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0. Introduction

The celebrated theorem of Lax–Milgram [3] asserts that if E is a Hilbert space with
inner product < ·, · >, then every continuous bilinear form a on E that is coercive
(inf‖y‖=1 a(y, y) > 0) represents E, in the sense that for all y0 ∈ E there exists a unique
x0 ∈ E such that

for all y ∈ E, a(x0, y) =< y0, y > .

There are some generalizations of this important result in the context of reflexive Ba-
nach spaces (see for instance [1], [4] and [5] or [6]). In this paper we show a proper
generalization of all of them, which unifies them and generates new fields of application.
Specifically, in the main result of Section 1 we give a Lax–Milgram’s type result for lo-
cally convex spaces (Theorem 1.2), whose proof is based on the Hahn–Banach–Lagrange
theorem, a new version of the Hahn–Banach theorem due to S. Simons [10]. We come
to characterize those elements that represent a continuous linear functional through a
bilinear form, also providing certain control of such a functional, which in the normed
case (Corollary 1.3) entails an estimation of its norm. As a matter of fact, we consider
functionals represented on any convex subset, that does not necessarily satisfy any topo-
logical condition at all. Neither of our results assume the bilinear form to be continuous
unlike those appearing in [1], [4], [5] and [6]. In fact, in Example 1.6 we show how even
for reflexive Banach spaces Corollary 1.3 is more general than they are.
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In Section 2 we prove that the Lax–Milgram theorem for locally convex spaces, Theorem
1.2, does not admit a literal extension in terms of multilinear forms, although we state
a positive partial result (Theorem 2.2) that generalizes Theorem 1.2.

We finish with Section 3, in which we prove that the Hahn–Banach theorem and the
Lax–Milgram theorem for locally convex spaces are equivalent.

The vector spaces will always be considered as real vector spaces.

1. Lax–Milgram for LCS

First we evoke a generalization of the Hahn–Banach theorem, known as the Hahn–
Banach–Lagrange theorem, that has encountered numerous applications in functional
and convex analysis and monotone multifunctions theory (see [10], [11], [12] and [13]).
Let us recall that if E is a real vector space, a function S : E −→ R is sublinear provided
that it is subadditive and positively homogeneous. For such an S, if C is a nonempty
convex subset of a vector space then we say that j : C −→ E is S−convex if for all
x, y ∈ C and 0 < t < 1 we have that S(j(tx+(1− t)y− tj(x)− (1− t)j(y)) ≤ 0. Finally,
a convex function k : C −→ R ∪ {∞} is said to be proper when there exists x ∈ C with
k(x) < ∞.

Theorem 1.1 (Simons [10], [12]). Let E be a nontrivial vector space and let S :
E −→ R be a sublinear function. Assume in addition that C is a nonempty convex

subset of a vector space, k : C −→ R∪{∞} is a proper convex function and j : C −→ E

is S−convex. Then there exists a linear functional L : E −→ R such that L ≤ S and

inf
C

(L ◦ j + k) = inf
C

(S ◦ j + k) .

Given a nontrivial real Hausdorff locally convex space E, we shall write E∗ to denote its
topological dual space. If n ≥ 1 and E1, . . . , En are nontrivial real vector spaces, for a
n−linear form a : E1 × · · · ×En −→ R, 1 ≤ k ≤ n and (xk+1, . . . , xn) ∈ Ek+1 × · · · ×En,
a(·, . . . , ·, xk+1, . . . , xn) stands for the k−linear form

(x1, . . . , xk) ∈ E1 × · · · × Ek 7−→ a(x1, . . . , xk, xk+1, . . . , xn) ∈ R.

If in additionE1, . . . ,En are Hausdorff locally convex spaces, we denote byLn(E1, . . . ,En)
the vector space of all continuous n−linear forms on E1 × · · · × En. In the normed
case, (E1, . . . , En nontrivial real normed spaces), Ln(E1, . . . , En) is a Banach space when
endowed with its usual norm: for a ∈ Ln(E1, . . . , En)

‖a‖ = sup{|a(x1, . . . , xn)| : (x1, . . . , xn) ∈ E1 × · · · × En, ‖x1‖ ∨ · · · ∨ ‖xn‖ ≤ 1}.

