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Let Ω ⊂ C
d be a circular, bounded, strictly convex domain with C2 boundary. We construct a peak set

K ⊂ ∂Ω which intersects all the circles in ∂Ω with the center at zero. In particular Hausdorff dimension
of K is at least 2d− 2.
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1. Introduction

Let Ω ⊂⊂ C
d be a bounded, circular, strictly convex domain with C2 boundary. We say

that a compact set K is a peak set for A(Ω) if there exists f ∈ A(Ω) such that |f | < 1
on Ω \K and f = 1 on K . There is also a weaker concept of a maximum modulus set,
when |f | = 1 on K and |f | < 1 on Ω \K.

In fact it is well known that for d > 1 a holomorphic non constant function f ∈ A(Bd)
such that |f(z)| = 1 for all z ∈ ∂Bd does not exist. Therefore maximum modulus sets
and peak sets are extensively considered by many authors.

Topologically, peak sets and maximum modulus sets are small in strictly pseudoconvex
domains. The real topological dimension of a maximum modulus set is no more than d

[6] and for a peak set is no more than d − 1 [7]. In particular peak set and maximum
modulus set must have an empty interior.

However, from the measure-theoretic point of view peak sets and maximum modulus sets
no longer have to be small. Stensönes Henriksen has proved [5] that every strictly pseu-
doconvex domain with C∞ boundary in C

d has a peak set with a Hausdorff dimension
2d− 1. In the case where the boundary is only C2, Løw has proved [4] that a maximum
modulus set can have positive (2d− 1)-dimensional Hausdorff measure.

In this paper we show that it is possible to construct a peak set which crosses all the
circles in ∂Ω with the center at zero. In particular the Hausdorff dimension of our peak
set is at least 2d− 2.

The problem described in the paper is close to the one presented by Henriksen [5]; hence
we briefly compare the analogous results. Undoubtedly, the best possible dimension of a
peak set was given by Henriksen. However, in our paper we assume that the boundary
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of a bounded, circular, strictly convex domain is C2 class instead of C∞ class as it was
done in Henriksen’s paper. Moreover, Henriksen constructs his peak set on the basis
of the solution of ∂ problem. Whereas in our paper, we use exclusively polynomials.
Henriksen’s peak set in circular domains crosses almost all circles in ∂Ω with the center
at zero, while our set crosses precisely all circles this type.

We need the following fact:

Theorem (see [2, Theorem 3.2]). There exists a natural number N such that, if ε ∈
(0, 1), T is a compact subset of Ω, H is a continuous, strictly positive function on ∂Ω,
then there exist functions f1, ..., fN ∈ A(Ω) such that:

(1) |fj| < ε on T .

(2) 1
2
H < maxj=1,...,N |fj| < H on ∂Ω.

Now we can prove the first observation:

Lemma 1.1. There exists a natural number N such that if D is a compact subset of ∂Ω
and T is a compact subset of Ω with T ∩D = ∅ then for a given ε ∈ (0, 1) we can choose

polynomials f1, ..., fN such that:

(1) 1
2
< maxj=1,...,N |fj| on D;

(2) |fj| < ε on T ;

(3) |fj| < 1 on Ω.

Proof. LetN be a natural number from [2, Theorem 3.2]. Since Ω is a balanced bounded
domain, every function f ∈ A(Ω) can be uniformly approximated by polynomials and
therefore it is enough to construct f1, ..., fN ∈ A(Ω) with the properties (1)–(3 ).

There exists U an open subset of ∂Ω such that D ∩ U = ∅ and T ∩ ∂Ω ⊂ U . Since Ω
is a strictly convex domain, there exists W an open subset in Ω such that T ∩ ∂Ω ⊂ W

and if z ∈ W \ ∂Ω then there exists an analytical disc Q with z ∈ Q and ∂Q ⊂ U . Let
T0 := T \W . We may observe that T0 is a compact subset of Ω.

We can define a continuous strictly positive function H on ∂Ω such that H = 1 on
D, H ≤ 1 on ∂Ω and H < ε on U . Due to [2, Theorem 3.2] there exist functions
f1, ..., fN ∈ A(Ω) such that:

• |fj| < ε on T0.

• 1
2
H < maxj=1,...,N |fj| < H on ∂Ω.

