\xi):= \begin{cases}\frac{\langle M \xi, \xi\rangle}{\|\xi\|} & \text { if } \xi \neq 0 \\ 0 & \text { if } \xi=0\end{cases}
$$

Then

$$
f \text { is convex } \Longleftrightarrow u \geq 0 \Longleftrightarrow 2 \mu_{1}-\mu_{n} \geq 0,
$$

and

$$
f \text { is separately convex } \Longleftrightarrow v \geq 0 \text {, }
$$

where

$$
u:=\min _{(\xi, \eta) \in \mathcal{C}}\{2\langle M \eta, \eta\rangle-\langle M \xi, \xi\rangle\} \quad \text { and } \quad v:=\min _{(\xi, \eta) \in \mathcal{S}}\{2\langle M \eta, \eta\rangle-\langle M \xi, \xi\rangle\} .
$$

Proof. Since f is continuous on \mathbb{R}^{n}, the convexity properties under consideration may be examined only on every line which does not contain the origin. It follows that f is convex if and only if

$$
\inf _{\xi, \lambda \in \mathbb{R}^{n} \backslash\{0\}}\left\{\left\langle\nabla^{2} f(\xi) \lambda, \lambda\right\rangle\right\} \geq 0,
$$

and it is separately convex if and only if

$$
\inf _{\substack{\xi \in \mathbb{R}^{n} n\{0\} \\ \lambda \in \mathcal{E}}}\left\{\left\langle\nabla^{2} f(\xi) \lambda, \lambda\right\rangle\right\} \geq 0 .
$$

Straightforward computations show that

$$
\begin{aligned}
& \left\langle\nabla^{2} f(\xi) \lambda, \lambda\right\rangle \\
= & \frac{1}{\|\xi\|^{5}}\left(2\|\xi\|^{4}\langle M \lambda, \lambda\rangle-4\|\xi\|^{2}\langle M \xi, \lambda\rangle\langle\xi, \lambda\rangle-\|\xi\|^{2}\|\lambda\|^{2}\langle M \xi, \xi\rangle+3\langle\xi, \lambda\rangle^{2}\langle M \xi, \xi\rangle\right) .
\end{aligned}
$$

Since the above expression is positively homogeneous of degree -1 in ξ, one can add the condition $\|\xi\|=1$ in the previous infima. Furthermore, every λ in \mathbb{R}^{n} can be written

$$
\lambda=t \xi+s \eta \quad \text { with } t, s \in \mathbb{R},\|\eta\|=1 \text { and }\langle\xi, \eta\rangle=0
$$

We then have:

$$
\begin{aligned}
|\lambda|^{2} & =t^{2}+s^{2}, \\
\langle\xi, \lambda\rangle & =t, \\
\langle M \xi, \lambda\rangle & =t\langle M \xi, \xi\rangle+s\langle M \xi, \eta\rangle, \\
\langle M \lambda, \lambda\rangle & =t^{2}\langle M \xi, \xi\rangle+2 s t\langle M \xi, \eta\rangle+s^{2}\langle M \eta, \eta\rangle,
\end{aligned}
$$

so that

$$
\begin{aligned}
\left\langle\nabla^{2} f(\xi) \lambda, \lambda\right\rangle= & 2\left(t^{2}\langle M \xi, \xi\rangle+2 s t\langle M \xi, \eta\rangle+s^{2}\langle M \eta, \eta\rangle\right) \\
& \quad-4 t(t\langle M \xi, \xi\rangle+s\langle M \xi, \eta\rangle)-\left(t^{2}+s^{2}\right)\langle M \xi, \xi\rangle+3 t^{2}\langle M \xi, \xi\rangle \\
= & s^{2}(2\langle M \eta, \eta\rangle-\langle M \xi, \xi\rangle)
\end{aligned}
$$

Therefore, the change of variable $(\xi, \lambda) \rightarrow(\xi, \eta)$ shows that f is convex if and only if

$$
\begin{equation*}
u=\inf _{(\xi, \eta) \in \mathcal{C}}\{2\langle M \eta, \eta\rangle-\langle M \xi, \xi\rangle\} \geq 0, \tag{1}
\end{equation*}
$$

and that f is separately convex if and only if

$$
v=\inf _{(\xi, \eta) \in \mathcal{S}}\{2\langle M \eta, \eta\rangle-\langle M \xi, \xi\rangle\} \geq 0 .
$$

