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1. Introduction

Let x := (x1, ..., xN) be cartesian coordinates in R
N , N ≥ 2. Let Jk(Ω) be the moment of

inertia of Ω ⊂ R
N with respect to the plane xk = 0, defined as

Jk(Ω) :=

∫

Ω

xk
2 dx, k = 1, ..., N. (1)

By summation over k, we obtain the polar moment of inertia of Ω with respect to the
origin denoted by J0(Ω),

J0(Ω) :=
N∑

k=1

Jk(Ω). (2)

Clearly, J0(Ω) depends of the position of the origin. In fact, J0(Ω) is smallest when the
origin coincides with the center of mass of Ω, i.e. when we have

∫

Ω

xk dx = 0, k = 1, ..., N. (3)
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The following isoperimetric property is well known [3, 14]:

Theorem 1.1. Among all domains Ω of prescribed N-volume, the ball Ω∗ centered at the

origin has the smallest polar moment of inertia, i.e. we have the isoperimetric inequality

J0(Ω) ≥ J0(Ω
∗), Ω ∈ O, (4)

where O is the class of all bounded domains of prescribed N-volume.

Let Ik(Ω) be the moment of inertia of ∂Ω with respect to the plane xk = 0 defined as

Ik(Ω) :=

∫

∂Ω

xk
2 ds, k = 1, 2, ..., N, (5)

where ds is the area element of the boundary ∂Ω of Ω. By summation over k, we obtain
the polar moment of inertia I0(Ω) of ∂Ω with respect to the origin

I0(Ω) :=
N∑

k=1

Ik(Ω). (6)

I0(Ω) is smallest when the origin coincides with the center of mass of ∂Ω, i.e. when we
have

∫

∂Ω

xk ds = 0, k = 1, ..., N. (7)

Betta et al. [1] have derived the following isoperimetric property.

Theorem 1.2.

I0(Ω) ≥ I0(Ω
∗), Ω ∈ O, (8)

with equality if and only if Ω coincides with Ω∗.

The quantities of interest in this paper are

J(Ω) :=
N∏

k=1

Jk(Ω), (9)

and

I(Ω) :=
N∏

k=1

Ik(Ω). (10)

We have several motivations to look at this products. Our main motivation was to extend
a classical result of Hersch, Payne and Schiffer, see Theorem 1.5 below.

Another clear motivation is the following. Let us consider the inertia matrix of a body Ω
(we can do the same for its boundary ∂Ω), i.e. the matrix M whose general term is

Mij =

∫

Ω

xixj dx, i, j = 1, ..., N.
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The most classical invariants of this matrix are its trace and its determinant and it
is natural (for example for a mechanical point of view) to ask for the domains which
minimize these invariants among all domains of prescribed N -volume. For the trace, the
answer is given in the Theorem 1.1. For the determinant, we will see in Section 2, that
the ellipsoids symmetric with respect to the planes xk = 0 are the minimizers of the
determinant: it will be a simple consequence of the study of the product J .

A last motivation can be found in a paper of G. Polya, [12]. Indeed, in this paper, the
author was able to get the following upper bound for the torsional rigidity P (Ω) of an
elastic beam with cross section Ω:

J0(Ω)P (Ω) ≤ J(Ω)

and, then was led to look for the minimizers of J(Ω) among plane domains of given area.

Let us now describe the content of this paper. In Section 2 we establish the following
isoperimetric property.

Theorem 1.3.

J(Ω) ≥ J(E), (11)

valid for all domains Ω ∈ O, with equality for all ellipsoids E (∈ O) symmetric with

respect to the planes xk = 0, k = 1, ..., N .

We note that the isoperimetric inequality (11) also follows from Blaschke’s great contri-
bution to affine geometry [2].

In Section 3 we establish the following isoperimetric property.

Theorem 1.4.

I(Ω) ≥ I(Ω∗), (12)

valid for all convex domains Ω ∈ O, with equality if and only if Ω = Ω∗.