The properties (1), (3 ) are obvious. Now let z ∈ T . If z ∈ T0 or z ∈ T ∩ ∂Ω then
|fj(z)| < ε. So we assume that z ∈ T \ (T0 ∪ ∂Ω). In particular z ∈ W \ ∂Ω, so
there exists an analytical disc Q such that z ∈ Q and ∂Q ⊂ U . We may estimate
|fj(z)| ≤ maxw∈∂Q |fj(w)| ≤ maxw∈∂QH(w) < ε, which finishes the proof.

We also need the following property of homogeneous polynomials:

Lemma 1.2. There exists K ∈ N such that we can choose m0 ∈ N and a sequence pm
of homogeneous polynomials of m degree which satisfy:

(1) |pm(z)| ≤ 2 for all z ∈ ∂Ω, m > m0;

(2)
∑K

i=1 |pmi
(z)|2 ≥ 0.25 for all z ∈ ∂Ω, m0 < N ≤ m1 < ... < mK ≤ 2N .
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Proof. The case mj = mK + j was proved in [1, Theorem 2.6]. We used [1, Lemma
2.5], which can be applied also in a more general case: N ≤ m1 < m2 < ... < mK ≤ 2N .
Therefore, in order to prove the required result, it is enough to repeat the same arguments
as in the proof of [1, Theorem 2.6].

2. Peak set

We say that U ∈ τ iff U is a non empty and open subset of Ω such that ∂Ω ⊂ SU , where
S := {λ ∈ C : |λ| = 1}.
We start with the following simple property of τ :

Proposition 2.1. If U ∈ τ then there exists V ∈ τ such that V ⊂ U .

Proof. For a given z ∈ U there exists Uz an open neighborhood of z in Ω such that
z ∈ U z ⊂ U . Since ∂Ω is a compact set and ∂Ω ⊂ ⋃

z∈U SUz there exist z1, ..., zs ∈ U

such that ∂Ω ⊂ ⋃s

i=1 SUzi . Now it is enough to define V :=
⋃s

i=1 Uzi ∈ τ and observe
that V =

⋃s

i=1 U zi ⊂ U .

Lemma 2.2. There exists M0 > 1 such that for a given U ∈ τ , δ > 0 and f a continuous

function on Ω, we can choose V ∈ τ and g polynomial such that:

(1) V ⊂ U ;

(2) If z ∈ V and |f(z)| ≥ δ then ℜ(gf)(z) < −|f(z)|;
(3) |g| < M0 on Ω.

Proof. Due to Proposition 2.1 there exist V0, V1 ∈ τ such that V 0 ⊂ V1 ⊂ V 1 ⊂ U . Let

T =
{

z ∈ V 0 ∩ ∂Ω : |f(z)| ≥ δ
}

.

We can choose ε > 0 such that n := π
ε
∈ N and

• eiϕz ∈ V1,

• |f(eiϕz)| ≥ 1
2

∣

∣f(eiϕ̃z)
∣

∣

for z ∈ T and ϕ, ϕ̃ ∈ [−2ε, 2ε].

Due to Lemma 1.2 there exist K,N0 ∈ N such that for all m ∈ N with N0 ≤ mn < (m
+1)n < ... < (m+K)n < 2mn there exist homogeneous polynomials p(m+1)n, ..., p(m+K)n

of degree (m+1)n, ..., (m+K)n respectively such that 1
4
≤ ∑K

j=1

∣

∣p(m+j)n

∣

∣

2
and

∣

∣p(m+j)n

∣

∣

≤ 2 on ∂Ω. Let us choose gm := 10
∑K

j=1 p(m+j)n and M0 := 20K+1. First let us observe

that |gm| < M0 on Ω. We show that it is enough to shrink V1 and define g = gm for m
large enough.

Since
∫

π

n

−π

n

exp (−itkn) dt = 0 for k ∈ Z \ {0} we may estimate

√
2ε max

−ε≤ϕ≤ε

∣

∣gm(e
iϕz)

∣

∣ ≥
√

∫ ε

−ε

|gm(eiϕz)|2 dϕ =

√

√

√

√

∫ π

n

−π

n

100
K
∑

j=1

∣

∣p(m+j)n(z)
∣

∣

2
dϕ

≥
√

50π

n
≥ 5

√
2ε > 4

√
2ε



518 P. Kot / Peak Set Crossing all the Circles

for z ∈ ∂Ω. Moreover there exists ηz ∈ [−ε, ε] such that
∣

∣gm(e
iηzz)

∣

∣ = max
−ε≤ϕ≤ε

∣

∣gm(e
iϕz)

∣

∣ .