It is clear that both infima are attained, and that the infimum in (1) is attained for $\eta=\varphi_{1}$ and $\xi=\varphi_{n}$, so that f is convex if and only if

$$
2 \mu_{1}-\mu_{n} \geq 0
$$

We now turn to counterexamples to Theorem 1.1 in higher dimension.
Example $2.4(n=3)$. Let γ be a nonnegative parameter, let $M_{\gamma}:=A+\gamma B$, where

$$
A:=\left[\begin{array}{rrr}
8 & 2 & -1 \\
2 & 8 & -1 \\
-1 & -1 & 11
\end{array}\right] \quad \text { and } \quad B:=\left[\begin{array}{rrr}
-1 & 1 & 0 \\
1 & -1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

and let f be as in the above proposition. Finally, let

$$
\begin{aligned}
& u_{\gamma}=\min _{(\xi, \eta) \in \mathcal{C}}\left\{2\left\langle M_{\gamma} \eta, \eta\right\rangle-\left\langle M_{\gamma} \xi, \xi\right\rangle\right\}, \\
& v_{\gamma}=\min _{(\xi, \eta) \in \mathcal{S}}\left\{2\left\langle M_{\gamma} \eta, \eta\right\rangle-\left\langle M_{\gamma} \xi, \xi\right\rangle\right\} .
\end{aligned}
$$

The vectors

$$
\varphi_{1}=\frac{\sqrt{2}}{2}(1,-1,0), \quad \varphi_{2}=\frac{\sqrt{3}}{3}(1,1,1), \quad \varphi_{3}=\frac{\sqrt{6}}{6}(1,1,-2)
$$

form an orthonormal system of eigenvectors for both A and B, with eigenvalues $\{6,9,12\}$ and $\{-2,0,0\}$, respectively. We clearly have, as in the proposition,

$$
\begin{aligned}
& u_{\gamma}=2(6-2 \gamma)-12=-4 \gamma, \\
& v_{\gamma} \geq \min _{(\xi, \eta) \in \mathcal{S}}\{2\langle A \eta, \eta\rangle-\langle A \xi, \xi\rangle\}-\gamma \max _{(\xi, \eta) \in \mathcal{S}}\{2\langle B \eta, \eta\rangle-\langle B \xi, \xi\rangle\} \geq v_{0}-2 \gamma,
\end{aligned}
$$

since

$$
\max _{(\xi, \eta) \in \mathcal{S}}\{2\langle B \eta, \eta\rangle-\langle B \xi, \xi\rangle\} \leq \max _{(\xi, \eta) \in \mathcal{C}}\{2\langle B \eta, \eta\rangle-\langle B \xi, \xi\rangle\}=2 .
$$

Moreover, $v_{0}>0$ since $e_{1}, e_{2}, e_{3} \notin \operatorname{span}\left\{\varphi_{1}, \varphi_{3}\right\}$. Therefore, choosing $\gamma>0$ sufficiently small guarantees that

$$
v_{\gamma}>0>u_{\gamma}
$$

which, according to the proposition, shows that f_{γ} is separately convex but not convex.

Example $2.5(n=4)$. Let

$$
M:=\left[\begin{array}{rrrr}
10 & 0 & 0 & 1 \\
0 & 7 & 2 & 0 \\
0 & 2 & 7 & 0 \\
1 & 0 & 0 & 10
\end{array}\right]
$$

and let f be as in the proposition. This function, regarded as a function on the space of real 2×2 matrices, was shown to be rank-one convex but not convex (see [3], Remark 1.9). Since rank one convex functions are trivially separately convex, we have the desired counterexample.

Finally, observe that Theorem 1.1 can be generalized to an n-dimensional setting as follows:

Theorem 2.6. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be $(n-1)$-partially convex and positively homogeneous of degree one. Then f is convex.

A function $f: \mathbb{R}^{n} \rightarrow[-\infty, \infty]$ is said to be k-partially convex if each partial mapping obtained by assigning any prescribed values to $n-k$ variables is convex. As the reader may check, the proof of the latter result is a straightforward adaptation of our proof of Theorem 1.1.

3. Generalized perspective

The notion of perspective has been significantly generalized in $[9,10,11]$, where convex functions on \mathbb{R}^{n+m} are obtained from convex functions on \mathbb{R}^{n} and \mathbb{R}^{m}. We recall here the main features of this construction. Given any function ϕ on \mathbb{R}^{n}, the convex conjugate of ϕ is denoted by ϕ^{\star}.

Definition 3.1. (i) Let $\varphi: \mathbb{R}^{n} \rightarrow(-\infty, \infty]$ be proper convex, with $\varphi(0) \leq 0$, and let $\psi: \mathbb{R}^{m} \rightarrow\{-\infty\} \cup[0, \infty)$ be proper concave. The pair (φ, ψ) is then said to be of type I, and we denote by $\varphi \Delta \psi$ the function given, on $\mathbb{R}^{n} \times \mathbb{R}^{m}$, by

$$
(\varphi \Delta \psi)(x, y):= \begin{cases}\psi(y) \varphi\left(\frac{x}{\psi(y)}\right) & \text { if } \psi(y) \in(0, \infty) \\ \varphi 0^{+}(x) & \text { if } \psi(y)=0 \\ \infty & \text { if } \psi(y)=-\infty\end{cases}
$$