As an application of (12), we establish in Section 4 an isoperimetric inequality for the
product of the N first nonzero eigenvalues of the Stekloff problem in R

N . This inequal-
ity generalizes to dimension N a previous two-dimensional result of Hersch, Payne and
Schiffer, see [7], [8, Theorem 7.3.4]:

Theorem 1.5. Let Ω be a convex domain in R
N and 0 = p1(Ω) < p2(Ω) ≤ p3(Ω) ≤ ...

the eigenvalues of Ω for the Stekloff problem, see (36). Then, the following isoperimetric

inequality holds
N+1∏

k=2

pk(Ω) ≤
N+1∏

k=2

pk(Ω
∗) (13)

with equality if and only if Ω = Ω∗.

In (12), the convexity of Ω may not be required. In fact we show in Section 5 that (12)
remains valid for nonconvex domains Ω in R

2.
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2. The functional J and proof of (11)

The proof of (11) is based on the fact that J(Ω) is not affected by an affinity, i.e. when Ω
is replaced by

Ω′ := {x′ := (t1x1, ..., tNxN) ∈ R
N | x ∈ Ω}, (14)

where tk are N arbitrary positive constants such that

N∏

k=1

tk = 1. (15)

We compute indeed

Jk(Ω) = tk
−2Jk(Ω

′), k = 1, ..., N, (16)

which implies

J(Ω) = J(Ω′). (17)

With the particular choice

tk
2 := (J(Ω))

1

N J−1
k (Ω), k = 1, ..., N (18)

in (16), we obtain

Jk(Ω
′) = (J(Ω))

1

N , k = 1, ..., N, (19)

i.e. the values of Jk(Ω
′) are independent of k. This shows that we have

min
Ω∈O

J(Ω) = min
Ω′∈O′

J(Ω′), (20)

where O′ (⊂ O) is the class of all domains Ω′ of prescribed N -volume such that J1(Ω
′) =

... = JN(Ω
′). Moreover we have by (17), (19),

J0(Ω
′) :=

N∑

k=1

Jk(Ω
′) = N(J(Ω))

1

N = N(J(Ω′))
1

N , (21)

from which we obtain

J(Ω′) =

(
1

N
J0(Ω

′)

)N

. (22)

Combining (20) and (22), and making use of (4), we are led to

min
Ω∈O

J(Ω) = min
Ω′ ∈O′

{
1

N
J0(Ω

′)

}N

=
1

NN

(
min
Ω′ ∈O′

{J0(Ω
′)}

)N

(23)

=
1

NN
(J0(Ω

∗))N = J(Ω∗) = J(E),

which is the desired result.

We give now an application to the minimization of the determinant of the inertia matrix.
We assume that the origin O is at the center of mass of the domains we consider.
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Corollary 2.1. Let M(Ω) be the inertia matrix of the domain Ω i.e. the matrix whose

general term is

Mij =

∫

Ω

xixj dx, i, j = 1, ..., N

and let D(Ω) be its determinant. Then,

D(Ω) ≥ D(E) (24)

valid for all domains Ω ∈ O, with equality for all ellipsoids E (∈ O) symmetric with

respect to the planes xk = 0, k = 1, ..., N .

Indeed, since M(Ω) is symmetric, there exists an orthogonal matrix T ∈ O+(N) and a
diagonal matrix ∆ such that M(Ω) = T T∆T . Actually, ∆ is the inertia matrix of the
domain T (Ω) obtained from Ω by some rotation. Now, the determinant being invariant
through such a similarity transformation, we have according to (11):

D(Ω) = D(T (Ω)) = J(T (Ω)) ≥ J(E) = D(E) (25)

the last equality in (25) coming from the fact that E is symmetric with respect to each
plane of coordinates, so its inertia matrix is diagonal. This proves the desired result.