Now we state the main result of this section, along the lines of [10], [11], [12] and [13]. We
characterize in terms of a continuous seminorm on E∗ those x∗∗

0 ∈ E∗∗ that represent a
functional y∗0 ∈ F ∗ on a convex subset C by the action of a bilinear form at one variable.
More precisely:

Theorem 1.2. Let E and F be nontrivial real Hausdorff locally convex spaces and let

τE∗ be any topology on E∗ for which E∗ is a real Hausdorff locally convex space. Let

y∗0 ∈ F ∗ and let a : E × F −→ R be a bilinear form and C be a nonempty convex subset

of F such that for all y ∈ C, a(·, y) ∈ E∗, i.e., a(·, y) is continuous on E. Then the

variational inequality

there exists x∗∗
0 ∈ E∗∗ such that for all y ∈ C, y∗0(y) ≤ x∗∗

0 (a(·, y))
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is equivalent to the existence of a continuous seminorm p : E∗ −→ R such that

for all y ∈ C, y∗0(y) ≤ p(a(·, y)).

Moreover, if these statements are satisfied then we can take x∗∗
0 and p with x∗∗

0 ≤ p.

Proof. We first assume that there exists a continuous seminorm p : E∗ −→ R such that

y ∈ C ⇒ y∗0(y) ≤ p(a(·, y)).

We apply the Hahn–Banach–Lagrange theorem (Theorem 1.1) with the sublinear func-
tion S = p, the proper convex function

k : C −→ R

y 7→ −y∗0(y)

and the S−convex mapping
j : C −→ E∗

y 7→ a(·, y),

obtaining thus that there exists x∗∗
0 : E∗ −→ R linear such that x∗∗

0 ≤ p (hence the fact
that x∗∗

0 ∈ E∗∗) and

inf
y∈C

(x∗∗
0 (a(·, y))− y∗0(y)) = inf

y∈C
(p(a(·, y))− y∗0(y)) .

But we have by hypothesis that

inf
y∈C

(p(a(·, y))− y∗0(y)) ≥ 0,

so
inf
y∈C

(x∗∗
0 (a(·, y))− y∗0(y)) ≥ 0,

that is,
for all y ∈ C, y∗0(y) ≤ x∗∗

0 (a(·, y)).

And conversely, if for some x∗∗
0 ∈ E∗∗ we have that

y ∈ C ⇒ y∗0(y) ≤ x∗∗
0 (a(·, y)),

then it holds that
for all y ∈ C, y∗0(y) ≤ p(a(·, y))

for the continuous seminorm p on E∗ given by p(·) = |x∗∗
0 (·)|.

Note that in both directions we arrive at x∗∗
0 ≤ p.

Let us point out that C is nothing more than a convex subset of F and we do not assume
any additional topological condition on it, not even being closed.

For α ∈ R we write (α)+ := max{α, 0}.

In the normed case we can obtain besides the previous characterization a precise es-
timation of the norm of those x∗∗

0 that represent y∗0 by means of the bilinear form a.
This is done in Corollary 1.3 below where for the vector space E the topology τE∗ (see
Theorem 1.2) is taken to be the strong topology of E∗, i.e., the topology associated with
the canonical norm of E∗. Throughout the paper, this will be always the case whenever
E is a normed space.
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Corollary 1.3. Assume that E and F are nontrivial real normed spaces, y∗0 ∈ F ∗,

a : E × F −→ R is bilinear, and C is a nonempty convex subset of F such that for all

y ∈ C we have that a(·, y) ∈ E∗. Then

there exists x∗∗
0 ∈ E∗∗ such that for all y ∈ C, y∗0(y) ≤ x∗∗

0 (a(·, y))

m

there exists α ≥ 0 such that for all y ∈ C, y∗0(y) ≤ α‖a(·, y)‖.

In addition, if one of these equivalent conditions is satisfied and there exists y ∈ C such

that a(·, y) 6= 0, then

min{‖x∗∗
0 ‖ : x∗∗

0 ∈ E∗∗ and for all y ∈ C, y∗0(y) ≤ x∗∗
0 (a(·, y))}

=

(

sup
y∈C, a(·,y)6=0

y∗0(y)

‖a(·, y)‖

)

+

.