(ii) Let $\varphi: \mathbb{R}^{n} \rightarrow(-\infty, \infty]$ be proper convex with $\varphi \geq \varphi 0^{+}$, and let $\psi: \mathbb{R}^{m} \rightarrow[0, \infty]$ be proper convex. The pair (φ, ψ) is then said to be of type II, and we denote by $\varphi \Delta \psi$ the function given, on $\mathbb{R}^{n} \times \mathbb{R}^{m}$, by

$$
(\varphi \Delta \psi)(x, y):= \begin{cases}\psi(y) \varphi\left(\frac{x}{\psi(y)}\right) & \text { if } \psi(y) \in(0, \infty) \\ \varphi 0^{+}(x) & \text { if } \psi(y)=0 \\ \infty & \text { if } \psi(y)=\infty\end{cases}
$$

in the case where $\varphi \neq \varphi 0^{+}$, and by

$$
(\varphi \Delta \psi)(x, y):= \begin{cases}\varphi(x) & \text { if } y \in \operatorname{cl} \operatorname{dom} \psi \\ \infty & \text { if } y \notin \operatorname{cldom} \psi\end{cases}
$$

in the case where $\varphi=\varphi 0^{+}$.
The condition $\varphi=\varphi 0^{+}$is equivalent to positive homogeneity of φ. In Case (ii), the particular definition of $\varphi \Delta \psi$ for positively homogeneous φ coincides with the general one, except when $y \in \operatorname{cl} \operatorname{dom} \psi \backslash \operatorname{dom} \psi$ (the latter set may be nonempty, even if ψ is closed). This definition ensures closedness of $\varphi \Delta \psi$ whenever φ and ψ are closed. The proof of the following theorem can be found in [10].

Theorem 3.2.

(i) Let (φ, ψ) be of type I, and suppose that φ and ψ are closed. Then $\left((-\psi)^{\star}, \varphi^{\star}\right)$ is of type II, and the following duality relationships hold:

$$
\begin{aligned}
& (\varphi \triangle \psi)^{\star}(\xi, \eta)=\left((-\psi)^{\star} \triangle \varphi^{\star}\right)(\eta, \xi) \\
& \left((-\psi)^{\star} \triangle \varphi^{\star}\right)^{\star}(y, x)=(\varphi \triangle \psi)(x, y)
\end{aligned}
$$

Consequently, $\varphi \Delta \psi$ is closed proper convex.
(ii) Let (φ, ψ) be of type II, and suppose that φ and ψ are closed. Then $\left(\psi^{\star},-\varphi^{\star}\right)$ is of type I, and the following duality relationships hold:

$$
\begin{aligned}
& (\varphi \triangle \psi)^{\star}(\xi, \eta)=\left(\psi^{\star} \triangle\left(-\varphi^{\star}\right)\right)(\eta, \xi) \\
& \left(\psi^{\star} \triangle\left(-\varphi^{\star}\right)\right)^{\star}(y, x)=(\varphi \triangle \psi)(x, y)
\end{aligned}
$$

Consequently, $\varphi \triangle \psi$ is closed proper convex.

4. Applications

In the forthcoming developments, we intend to demonstrate the relevance of the generalized perspective as a tool for the study of convexity properties of families of matrix functions.

We denote by $M_{m \times n}$ the space of real $m \times n$ matrices, and we write $M_{n}=M_{n \times n}$. Recall that $\delta(\cdot \mid C)$ denotes the indicator function of a set C.

Theorem 4.1. Let $f: M_{n} \rightarrow(-\infty, \infty]$ be defined by

$$
f(A)= \begin{cases}\frac{\left\|\operatorname{adj}_{s} A\right\|^{\gamma}}{(\operatorname{det} A)^{\alpha}} & \text { if } \operatorname{det} A>0 \\ \delta\left(\operatorname{adj}_{s} A \mid\{0\}\right) & \text { if } \operatorname{det} A=0 \\ \infty & \text { if } \operatorname{det} A<0\end{cases}
$$

in which $s \in\{1, \ldots, n-1\}$ and $\gamma>\alpha>0$. Then the following are equivalent:
(i) f is polyconvex;
(ii) f is rank-one convex;
(iii) $\gamma \geq 1+\alpha$.

Proof. It is well known that polyconvexity implies rank-one convexity (see [1]). Let us prove that (ii) implies (iii). Assuming that f is rank-one convex, let $A \in M_{n}$ and let $u, v \in \mathbb{R}^{n}$ be such that $\operatorname{det}(A+t u \otimes v)>0$ for all $t>0$. By assumption, the function

$$
\phi(t):=f(A+t u \otimes v)=\frac{\left\|\operatorname{adj}_{s}(A+t u \otimes v)\right\|^{\gamma}}{(\operatorname{det}(A+t u \otimes v))^{\alpha}}, t>0
$$

is convex. By Proposition A. 5 (see the appendix),

$$
\left\|\operatorname{adj}_{s}(A+t u \otimes v)\right\|^{2}=a t^{2}+b t+c,
$$

and $\operatorname{det}(A+t u \otimes v)=d t+e$ with $d, e \in \mathbb{R}$. Consequently,