3. The functional I and proof of (12)

We assume in this section that Ω is convex and choose the origin at the center of mass of
∂Ω. We introduce the family of parallel domains

Ωh := Ω +Bh(0) = {z = x+ y ∈ R
N | x ∈ Ω , y ∈ Bh(0)}, (26)

where Bh(0) is the N -ball of radius h > 0 centered at the origin. It follows from the

Brunn-Minkowski theory that the function f(h) := |Ωh|
1/N is concave with respect to the

parameter h. H. Minkowski made use of this basic property to derive the famous classical
isoperimetric geometric inequality for convex bodies. Since our approach will be patterned
after his argument, we indicate here briefly Minkowski’s method. The concavity of f(h)
implies that f ′(h) is a monotone decreasing function. This leads to the inequality

f ′(h) =
1

N
|Ωh|

1−N
N |Ωh|

′ =
1

N
|Ωh|

1−N
N |∂Ωh| ≥ C, (27)

where C has to coincide with the value of f ′(h) for a ball since Ωh approaches a large ball
as h increases to infinity. Evaluated at h = 0, (27) leads to the well known isoperimetric
geometric inequality

|∂Ω|N ≥ NNωN |Ω|N−1 , (28)

where ωN := πN/2/Γ
(
N
2
+ 1

)
is the volume of the unit ball in R

N . We refer the reader
to the basic books of Bonnesen-Fenchel [3] and Hadwiger [5, 6] for details. The proof of
(12) makes use of the following two lemmas.



586 A. Henrot, G. A. Philippin, A. Safoui / Some Isoperimetric Inequalities with ...

Lemma 3.1. With the notations of Section 1, we have

Jk(Ωh) = Jk(Ω) + hIk(Ω) +
N+2∑

j=2

cjh
j, h ≥ 0, (29)

where the coefficients cj are some geometric quantities associated to ∂Ω.

As a consequence of (29), we have

Jk
′(h)|h=0 = Ik(Ω). (30)

For the proof of Lemma 3.1, we evaluate
∫
Ωh\Ω

x2
k dx = Jk(Ωh)− Jk(Ω). The computation

of this integral will be easy if we introduce normal coordinates s := (s1, ..., sN) such that

Ωh \ Ω = {x(s) = r(s1, ..., sN−1) + sNn(s1, ..., sN−1), s ∈ B × [0, h]} , (31)

where r(s1, ..., sN−1), (s1, ..., sN−1) ∈ B, is a parametric representation of ∂Ω, and n(s1, ...,
sN−1) is the unit normal vector of ∂Ω. In terms of the new variables s, the volume element
of RN is dV = ∆ ds1...dsN , with

∆ = det

∣∣∣∣
∂xk

∂sj

∣∣∣∣ = det

∣∣∣∣
∂r

∂s1
+ sN

∂n

∂s1
, ... ,

∂r

∂sN−1

+ sN
∂n

∂sN−1

, n

∣∣∣∣ . (32)

∆ is obviously a polynomial in sN of degree (N − 1). We have

∆ = ∆0 +
N−1∑

j=1

c̃j (sN)
j , (33)

where ∆0 is ∆ evaluated on ∂Ω. We then obtain

∫

Ωh\Ω

x2
k dx =

∫

B×[0,h]

(x2
k∆0 +

N−1∑

j=1

x2
kc̃j

(
sN)

j
)
ds1 . . . dsN

= hIk(Ω) +
N+2∑

j=2

cjh
j, h ≥ 0,

which is the desired result (29).

The next lemma follows from an extension of the Brunn-Minkowski inequality established
by H. Knothe [11].

Lemma 3.2. The functions g(h) := (Jk (Ωh))
1

N+2 are concave for h ≥ 0, k = 1, ..., N .