Proof. The equivalence follows from Theorem 1.2, by using no more than the well–
known fact that if p is a continuous seminorm on a normed space, then p is bounded
above by a (positive) multiple of the norm. Therefore, if one of the two equivalent
conditions is satisfied, which we assume from now on in this proof, then the set

R(a, y∗0) := {x∗∗ ∈ E∗∗ : for all y ∈ C, y∗0(y) ≤ x∗∗(a(·, y))}

is nonempty. On the one hand, we clearly have that

x∗∗ ∈ R(a, y∗0) ⇒ ‖x∗∗‖ ≥

(

sup
y∈C, a(·,y)6=0

y∗0(y)

‖a(·, y)‖

)

+

.

On the other hand, if y ∈ C then

y∗0(y) ≤

(

sup
v∈C, a(·,v)6=0

y∗0(v)

‖a(·, v)‖

)

+

‖a(·, y)‖,

seeing that this inequality is trivially satisfied for y ∈ C with a(·, y) 6= 0, while for y ∈ C

such that a(·, y) = 0, the fact that R(a, y∗0) is nonempty also implies it. Since by the
preceding reasoning we have that

(

sup
v∈C, a(·,v)6=0

y∗0(v)

‖a(·, v)‖

)

+

< ∞,

then the continuous seminorm p : E∗ −→ R defined by

p :=

(

sup
v∈C, a(·,v)6=0

y∗0(v)

‖a(·, v)‖

)

+

‖ · ‖

can be used in Theorem 1.2 and such result guarantees the existence of x∗∗
0 ∈ R(a, y∗0)

such that x∗∗
0 ≤ p, so

‖x∗∗
0 ‖ ≤

(

sup
y∈C, a(·,y)6=0

y∗0(y)

‖a(·, y)‖

)

+

.
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Therefore we have proved the equalities

‖x∗∗
0 ‖ = min{‖x∗∗‖ : x∗∗ ∈ R(a, y∗0)} =

(

sup
y∈C, a(·,y)6=0

y∗0(y)

‖a(·, y)‖

)

+

and thus the proof is complete.

Observe that if C = F and a is nondegenerate in the second variable (a(·, y) = 0 ⇔ y =
0), then

|y| := ‖a(·, y)‖, (y ∈ F )

defines a norm on F . Under the assumptions of the preceding result, if one of the
equivalent assertions above is satisfied, then

min{‖x∗∗
0 ‖ : x∗∗

0 ∈ E∗∗ and for all y ∈ F, y∗0(y) ≤ x∗∗
0 (a(·, y))} = |y∗0|.

Obviously, for reflexive Banach spaces we can say something more concrete: if E is a
nontrivial real reflexive Banach space, F is a nontrivial real normed space, y∗0 ∈ F ∗, C
is a nonempty convex subset of F and a : E × F −→ R is a bilinear form such that for
all y ∈ C, a(·, y) ∈ E∗, then the variational inequality

there exists x0 ∈ E such that for all y ∈ C, y∗0(y) ≤ a(x0, y)

is equivalent to

there exists α ≥ 0 such that for all y ∈ C, y∗0(y) ≤ α‖a(·, y)‖.

Moreover, if one of these conditions is satisfied and there exists y ∈ C such that a(·, y) 6=
0, then

min{‖x0‖ : x0 ∈ E and for all y ∈ C, y∗0(y) ≤ a(x0, y)} =

(

sup
y∈C, a(·,y)6=0

y∗0(y)

‖a(·, y)‖

)

+

.

When E is not reflexive x∗∗
0 is not necessarily in E:

Corollary 1.4. Let E be a nontrivial real Banach space, let F be a nontrivial real

normed space and let y∗0 ∈ F ∗\{0}. Suppose that for all continuous bilinear form a :
E × F −→ R satisfying that there exists x∗∗

0 ∈ E∗∗ such that

for all y ∈ F, y∗0(y) = x∗∗
0 (a(·, y)),

it holds that x∗∗
0 ∈ E. Then E is reflexive.