$$
\phi(t)=\left(a t^{2}+b t+c\right)^{\gamma / 2}(d t+e)^{-\alpha} .
$$

Now, a direct computation shows that

$$
\phi^{\prime \prime}(t)=\left(a t^{2}+b t+c\right)^{\gamma / 2-2} \times(d t+e)^{-\alpha-2}\left[P(t)+a^{2} d^{2}\left(\gamma^{2}-\gamma-2 \alpha \gamma+\alpha(\alpha+1)\right) t^{4}\right],
$$

in which P is a polynomial of degree less than or equal to 3 . For $\phi^{\prime \prime}$ to be nonnegative (on \mathbb{R}_{+}^{*}), it is necessary that

$$
\gamma^{2}-\gamma-2 \alpha \gamma+\alpha(\alpha+1) \geq 0
$$

that is, that $(\gamma-\alpha)^{2} \geq \gamma-\alpha$. But this implies in turn that $\gamma \geq 1+\alpha$.
It remains to show that (iii) implies (i). On the one hand, it is clear that the function φ defined on $M_{C_{n}^{s}}$ by $\varphi(\xi)=\|\xi\|^{\gamma}$ is convex and satisfies $\varphi(0) \leq 0$. On the other hand, (iii) implies that $\beta:=\alpha /(\gamma-1) \in(0,1]$, and the function ψ defined on \mathbb{R} by

$$
\psi(y)= \begin{cases}y^{\beta} & \text { if } y \geq 0 \\ -\infty & \text { otherwise }\end{cases}
$$

is closed proper concave and nonnegative on its domain. Theorem 3.2(i) then shows that

$$
(\varphi \Delta \psi)(\xi, d)= \begin{cases}\frac{\|\xi\|^{\gamma}}{d^{\alpha}} & \text { if } d>0 \\ \delta(\xi \mid\{0\}) & \text { if } d=0 \\ \infty & \text { if } d<0\end{cases}
$$

is closed proper convex, and the conclusion follows from the fact that

$$
f(A)=(\varphi \triangle \psi)\left(\operatorname{adj}_{s} A, \operatorname{det} A\right)
$$

Notice that, since $\varphi \Delta \psi$ is lower semi-continuous, so is f.
Another application of the generalized perspective is the following.
Theorem 4.2. Let $f_{\alpha}(A):=\left(|A|^{2}+2|\operatorname{det} A|^{2 \alpha}\right)^{1 / 2}, A \in M_{2}$, where α is a nonnegative parameter. Then
(1) f_{α} is convex if and only if $\alpha \in\{0,1 / 2\}$;
(2) f_{α} is polyconvex if and only if f_{α} is rank-one convex if and only if $\alpha \in\{0,1 / 2\} \cup$ $[1, \infty)$.

Proof. Step 1. We first prove by contradiction that f_{α} rank-one convex implies $\alpha \in$ $\{0,1 / 2\} \cup[1, \infty)$. So assume that $\alpha \in(0,1 / 2) \cup(1 / 2,1)$, and consider

$$
A:=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \quad \text { and } \quad u=v:=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \quad \text { so that } \quad A+t u \otimes v=\left[\begin{array}{ll}
1 & 0 \\
0 & t
\end{array}\right] .
$$

Then $|A+t u \otimes v|^{2}=1+t^{2}$ and $\operatorname{det}(A+t u \otimes v)=t$, so that

$$
\phi(t):=f_{\alpha}(A+t u \otimes v)=\left(1+t^{2}+2\left(t^{2}\right)^{\alpha}\right)^{1 / 2} .
$$

We may restrict attention to positive t, for which $\phi(t):=f_{\alpha}(A+t u \otimes v)=\left(1+t^{2}+2 t^{2 \alpha}\right)^{1 / 2}$, and show that $\phi^{\prime \prime}$ takes negative values. A straightforward computation shows that

$$
t^{2} \phi^{3}(t) \phi^{\prime \prime}(t)=2 \alpha(2 \alpha-1) t^{2 \alpha}+4\left(\alpha^{2}-\alpha\right) t^{4 \alpha}+2\left(2 \alpha^{2}-3 \alpha+1\right) t^{2 \alpha+2}+t^{2}
$$