As a direct consequence of Lemmas 3.1 and 3.2, we have in analogy to (27)

g′(h) =
1

N + 2
(Jk (Ωh))

−N+1

N+2 Ik(Ωh) ≥ C, k = 1, ..., N, (34)
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where C has to coincide with the value of g′(h) for a N -ball. Using Jk(BR) = RN+2ωN

N+2

for the ball of radius R, we get C =
(

ωN

N+2

)1/(N+2)
. Evaluated at h = 0, (34) leads to the

following isoperimetric inequalities

(Ik(Ω))
N+2 ≥ (N + 2)N+1ωN(Jk(Ω))

N+1, k = 1, ..., N, (35)

with equality if and only if Ω = Ω∗. Making use of (35) and (11), we obtain

(I(Ω))N+2 ≥ (N + 2)N(N+1)(ωN)
N(J(Ω))N+1

≥ (N + 2)N(N+1)(ωN)
N(J(Ω∗))N+1 = (I(Ω∗))N+2,

with equality if and only if Ω = Ω∗. This achieves the proof of inequality (12) for convex
domains Ω.

4. Application to the Stekloff problem

In this section we consider the Stekloff eigenvalue problem defined in a bounded convex
domain Ω in R

N , N ≥ 2.





∆u = 0, x := (x1, ..., xN) ∈ R
N ,

∂u

∂n
= pu, x ∈ ∂Ω.

(36)

In (36), ∂u
∂n

is the exterior normal derivative of u on ∂Ω. It is well known [15] that there are
infinitely many eigenvalues 0 = p1 < p2 ≤ p3 ≤ ... for which (36) has nontrivial solutions,
also called eigenfunctions, and denoted by u1(= const.), u2, u3, ... Let Σk be the class of
functions defined as

Σk :=

{
v ∈ H1(Ω),

∫

∂Ω

vuj ds = 0, j = 1, ..., k − 1

}
, (37)

where H1(Ω) is the Sobolev space of functions in L2(Ω) whose partial derivatives are in
L2(Ω). Let R[v] be the Rayleigh quotient associated to the problem (36) defined as

R[v] :=

∫
Ω
|∇v|2 dx∫
∂Ω

v2 ds
. (38)

It is well known that the eigenvalue pk has the following variational characterization [7,
8]

pk = min
v ∈Σk

R[v], k = 2, 3, 4, .... (39)

Unfortunately, (39) is of little practical use for estimating pk, since it requires the know-
ledge of the eigenfunctions uj, j = 1, ..., k − 1. The following variational characterization
due to H. Poincaré overcomes this difficulty. Let vk(6≡ 0) ∈ H1(Ω), k = 1, ..., n be n
linearly independent functions satisfying the conditions

∫

∂Ω

vk ds = 0, k = 1, ..., n. (40)
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Let Ln be the linear space generated by vk, k = 1, ..., n. The Rayleigh quotient of
v :=

∑n
k=1 ckvk is the ratio of two quadratic forms of the n variables c1, ..., cn. We have

R[v] :=

∫
Ω
|∇v|2 dx∫
∂Ω

v2 ds
=

∑n
i,j=1 aijcicj∑n
i,j=1 bijcicj

, (41)

with

aij :=

∫

Ω

∇vi∇vj dx, (42)

bij :=

∫

∂Ω

vivj ds. (43)

Note that the matrices A := (aij), B := (bij) are positive definite. Let 0 < p′2 ≤ p′3 ≤ ... ≤
p′n+1 be the n roots of the characteristic equation

det |A− pB| = 0. (44)

Poincaré’s variational principle [13] asserts that

pk ≤ p′k, k = 2, ..., n+ 1. (45)

By means of a translation followed by an appropriate rotation, the following conditions
will we satisfied ∫

∂Ω

xk ds = 0, k = 1, ..., N, (46)

∫

∂Ω

xkxj ds = 0, k 6= j. (47)

The N functions defined as

vk := xk(Ik(Ω))
−1/2, k = 1, ..., N (48)

are admissible for the Poincaré principle. We then compute with the notation of Section
1

A = |Ω| diag
(
I−1
1 (Ω), ..., I−1

N (Ω)
)
, (49)

B = diag
(
1, ..., 1

)
. (50)

The N roots of the characteristic equation (44) are then |Ω|I−1
k (Ω), k = 1, ..., N . We then

obtain from (45) with n = N

N+1∏

k=2

pk(Ω) ≤
N+1∏

k=2

p′k = |Ω|NI−1(Ω) ≤ |Ω|NI−1(Ω∗) =
ωN

|Ω|
=

N+1∏

k=2

pk(Ω
∗). (51)

In (51), we have used the isoperimetric inequality (12) and the fact that xk, k = 1, ..., N ,
are the N first nonzero eigenvalues of Ω∗.