Proof. By James’s sup theorem (see [2] or [7] for a more general result), to show that E
is reflexive we must prove that every continuous linear functional on E attains its norm,
that is, whenever x∗ ∈ E∗ then there exists x ∈ E with ‖x‖ = 1 and x∗(x) = ‖x∗‖. Let
x∗
0 ∈ E∗. We assume without loss of generality that ‖x∗

0‖ = 1. We define a : E×F −→ R

by
a(x, y) := x∗

0(x)y
∗
0(y), (x ∈ E, y ∈ F ).
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Then a is a continuous bilinear form and for all y ∈ F , a(·, y) = y∗0(y)x
∗
0, so y∗0(y) ≤

‖a(·, y)‖, hence Corollary 1.3 applied with C = F guarantees that there exists x∗∗
0 ∈ E∗∗

such that

‖x∗∗
0 ‖ =

(

sup
y∈F, a(·,y)6=0

y∗0(y)

‖a(·, y)‖

)

+

= 1

and
y ∈ F ⇒ y∗0(y) = x∗∗

0 (x∗
0)y

∗
0(y).

By hypothesis x∗∗
0 = x0 ∈ E and since y∗0 6= 0, the above condition implies that x∗

0(x0) =
1, so we have shown that x∗

0 attains the norm (at the norm one element x0 ∈ E) as we
wished to prove.

Observe that in the proof of the preceding result we have applied Corollary 1.3 instead
of the Hahn–Banach theorem. As we announced in the introduction, in Section 3 we
will show that both results are equivalent. Now we give a consequence of Theorem 1.2
for normed spaces, different from Corollary 1.3, that will be useful in order to state such
equivalence:

Corollary 1.5. If E and F are nontrivial real normed spaces, y∗0 ∈ F ∗, a : E∗×F −→ R

is bilinear, and C is a nonempty convex subset of F satisfying that for all y ∈ C we have

that a(·, y) ∈ E, then

there exists x∗
0 ∈ E∗ such that for all y ∈ C, y∗0(y) ≤ a(x∗

0, y)

m

there exists α ≥ 0 such that for all y ∈ C, y∗0(y) ≤ α‖a(·, y)‖.

In addition, if one of these equivalent statements is satisfied and there exists y ∈ C such

that a(·, y) 6= 0, then

min{‖x∗
0‖ : x∗

0 ∈ E∗ and for all y ∈ C, y∗0(y) ≤ a(x∗
0, y)} =

(

sup
y∈C, a(·,y)6=0

y∗0(y)

‖a(·, y)‖

)

+

.

Proof. The equivalence follows from Theorem 1.2, just by considering in E∗ its weak–
star topology, i.e, τE∗ = w(E∗, E) (see the statement of Theorem 1.2). The second part
has a proof analogous to that of Corollary 1.3.

The versions of the Lax–Milgram theorem [1], [4], [5] and [6] (and therefore the classical
theorem for Hilbert spaces [3]) are a direct consequence of Corollary 1.3. Moreover,
the results in those papers are only stated for reflexive Banach spaces, not giving an
explicit control of the norm of those x0 that represent the functional y∗0, taking just the
convex subset C = F and assuming the bilinear form a be continuous. Indeed, it is
possible to find a real reflexive Banach space E, a normed space F and a bilinear form
a : E × F −→ R for which we can apply Corollary 1.3 but not the results of [1], [4], [5]
or [6], either because a is not continuous or F is not complete:

Example 1.6. Let E be the real separable Hilbert space of sequences ℓ2, let F be the
linear subspace of E generated by its usual basis {en}n≥1 and let T : F −→ E∗ ≡ E be
the linear operator defined for each n ≥ 1 as

Ten :=< nen|· >,



M. Ruiz Galán / A Version of the Lax-Milgram Theorem for Locally Convex ... 999

where < ·|· > denotes the inner product, and extended by linearity. It is clear that T is
not continuous and that for all y ∈ F it holds that

‖y‖ ≤ ‖Ty‖.

Then the bilinear form a : E × F −→ R given by

a(·, y) :=< Ty|· >, (y ∈ F )

is not continuous, but for all y ∈ F , a(·, y) ∈ E∗ and thanks to the preceding inequality

y∗0 ∈ F ∗, y ∈ F ⇒ y∗0(y) ≤ ‖y∗0‖‖a(·, y)‖.