Suppose that $\alpha \in(0,1 / 2)$. Then, for small values of t, the dominant term in the above expression is $2 \alpha(2 \alpha-1) t^{2 \alpha}$. Since $2 \alpha-1<0$, we see that $t^{2} \phi^{3}(t) \phi^{\prime \prime}(t)$ is negative for small enough $t>0$. Suppose now that $\alpha \in(1 / 2,1)$. Then, for large values of t, the dominant term is

$$
2\left(2 \alpha^{2}-3 \alpha+1\right) t^{2 \alpha+2}
$$

Since $2 \alpha^{2}-3 \alpha+1<0$, we see that $t^{2} \phi^{3}(t) \phi^{\prime \prime}(t)$ is negative for large enough t.
Step 2. Next, we prove that if $\alpha \in\{0,1 / 2\}$, then f_{α} is convex. Let $\lambda_{1}(A) \leq \lambda_{2}(A)$ be the singular values of A. Then $f_{\alpha}(A)=\left(\lambda_{1}^{2}(A)+\lambda_{2}^{2}(A)+2\left(\lambda_{1}(A) \lambda_{2}(A)\right)^{2 \alpha}\right)^{1 / 2}$. Theorem 7.8 in [5] then shows that the convexity of f_{α} is equivalent to that of

$$
g_{\alpha}(x, y):=\left(x^{2}+y^{2}+2(x y)^{2 \alpha}\right)^{1 / 2}
$$

on \mathbb{R}_{+}^{2}. As a matter of fact, g_{α} is clearly symmetric and componentwise increasing. Therefore, we need only check the convexity of g_{0} and $g_{1 / 2}$. But $g_{0}(x, y)=\left(2+x^{2}+y^{2}\right)^{1 / 2}$ and $g_{1 / 2}(x, y)=x+y$ on \mathbb{R}_{+}^{2}. The convexity of both functions being clear, the desired result is established.

Step 3. We now prove that, if $\alpha \geq 1$, then f_{α} is polyconvex. Let

$$
\varphi(x):=\left(x^{2}+2\right)^{1 / 2}, x \in \mathbb{R} \quad \text { and } \quad \psi(\delta):=|\delta|^{\alpha} .
$$

Both functions are closed proper convex and nonnegative. Furthermore, the recession function of φ is given by $\varphi 0^{+}(x)=|x|$. Thus $\varphi \geq \varphi 0^{+}$, and the function $h:=\varphi \Delta \psi$ satisfies:

$$
h(x, \delta)=|\delta|^{\alpha}\left(\left(\frac{x}{|\delta|^{\alpha}}\right)^{2}+2\right)^{1 / 2}=\left(x^{2}+2|\delta|^{2 \alpha}\right)^{1 / 2}
$$

By Theorem 3.2, h is convex. Now, there is no doubt that $x \mapsto h(x, \delta)$ is an increasing function. Consequently,

$$
(A, \delta) \mapsto h(\|A\|, \delta)
$$

is convex on $M_{2} \times \mathbb{R}$, and the polyconvexity of f_{α} follows.
Step 4. Finally, we prove that f_{α} is not convex for $\alpha \geq 1$. In order to achieve this goal, we consider again the function g_{α} defined in Step 2, and show that its Hessian matrix H fails to be positive semi-definite. We have:

$$
H=\left[\begin{array}{ll}
g_{\alpha_{x x}} & g_{\alpha_{x y}} \\
g_{\alpha x y} & g_{\alpha_{y y}}
\end{array}\right],
$$

in which $g_{\alpha_{x x}}:=\partial^{2} g_{\alpha} / \partial x^{2}, g_{\alpha_{x y}}:=\partial^{2} g_{\alpha} / \partial x \partial y$ and $g_{\alpha y y}:=\partial^{2} g_{\alpha} / \partial y^{2}$ satisfy

$$
\begin{aligned}
& x^{2} g_{\alpha}^{3}(x, x) g_{\alpha x x}(x, x)=2\left(4 \alpha^{2}-4 \alpha+1\right) x^{4 \alpha+2}+4 \alpha(\alpha-1) x^{8 \alpha}+x^{4}, \\
& x^{2} g_{\alpha}^{3}(x, x) g_{\alpha_{x y}}(x, x)=4 \alpha(2 \alpha-1) x^{4 \alpha+2}+4 \alpha^{2} x^{8 \alpha}-x^{4}, \\
& x^{2} g_{\alpha}^{3}(x, x) g_{\alpha y y}(x, x)=2\left(4 \alpha^{2}-4 \alpha+1\right) x^{4 \alpha+2}+4 \alpha(\alpha-1) x^{8 \alpha}+x^{4} .
\end{aligned}
$$

We see that, if $w:=(-1,1)$, then

$$
x^{2} g_{\alpha}^{3}(x, x)\langle w, H(x, x) w\rangle=4\left((1-2 \alpha) x^{4 \alpha+2}-2 \alpha x^{8 \alpha}+x^{4}\right) .
$$

For small values of x, the dominant term is $-4 \alpha x^{8 \alpha}$. This shows that $\langle w, H(x, x) w\rangle$ takes negative values, and the proof is complete.

A. Appendix: Adjugate matrix, polyconvex and rank-one convex functions

We recall here a few basic facts about adjugate matrices, polyconvex and rank-one convex matrix functions. For a more complete exposition, the reader is referred to [1]. Some of the missing proofs may also be found in [6].