Note that (51) is an improvement (for convex Ω!) of the following inequality

N+1∑

k=2

1

pk(Ω)
≥

N+1∑

k=2

1

pk(Ω∗)
, (52)

obtained by Brock [4].
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5. Appendix

Since our proof of (12) is valid only for convex Ω, we indicate in this section a proof inspired
by an old paper of A. Hurwitz [10] that does not require convexity of Ω ⊂ R

2. Let L
be the length of ∂Ω and s be the arc length on ∂Ω. Consider the following parametric
representation of ∂Ω :

(x(σ), y(σ)), σ :=
2π

L
s ∈ [0, 2π]. (53)

Clearly x(σ) and y(σ) are 2π-periodic functions of σ whose associated Fourier series are
of the form





x(σ) =
1

2
a0 +

∞∑

k=1

(ak cos kσ + a′k sin kσ),

y(σ) =
1

2
b0 +

∞∑

k=1

(bk cos kσ + b′k sin kσ).

(54)

The Fourier coefficients ak, a
′
k, bk, b

′
k have to be determined in order to minimize I(Ω) =

I1(Ω)I2(Ω). From (54) and Parseval’s identity, we obtain

L2

2π
=

1

π

∫ 2π

0

{(
dx

dσ

)2

+

(
dy

dσ

)2
}

dσ =
∞∑

k=1

k2(a2k + a′k
2
+ b2k + b′k

2
), (55)

|Ω| =

∫ π

0

x(σ)
dy

dσ
dσ = π

∞∑

k=1

k(akb
′
k − a′kbk), (56)

I1(Ω) =

∫

∂Ω

x2(s) ds =
L

2π

∫ 2π

0

x2(σ) dσ =
L

2

{
1

2
a0

2 + a2
}
, (57)

I2(Ω) =

∫

∂Ω

y2(s) ds =
L

2π

∫ 2π

0

y2(σ) dσ =
L

2

{
1

2
b0

2 + b2
}
, (58)

with

a2 :=
∞∑

k=1

(ak
2 + a′k

2
), b2 :=

∞∑

k=1

(bk
2 + b′k

2
). (59)

Clearly, we must choose a0 = b0 = 0 since L and |Ω| are independent of a0, b0. The other
Fourier coefficients may be determined using Lagrange’s method, consisting in finding the
critical points of the Lagrange function defined as

F (a, a′, b, b′) := 4I(Ω) +
λ

π
|Ω| = L2a2b2 − λ

∞∑

k=1

(akb
′
k − a′kbk), (60)
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where λ is a multiplier. This leads to the following system of equations

∂F

∂ak
= 4π2k2a2b2ak + 2L2b2ak − λkb′k = 0, (61)

∂F

∂a′k
= 4π2k2a2b2a′k + 2L2b2a′k + λkbk = 0, (62)

∂F

∂bk
= 4π2k2a2b2bk + 2L2a2bk + λka′k = 0, (63)

∂F

∂b′k
= 4π2k2a2b2b′k + 2L2a2b′k − λkak = 0. (64)

From (61), (64), we obtain

akMk = 0, (65)

with

Mk := 4a2b2(2π2k2a2 + L2)(2π2k2b2 + L2)− k2λ2. (66)

From (62), (63), we obtain

a′kMk = 0. (67)

We conclude that either ak = a′k = 0, k = 1, 2, 3, ..., which is absurd, or that

λ2 = 4a2b2k−2(2π2k2a2 + L2)(2π2k2b2 + L2) = 4a2b2f(k2), (68)

with

f(t) :=
1

t
(2π2ta2 + L2)(2π2tb2 + L2), t ≥ 1. (69)