In particular |gm(eiηzz)| ≥ 4 for z ∈ ∂Ω.

We now show the following inequality

I(m, z, ϕ) :=
∣

∣(fgm)(e
iϕz)− eimnϕ(fgm)(z)

∣

∣ <
δ

4

for some ε1 ∈ (0, 1), all m ∈ N, z ∈ Ω and ϕ ∈ [−ε1, ε1].

In fact since f is a continuous function on Ω there exists ε1 ∈ (0, ε) such that we may
estimate

I(m, z, ϕ) ≤ 10
K
∑

j=1

∣

∣ei(m+j)nϕf(eiϕz)p(m+j)n(z)− eimnϕf(z)p(m+j)n(z)
∣

∣

≤ 10
K
∑

j=1

∣

∣p(m+j)n(z)
∣

∣

∣

∣eijnϕf(eiϕz)− f(z)
∣

∣

≤ 20
K
∑

j=1

∣

∣eijnϕf(eiϕz)− f(z)
∣

∣ <
δ

4

for all m ∈ N, z ∈ Ω and ϕ ∈ [−ε1, ε1].

Assume that m is so large that mnε1 > π and let us define g := gm. We may observe
that there exists ϕz ∈ [−ε1, ε1] such that

eimnϕz(fg)(eiηzz) = −
∣

∣(fg)(eiηzz)
∣

∣ .

In particular for z ∈ T we may observe that ηz, ϕz ∈ [−ε, ε] and estimate

ℜ
(

(fg)(ei(ηz+ϕz)z)
)

≤ δ

4
+ ℜ

(

eimnϕz(fg)(eiηzz)
)

≤ δ

4
−

∣

∣(fg)(eiηzz)
∣

∣

≤ δ

4
− 1

2

∣

∣f(ei(ηz+ϕz)z)
∣

∣

∣

∣g(eiηzz)
∣

∣ ≤ δ

4
− 2

∣

∣f(ei(ηz+ϕz)z)
∣

∣

≤ 1

8

∣

∣f(ei(ηz+ϕz)z)
∣

∣− 2
∣

∣f(ei(ηz+ϕz)z)
∣

∣ < −
∣

∣f(ei(ηz+ϕz)z)
∣

∣ .

Now we define

V := {z ∈ V1 : |f(z)| < δ or ℜ(gf)(z) < −|f(z)|} .

We may observe that V ⊂ U . Suppose that there exists z ∈ ∂Ω such that Sz ∩ V = ∅.
Since Sz∩V1 6= ∅ we can easily conclude that |f(eiϕz)| ≥ δ for ϕ ∈ R. Due to Sz∩V0 6= ∅
there exists ϕ0 such that eiϕ0z ∈ T . Now we can easily see that there exists ϕ ∈ [−2ε, 2ε]
such that ℜ(gf)(ei(ϕ0+ϕ)z) < −|f(ei(ϕ0+ϕ)z)| and ei(ϕ0+ϕ)z ∈ V1. In particular eiϕ0+ϕz ∈
V , which gives a contradiction.

We have just proved that V ∈ τ , which finishes the proof.
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Lemma 2.3. There exists M > 0 such that for a given U ∈ τ and ε̃ > 0, we can choose

V ∈ τ and a polynomial p such that:

(1) V ⊂ U ;

(2) ℜp < −1 on V ;

(3) |p| < M on Ω;

(4) |p| < ε̃ on Ω \ U .

Proof. Let N ∈ N be a number from Lemma 1.1 andM0 > 1 be a constant from Lemma
2.2. We can define M := 4NM0.

Due to Proposition 2.1 there existsW ∈ τ such thatW ⊂ U . Let us denoteD := W∩∂Ω,
T := Ω \ U . Due to Lemma 1.1 there exist polynomials f1, ..., fN such that

• 1
2
< maxj=1,...,N |fj| on D = W ∩ ∂Ω;

• |fj| < ε̃
4NM0

on T = Ω \ U ;

• |fj| < 1 on Ω.