Therefore Corollary 1.3 (but none of the result in [1], [4], [5] or [6]) guarantees that if
y∗0 ∈ F ∗ then there exists x0 ∈ E with a(x0, ·) = y∗0.

As we have just seen, the hypotheses of Corollary 1.3 do not necessarily imply that
a is continuous. However, imposing some additional restrictions we can automatically
obtain that a is continuous. For instance, in [8] Saint Raymond states a result implying
continuity of a bilinear form on a Hilbert space satisfying a certain coercivity hypothesis.

Let us also point out that if E is a nontrivial real reflexive Banach space, F is a nontrivial
normed space and a : E×F −→ R is a continuous bilinear form such that for all y∗ ∈ F ∗

there exists a unique x ∈ E satisfying

y ∈ F ⇒ y∗0(y) = a(x, y),

then the norm on F

|y| := ‖a(·, y)‖, (y ∈ F )

is equivalent to the original one and, in view of the control of the norm in Corollary 1.3,
the operator

T : E −→ F ∗

x 7→ a(x, ·)

is a linear isometry from E onto (F ∗, | · |).

2. The multilinear problem

When one tries to represent by means of an n−linear form another k−linear form with
k < n, that is, to generalize the version of the Lax–Milgram theorem given in Theorem
1.2 for locally convex spaces to the multilinear context, it becomes clear that such a
generalization is not possible:

Example 2.1. Suppose that E is a nontrivial real reflexive Banach space and that
a : E∗ × E∗ × E × E −→ R is the continuous 4−linear form defined by

a(x∗
1, x

∗
2, x3, x4) = x∗

1(x3)x
∗
2(x4), (x∗

1, x∗
2 ∈ E∗, x3, x4 ∈ E).

Then for all x3, x4 ∈ E, a(·, ·, x3, x4) ∈ L2(E∗, E∗) and

‖a(·, ·, x3, x4)‖ = ‖x3‖‖x4‖,
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so given a continuous bilinear form b : E × E −→ R we have that

for all x3, x4 ∈ E, b(x3, x4) ≤ β‖a(·, ·, x3, x4)‖,

with β = ‖b‖, but we can not assure that there exist x∗
1, x

∗
2 ∈ E∗ such that a(x∗

1, x
∗
2, ·, ·) =

b, since this would imply that b is the product of two linear functionals. Note that, even
in the case that dim(E) = 2, we can not guarantee the existence of such x∗

1 and x∗
2,

despite the preceding inequality.

We can, however, obtain a positive partial result, that also generalizes Theorem 1.2:

Theorem 2.2. Let n ≥ 1 and let E1, . . . , En, F be nontrivial real Hausdorff locally con-

vex spaces and assume that Ln(E1, . . . , En) is also a nontrivial real Hausdorff locally

convex space. Let a : E1 × · · · × En × F −→ R be a (n + 1)−linear form, let y∗0 ∈ F ∗

and let C be a convex subset of F such that for all y ∈ F, a(·, . . . , ·, y) ∈ Ln(E1, . . . , En).
Then

there exists Φ ∈ (Ln(E1, . . . , En))
∗

such that for all y ∈ C, y∗0(y) ≤ Φ(a(·, . . . , ·, y))

m

there exists a continuous seminorm p : Ln(E1, . . . , En) −→ R

such that for all y ∈ C, y∗0(y) ≤ p(a(·, . . . , ·, y)).

Moreover, if one of these equivalent conditions is satisfied, then we can take Φ and p

with Φ ≤ p.

Proof. The proof is very similar to that of Theorem 1.2. Let us first suppose that there
exists a continuous seminorm p : Ln(E1, . . . , En) −→ R such that for all y ∈ C we have
the inequality y∗0(y) ≤ p(a(·, . . . , ·, y)). If we apply the Hahn–Banach–Lagrange theorem
with the sublinear function S = p, the proper convex function

k : C −→ R

y 7→ −y∗0(y)

and the S−convex mapping

j : C −→ Ln(E1, . . . , En)
y 7→ a(·, . . . , ·, y),

it follows that there exists a linear form Φ : Ln(E1, . . . , En) −→ R such that Φ ≤ p

(hence Φ ∈ (Ln(E1, . . . , En))
∗) and

inf
y∈C

(Φ(a(·, . . . , ·, y))− y∗0(y)) = inf
y∈C

(p(a(·, . . . , ·, y))− y∗0(y)) .