Since f(t) is convex for t ≥ 1, equation (68) can be satisfied for at most two positive
integers k1 ≤ k2. We then conclude that the parametric representation of ∂Ω∗ is of the
form 



x(σ) = ak1 cos(k1σ) + a′k1 sin(k1σ) + ak2 cos(k2σ) + a′k2 sin(k2σ),

y(σ) = bk1 cos(k1σ) + b′k1 sin(k1σ) + bk2 cos(k2σ) + b′k2 sin(k2σ).
(70)

Further restrictions on the Fourier coefficients akj , a′kj , bkj , b′kj , j = 1, 2, are imposed by
the condition

(
dx

dσ

)2

+

(
dy

dσ

)2

=

(
L

2π

)2

= const. (71)

From (70), we compute

(
dx

dσ

)2

+

(
dy

dσ

)2

= c0 + c1 cos(2k1σ) + c2 sin(2k1σ)

+c3 cos(2k2σ) + c4 sin(2k2σ) + c5 cos(k1 − k2)σ

+c6 cos(k1 + k2)σ + c7 sin(k1 − k2)σ + c8 sin(k1 + k2)σ,

(72)
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with

c0 :=
1

2
k2
1(a

2
k1
+ a

′2
k1
+ b2k1 + b

′2
k1
) +

1

2
k2
2(a

2
k2
+ a

′2
k2
+ b2k2 + b

′2
k2
), (73)

c1 :=
1

2
k2
1(a

′2
k1
+ b

′2
k1
− a2k1 − b2k1), (74)

c2 := − k2
1(ak1a

′
k1
+ bk1b

′
k1
), (75)

c3 :=
1

2
k2
2(b

′2
k2
+ a

′2
k2
− b2k2 − a2k2), (76)

c4 := − k2
2(ak2a

′
k2
+ bk2b

′
k2
), (77)

c5 := k1k2(ak1ak2 + bk1bk2 + a′k1a
′
k2
+ b′k1b

′
k2
), (78)

c6 := k1k2(−ak1ak2 − bk1bk2 + a′k1a
′
k2
+ b′k1b

′
k2
), (79)

c7 := k1k2(a
′
k1
ak2 + b′k1bk2 − ak1a

′
k2
− bk1b

′
k2
), (80)

c8 := − k1k2(ak1a
′
k2
+ bk1b

′
k2
+ a′k1ak2 + b′k1bk2) . (81)

Suppose now that (71) is satisfied for two positive integers k1 6= k2. Then we must have

cj = 0, j = 1, ..., 8 if k1 6= 3k2, (82)

or

c1 = c2 = c6 = c8 = c3 + c5 = c4 + c7 = 0 if k1 = 3k2. (83)

A careful investigation of these two cases shows that we must have either ak1 = a′k1 = bk1 =
b′k1 = 0, or ak2 = a′k2 = bk2 = b′k2 = 0. For the sake of brevity we omit the computational
details to confirm this assertion. In any case the parametric representation of ∂Ω∗ takes
the following form

{
x(σ) = ak0 cos k0σ + a′k0 sin k0σ,

y(σ) = bk0 cos k0σ + b′k0 sin k0σ, σ ∈ [0, 2π],
(84)

for some positive integer k0. But since ∂Ω∗ makes only one loop around the origin, we
must actually have k0 = 1. We then obtain

{
x(σ) = a1 cosσ + a′1 sinσ

y(σ) = b1 cosσ + b′1 sinσ,
(85)

with
a21 + b21 = a′21 + b′21 , a1a

′
1 + b1b

′
1 = 0. (86)

Finally (85), (86) lead to

x2(σ) + y2(σ) = a21 + b21 = const. (87)

(87) shows that if there exists a minimizer Ω̃ of I(Ω), Ω̃ ∈ O, then it must be a disc

centered at the origin. The existence of Ω̃ (among other similar results) will be established
in a forthcoming paper of A. Henrot, [9].
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