A.1. Adjugate matrices

Let $m \in \mathbb{N}^{*}$. For all $s \in\{1, \ldots, m\}$, we endow the set

$$
I_{m, s}:=\left\{\left(i_{1}, \ldots, i_{s}\right) \in \mathbb{N}^{s} \mid 1 \leq i_{1}<\ldots<i_{s} \leq m\right\}
$$

with the inverse lexicographical order, which we denote by \prec. It is clear that,

$$
\operatorname{card} I_{m, s}=C_{m}^{s}:=\frac{m!}{s!(m-s)!} .
$$

Let $\alpha=\alpha_{m, s}$ be the unique bijection from $\left\{1, \ldots, C_{m}^{s}\right\}$ to $I_{m, s}$ such that

$$
i>j \Longrightarrow \alpha_{m, s}(i) \succ \alpha_{m, s}(j)
$$

Let $A \in M_{m \times n}$. The adjugate of order s of A is the $C_{m}^{s} \times C_{n}^{s}$-matrix $\operatorname{adj}_{s} A$ given by

$$
\left(\operatorname{adj}_{s} A\right)_{i j}:=(-1)^{i+j} \operatorname{det}\left(A_{\alpha_{m, s}(i) \alpha_{n, s}(j)}\right),
$$

in which $A_{\alpha_{m, s}(i) \alpha_{n, s}(j)}$ denotes the submatrix corresponding to $\alpha_{m, s}(i)=\left(i_{1}, \ldots, i_{s}\right)$ and $\alpha_{n, s}(j)=\left(j_{1}, \ldots, j_{s}\right)$, that is,

$$
A_{\alpha_{m, s}(i) \alpha_{n, s}(j)}:=\left(\begin{array}{ccc}
A_{i_{1} j_{1}} & \ldots & A_{i_{1} j_{s}} \\
\vdots & & \vdots \\
A_{i_{s} j_{1}} & \ldots & A_{i_{s} j_{s}}
\end{array}\right) \in M_{s \times s}
$$

Now, let $\mathcal{A}_{m \times n}:=M_{m \times n} \times M_{C_{m}^{2} \times C_{n}^{2}} \times \ldots \times M_{C_{m}^{m \wedge n} \times C_{n}^{m \wedge n}}$, and let

$$
\begin{aligned}
\text { adj: } \quad M_{m \times n} & \longrightarrow \mathcal{A}_{m \times n} \\
A & \longmapsto \operatorname{adj} A:=\left(A, \operatorname{adj}_{2} A, \ldots, \operatorname{adj}_{m \wedge n} A\right) .
\end{aligned}
$$

The space $\mathcal{A}_{m \times n}$ is isomorphic to \mathbb{R}^{τ}, where $m \wedge n:=\min \{m, n\}$ and

$$
\tau=\tau(m, n)=m n+C_{m}^{2} C_{n}^{2}+\cdots+C_{m}^{m \wedge n} C_{n}^{m \wedge n}=\sum_{k=1}^{m \wedge n} C_{m}^{k} C_{n}^{k}
$$

We identify $\mathcal{A}_{m \times n}$ with the set of bloc diagonal matrices

$$
\operatorname{bloc}\left(m \times n ; C_{m}^{2} \times C_{n}^{2} ; \ldots ; C_{m}^{m \wedge n} \times C_{n}^{m \wedge n}\right)
$$

and $\operatorname{adj} A$ with the bloc matrix

$$
\left[\begin{array}{cccc}
A & 0 & \ldots & 0 \\
0 & \operatorname{adj}_{2} A & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & \operatorname{adj}_{m \wedge n} A
\end{array}\right] \in M_{m_{0} \times n_{0}}
$$

where $m_{0}:=\sum_{k=1}^{m \wedge n} C_{m}^{k}$ and $n_{0}:=\sum_{k=1}^{m \wedge n} C_{n}^{k}$. In the case where $m=n, \tau=\sum_{k=1}^{n}\left(C_{n}^{k}\right)^{2}$ and $m_{0}=n_{0}=\sum_{k=1}^{n} C_{n}^{k}$. In this case, we put $\mathcal{A}_{n}:=\mathcal{A}_{n \times n}$ and $\tau(n):=\tau(m, n)$. Let us review a few basic facts about adjugate matrices.