Now we can observe that there exists V0 ∈ τ such that V 0 ⊂ U and

• 1
2
< maxj=1,...,N |fj| on V0.

Let δ := 1
4NM0

. Due to Lemma 2.2 there exist V1, ..., VN ∈ τ and polynomials g1, ..., gN
such that:

• V m ⊂ Vm−1;

• If z ∈ Vm and |fm(z)| ≥ δ then ℜ(gmfm)(z) < −|fm(z)|;
• |gm| < M0 on Ω.

Let us denote V =
⋂N

m=1 Vm and p = 4
∑N

m=1 fmgm. The property (1) follows from the

definition of V . The property (3 ) is also obvious: |p| ≤ 4
∑N

m=1 |fmgm| < 4
∑N

m=1 M0 ≤
4NM0 = M on Ω. In a similar way we conclude the property (4): |p| ≤ 4

∑N

m=1 |fmgm| <
4
∑N

m=1
ε̃M0

4NM0

≤ ε̃ on Ω \ U .

Let now z ∈ V . There exists k ∈ {1, ..., N} such that

|fk(z)| = max
j=1,...,N

|fj(z)| >
1

2
.

Now for a given m we have two cases: |fm(z)| < δ or |fm(z)| ≥ δ. First case immediately
implies ℜ(fmgm)(z) ≤ δM0 = 1

4N
. The second case implies ℜ(fmgm)(z) < −|fm(z)| ≤

0 ≤ δM0 =
1
4N

.

In particular ℜ(fmgm)(z) ≤ δM0 =
1
4N

and we may conclude the property (2):

ℜp(z) = 4ℜ(fkgk)(z) + 4
∑

m∈{1,...,N}\{k}

ℜ(fmgm)(z)

< −4|fk(z)|+ 4
N−1
∑

m=1

1

4N
< −2 + 1 ≤ −1.
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Theorem 2.4. There exists a compact set K ⊂ ∂Ω and a function f ∈ A(Ω) such that:

• SK = ∂Ω;

• f = 1 on K;

• 0 < |f | < 1 on Ω \K.

Proof. Let M > 0 be from Lemma 2.3. First we construct a sequence Um ∈ τ and
polynomials pm with the following properties:

(1) Um+1 ⊂ Um;

(2) ℜpm < −1 on Um+1;

(3) |pm| < M on Ω;

(4) |pm| < 2−m on Ω \ Um;

(5) Um+1 ∩ (1− 2−m)Ω = ∅.
Let U1 = Ω. In fact to construct U2, ..., Um+1 and p1, ..., pm it is enough to use the Lemma
2.3 and slightly decrease U2, ..., Um+1 so that (5) is also fulfilled.

Now we define g := −M − 2 +
∑∞

m=1 pm and K :=
⋂∞

m=1 Um. Since Um ∈ τ , the
properties (1), (5) imply K =

⋂∞
m=1 Um and SK = ∂Ω. Due to properties (1), (4)–(5)

we also have g ∈ O(Ω) ∩ C(Ω \K).

If z ∈ Ω \ U1 then

ℜg(z) = −M − 2 +
∞
∑

m=1

ℜpm(z) ≤ −M − 2 +
∞
∑

m=1

2−m < 0.

Let now z ∈ UN \UN+1 for N = 1, 2, .... We may observe that z ∈ Ω\Um for m ≥ N +1.
In particular we can estimate

ℜg(z) = −M − 2 +
∞
∑

m=1

ℜpm(z) = −M − 2 +
N−1
∑

m=1

ℜpm + ℜpN +
∞
∑

m=N+1

ℜpm

< −M − 2− (N − 1) +M +
∞
∑

m=N+1

2−m < −N.

Last inequalities imply that

lim
z→w

ℜg(w) = −∞ for w ∈ K

ℜg(z) < 0 for z ∈ Ω \K.

Now we can define

f = exp

(

1

g

)

.

Since ℜ1
g
= ℜg

|g|2
= ℜg

|g|2
< 0 on Ω \K we may easily observe that 0 < |f | < 1 on Ω \K.

Additionally due to limz→w
1

|g(z)|
= 0 for w ∈ K we have f = 1 on K and f ∈ A(Ω).
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