But, since we are assuming that

inf
y∈C

(p(a(·, . . . , ·, y))− y∗0(y)) ≥ 0,

then
inf
y∈C

(Φ(a(·, . . . , ·, y))− y∗0(y)) ≥ 0,
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that is,

for all y ∈ C, y∗0(y) ≤ Φ(a(·, . . . , ·, y))

and thus we conclude that implication ⇑ is true.

And conversely, if for some Φ ∈ (Ln(E1, . . . , En))
∗ it holds that

y ∈ C ⇒ y∗0(y) ≤ Φ(a(·, . . . , ·, y)),

then we just take p = |Φ| as continuous seminorm on Ln(E1, . . . , En).

Observe that in both directions we have also proven that Φ ≤ p.

With a more restrictive hypothesis we can obtain something better than in Theorem 2.2,
as a consequence of this theorem or of Theorem 1.2:

Corollary 2.3. Let E1 and F be nontrivial real Hausdorff locally convex spaces, let n ≥ 1
and let E2, . . . , En be nontrivial vector spaces and let a : E1 × · · · ×En × F −→ R be an

(n+1)−linear form. If y∗0 ∈ F ∗ and C is a convex subset of F , (x2, . . . , xn) ∈ E2×· · ·×En

and for all y ∈ F, a(·, x2, . . . , xn, y) ∈ E∗
1 , then

there exists x∗∗
1 ∈ E∗∗

1

such that for all y ∈ C, y∗0(y) ≤ x∗∗
1 (a(·, x2, . . . , xn, y))

m

there exists p : E∗
1 −→ R continuous seminorm

such that for all y ∈ C, y∗0(y) ≤ p(a(·, x2, . . . , xn, y)).

In addition, when one of these equivalent conditions is satisfied we can take Φ and p in

such a way that Φ ≤ p.

Proof. The result follows from Theorem 1.2 or Theorem 2.2, with the bilinear form
b : E1 × F −→ R defined by

b(x, y) := a(x, x2, . . . , xn, y), (x ∈ E1, y ∈ F ).

In a similar way to Section 1, we can state for normed spaces concrete versions of the
multilinear Lax–Milgram Theorem 2.2, analogous to Corollaries 1.3 and 1.5.

3. Lax–Milgram and Hahn–Banach theorems are equivalent

As we asserted when we evoked the Hahn–Banach–Lagrange theorem, such a result
is a generalization of the Hahn–Banach theorem, although it is actually an equivalent
statement, deduced from the former. Theorem 1.2 has been obtained as a consequence of
the Hahn–Banach–Lagrange theorem. Now we close the circle, by showing that Theorem
1.2 provides us with a proof of the Hahn–Banach theorem, in one of its equivalent versions
(see for instance [9] for its classical forms).

Theorem 3.1. Let E be a nontrivial real normed space, let M be a nontrivial vector

subspace of E and let y∗0 : M −→ R be a continuous linear functional. Then there exists

a norm–preserving continuous linear extension x∗
0 : E −→ R of y∗0.
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Proof. We apply Corollary 1.5 (a consequence of Theorem 1.2) with F := M , C := M

and the bilinear form
a : E∗ ×M −→ R

(x∗, y) 7→ x∗(y).

Since for all y ∈ M we have that a(·, y) = y, and by hypothesis y∗0 ∈ M∗, Corollary 1.5
guarantees the existence of x∗

0 ∈ E∗ such that

for all y ∈ M, y∗0(y) ≤ a(x∗
0, y),

in other words, x∗
0 is a continuous linear extension of y∗0. In addition Corollary 1.5 allows

us to choose x∗
0 in such a way that

‖x∗
0‖ =

(

sup
y∈M, a(·,y)6=0

y∗0(y)

‖a(·, y)‖

)

+

= ‖y∗0‖

and thus the proof is complete.
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