Theorem A.1. Let $A \in M_{l \times m}$ and $B \in M_{m \times n}$. Then,

$$
\forall s \in\{1, \ldots, \min \{l, m, n\}\}, \quad \operatorname{adj}_{s} A B=\operatorname{adj}_{s} A \operatorname{adj}_{s} B .
$$

Theorem A.2. Let $A \in M_{m \times n}(\mathbb{R})$ and $s \in\{1, \ldots, m \wedge n\}$. Then

$$
\operatorname{adj}_{s} A^{t}=\left(\operatorname{adj}_{s} A\right)^{t}
$$

Theorem A.3. Let $A \in M_{n}(\mathbb{R})$ and $s \in\{1, \ldots, n\}$. If A is diagonal, then so is $\operatorname{adj}_{s} A$. More precisely,

$$
\operatorname{adj}_{s} \operatorname{diag} a=\operatorname{diag}\left(\prod_{j \in \alpha(1)} a_{j}, \ldots, \prod_{j \in \alpha\left(C_{n}^{s}\right)} a_{j}\right),
$$

where $\alpha=\alpha_{n, s}$ is defined as above. In particular, $\operatorname{adj}_{s} I_{n}=I_{C_{n}^{s}}$.
Theorem A.4. Let $A \in M_{n}(\mathbb{R})$.
(i) If $A \in \mathrm{GL}(n)$, then $\operatorname{adj}_{s} A \in \mathrm{GL}\left(C_{n}^{s}\right)$ and $\left(\operatorname{adj}_{s} A\right)^{-1}=\operatorname{adj}_{s} A^{-1}$ for all $s \in\{2, \ldots, n\}$, so that $\operatorname{adj} A \in \mathrm{GL}\left(\sum_{s=1}^{n} C_{n}^{s}\right)$ and $(\operatorname{adj} A)^{-1}=\operatorname{adj} A^{-1}$.
(ii) If $A \in \mathrm{O}(n)$, then $\operatorname{adj}_{s} A \in \mathrm{O}\left(C_{n}^{s}\right)$ for all $s \in\{2, \ldots, n\}$, so that adj $A \in \mathrm{O}\left(\sum_{s=1}^{n} C_{n}^{s}\right)$.
(iii) If $A \in \operatorname{SO}(n)$, then $\operatorname{adj}_{s} A \in \operatorname{SO}\left(C_{n}^{s}\right)$ for all $s \in\{2, \ldots, n\}$, so that $\operatorname{adj} A \in$ $\mathrm{SO}\left(\sum_{s=1}^{n} C_{n}^{s}\right)$.

Proposition A.5. Let $A \in M_{n}, u, v \in \mathbb{R}^{n}$ and $s \in\{1, \ldots, n\}$. Then, for all $t \in \mathbb{R}$,

$$
\operatorname{adj}_{s}(A+t u \otimes v)=(1-t) \operatorname{adj}_{s} A+t \operatorname{adj}_{s}(A+u \otimes v) .
$$

In particular,

$$
\operatorname{det}(A+t u \otimes v)=(1-t) \operatorname{det} A+t \operatorname{det}(A+u \otimes v)
$$

Proof. Let us write $u \otimes v=P E P^{-1}$, where $P \in \mathrm{GL}(n)$ and $E=\left(E_{i j}\right)$ is such that $E_{11}=1$ and all other entries are zero. We then have

$$
A+t u \otimes v=P\left(A^{\prime}+t E\right) P^{-1}
$$

and Theorems A. 1 and A.4(i) show that

$$
\operatorname{adj}_{s}(A+t u \otimes v)=\operatorname{adj}_{s} P \operatorname{adj}_{s}\left(A^{\prime}+t E\right)\left(\operatorname{adj}_{s} P\right)^{-1}
$$

It is clear that $\operatorname{adj}_{s}\left(A^{\prime}+t E\right)$ depends affinely on t :

$$
\operatorname{adj}_{s}\left(A^{\prime}+t E\right)=A_{0} t+B_{0}, \quad \text { with } \quad A_{0}, B_{0} \in M_{C_{n}^{s}} .
$$

Therefore, letting $\xi:=\operatorname{adj}_{s} P A_{0}\left(\operatorname{adj}_{s} P\right)^{-1}$ and $\eta:=\operatorname{adj}_{s} P B_{0}\left(\operatorname{adj}_{s} P\right)^{-1}$, we see that

$$
\operatorname{adj}_{s}(A+t u \otimes v)=\xi t+\eta
$$

and the choices $t=0$ and $t=1$ yield the desired formula.

A.2. Polyconvex and rank-one convex functions

A function $f: M_{N \times n} \rightarrow[-\infty, \infty]$ is said to be polyconvex if there exist a convex function

$$
F: \mathcal{A}_{N \times n} \rightarrow[-\infty, \infty]
$$

such that $f=F \circ$ adj. As in convex analysis, we will say that a function $f: M_{N \times n} \rightarrow$ $[-\infty, \infty]$ is proper if it is nowhere equal to $-\infty$ and not identically equal to ∞.

Let $f: M_{N \times n} \rightarrow[-\infty, \infty]$. Following [1], we define the polyconvex conjugate of f as the function $f^{P}: \mathcal{A}_{N \times n} \rightarrow[-\infty, \infty]$ given for all $X \in \mathcal{A}_{N \times n}$ by

$$
f^{P}(X):=\sup \left\{\langle X, \operatorname{adj} A\rangle-f(A) \mid A \in M_{N \times n}\right\} .
$$

As the supremum of a family of affine functions, it is a closed convex function. We will see below that, if f is proper and minorized by a polyaffine function, then f^{P} is also proper.

Proposition A.6. Let $f: M_{N \times n} \rightarrow(-\infty, \infty]$ be proper. The following conditions are equivalent.
(i) There exists a convex function c: $\mathcal{A}_{N \times n} \rightarrow(-\infty, \infty]$ such that, for all $A \in M_{N \times n}$, $f(A) \geq c(\operatorname{adj} A)$ (f has a polyconvex minorant);
(ii) there exists $X_{0} \in \mathcal{A}_{N \times n}$ and $K \in \mathbb{R}$ such that, for all $A \in M_{N \times n}, f(A) \geq$ $\left\langle X_{0}, \operatorname{adj} A\right\rangle-K(f$ has a polyaffine minorant).
Under these equivalent conditions, the fonction f^{P} is closed proper convex.

The polyconvex biconjugate of f is defined to be the function $f^{P P}: M_{N \times n} \rightarrow[-\infty, \infty]$ given by

$$
f^{P P}(A):=\left(f^{P}\right)^{\star}(\operatorname{adj} A)=\sup \left\{\langle X, \operatorname{adj} A\rangle-f^{P}(X) \mid X \in \mathcal{A}_{N \times n}\right\}
$$

If f is proper and minorized by some polyaffine function, then f^{P} and $\left(f^{P}\right)^{\star}$ are closed proper convex, and $f^{P P}$ is closed proper polyconvex.

Proposition A.7. Let $f: M_{N \times n} \rightarrow(-\infty, \infty]$.
(i) $f^{P P} \leq f$;
(ii) if f is proper and has a polyaffine minorant, then $f^{P P P}:=\left(f^{P P}\right)^{P}=f^{P}$;
(iii) if there exists $F: \mathcal{A}_{N \times n} \rightarrow(-\infty, \infty]$ closed proper convex such that $f=F \circ \operatorname{adj}$, then $f^{P P}=f$.

Finally, a function $f: M_{N \times n} \rightarrow \mathbb{R}$ is said to be rank-one convex if it is convex in every direction of rank one, that is to say, if

$$
f(\alpha \xi+(1-\alpha) \eta) \leq \alpha f(\xi)+(1-\alpha) f(\eta)
$$

for every $\alpha \in(0,1), \xi, \eta \in M_{N \times n}$ with $r k[\xi-\eta] \leq 1$.
Recall that convexity implies polyconvexity, which in turn implies rank-one convexity [1].
Acknowledgements. This research started during the visit of the second author at the EPFL. The authors wish to thank J.-B. Hiriart-Urruty for interesting discussions and comments.

References

[1] B. Dacorogna: Direct Methods in the Calculus of Variations, Springer, Berlin (1989).
[2] B. Dacorogna: On rank-one convex functions which are homogeneous of degree one, in: Calculus of Variations, Applications and Computations (Pont-à-Mousson, 1994), C. Bandle et al. (ed.), Pitman Research Notes in Mathematics Series 326, Longman Science and Technical, Harlow (1995) 84-99.
[3] B. Dacorogna, J.-P. Haeberly: On convexity properties of homogeneous functions of degree one, Proc. R. Soc. Edinb., Sect. A, Math. 126 (1996) 947-956.
[4] B. Dacorogna, H. Koshigoe: On the different notions of convexity for rotationally invariant functions, Ann. Fac. Sci. Toulouse, VI. Sér., Math. 2(2) (1993) 163-184.
[5] B. Dacorogna, P. Marcellini: Implicit Partial Differential Equations, Birkhäuser, Boston (1999).
[6] B. Dacorogna, P. Maréchal: A note on spectrally defined polyconvex functions, in: Proceedings of the Workshop "New Developments in the Calculus of Variations (Sannio, 2005)", Edizioni Scientifiche Italiane (2006), 259-274.
[7] B. Dacorogna, P. Maréchal: Convex $\mathrm{SO}(N) \times \mathrm{SO}(n)$-invariant functions and refinements of von Neumann's inequality, Ann. Fac. Sci. Toulouse, VI. Sér., Math. 16(1) (2007) 71-89.
[8] J.-B. Hiriart-Urruty, C. Lemaréchal: Convex Analysis and Minimization Algorithms, I and II, Springer, Berlin (1993).
[9] P. Maréchal: On the convexity of the multiplicative potential and penalty functions and related topics, Math. Program. 89A (2001) 505-516.
[10] P. Maréchal: On a functional operation generating convex functions. I: Duality, J. Optimization Theory Appl. 126(1) (2005) 175-189.
[11] P. Maréchal: On a functional operation generating convex functions. II: Algebraic properties, J. Optimization Theory Appl. 126(2) (2005) 357-366.
[12] P. Maréchal: On a class of convex sets and functions, Set-Valued Anal. 13 (2005) 197-212.
[13] R. T. Rockafellar: Convex Analysis, Princeton University Press, Princeton (1970).

