Maximal Monotonicity, Conjugation and the Duality Product in Non-Reflexive Banach Spaces

M. Marques Alves
IMPA, Estrada Dona Castorina 110, 22460-320 Rio de Janeiro, Brazil
maicon@impa.br

B. F. Svaiter
IMPA, Estrada Dona Castorina 110, 22460-320 Rio de Janeiro, Brazil
benar@impa.br

Received: September 23, 2008

In this work we study some conditions which guarantee that a convex function represents a maximal monotone operator in non-reflexive Banach spaces.

Keywords: Fitzpatrick function, maximal monotone operator, non-reflexive Banach spaces

2000 Mathematics Subject Classification: 47H05, 49J52, 47N10

1. Introduction

Let X be a real Banach space and X^* its topological dual, both with norms denoted by $\| \cdot \|$. The duality product in $X \times X^*$ will be denoted by:

$$\pi : X \times X^* \to \mathbb{R}, \quad \pi(x, x^*) := \langle x, x^* \rangle = x^*(x).$$

(1)

A point to set operator $T : X \rightrightarrows X^*$ is a relation on $X \times X^*$:

$$T \subseteq X \times X^*$$

and $T(x) = \{ x^* \in X^* \mid (x, x^*) \in T \}$. An operator $T : X \rightrightarrows X^*$ is monotone if

$$\langle x - y, x^* - y^* \rangle \geq 0, \quad \forall (x, x^*), (y, y^*) \in T$$

and it is maximal monotone if it is monotone and maximal (with respect to the inclusion) in the family of monotone operators of X into X^*. The domain of $T : X \rightrightarrows X^*$ is defined by $D(T) := \{ x \in X \mid T(x) \neq \emptyset \}$.

Fitzpatrick proved constructively that maximal monotone operators are representable by convex functions. Before discussing his findings, let us establish some notation. We

*Partially supported by Brazilian CNPq scholarship 140525/2005-0.
†Partially supported by CNPq grants 300755/2005-8, 475647/2006-8 and by PRONEX-Optimization.
denote the set of extended-real valued functions on \(X \) by \(\mathbb{R}^X \). The epigraph of \(f \in \mathbb{R}^X \) is defined by
\[
E(f) := \{(x, \mu) \in X \times \mathbb{R} \mid f(x) \leq \mu \}.
\]
We say that \(f \in \mathbb{R}^X \) is lower semicontinuous (l.s.c. from now on) if \(E(f) \) is closed in the strong topology of \(X \times \mathbb{R} \).

Let \(T : X \rightrightarrows X^* \) be maximal monotone. The Fitzpatrick function of \(T \) is \[\varphi_T \in \mathbb{R}^{X \times X^*}, \quad \varphi_T(x, x^*) := \sup_{(y, y^*) \in T} \langle x - y, y^* - x^* \rangle + \langle x, x^* \rangle \] (2)
and the Fitzpatrick family associated with \(T \) is
\[
\mathcal{F}_T := \left\{ h \in \mathbb{R}^{X \times X^*} \mid \begin{array}{l}
h \text{ is convex and l.s.c.} \\
h(x, x^*) \geq \langle x, x^* \rangle, \quad \forall (x, x^*) \in X \times X^* \\
(x, x^*) \in T \Rightarrow h(x, x^*) = \langle x, x^* \rangle
\end{array} \right\}.
\]

In the next theorem we summarize the Fitzpatrick’s results:

Theorem 1.1 ([4, Theorem 3.10]). Let \(X \) be a real Banach space and \(T : X \rightrightarrows X^* \) be maximal monotone. Then for any \(h \in \mathcal{F}_T \)
\[
(x, x^*) \in T \iff h(x, x^*) = \langle x, x^* \rangle
\]
and \(\varphi_T \) is the smallest element of the family \(\mathcal{F}_T \).

Fitzpatrick’s results described above were rediscovered by Martínez-Legaz and Théra [9], and Burachik and Svaiter [2].

It seems interesting to study conditions under which a convex function \(h \in \mathbb{R}^X \) represents a maximal monotone operator, that is, \(h \in \mathcal{F}_T \) for some maximal monotone operator \(T \). Our aim is to extend previous results on this direction. We will need some auxiliary results and additional notation for this aim.

The Fenchel-Legendre conjugate of \(f \in \mathbb{R}^X \) is
\[
f^* \in \mathbb{R}^{X^*}, \quad f^*(x^*) := \sup_{x \in X} \langle x, x^* \rangle - f(x).
\]
Whenever necessary, we will identify \(X \) with its image under the canonical injection of \(X \) into \(X^{**} \). Burachik and Svaiter proved that the family \(\mathcal{F}_T \) is invariant under the mapping
\[
\mathcal{J} : \mathbb{R}^{X \times X^*} \rightarrow \mathbb{R}^{X \times X^*}, \quad \mathcal{J} h(x, x^*) := h^*(x^*, x).
\]
This means that if \(T : X \rightrightarrows X^* \) is maximal monotone, then [2]
\[
\mathcal{J}(\mathcal{F}_T) \subset \mathcal{F}_T.
\]
In particular, for any \(h \in \mathcal{F}_T \) it holds that \(h \geq \pi \), \(\mathcal{J}h \geq \pi \), that is,
\[
h(x, x^*) \geq \langle x, x^* \rangle, \quad h^*(x^*, x) \geq \langle x, x^* \rangle, \quad \forall (x, x^*) \in X \times X^*.
\]
So, the above conditions are necessary for a convex function \(h \) on \(X \times X^* \) to represent a maximal monotone operator. Burachik and Svaiter proved that these conditions are also sufficient, in a reflexive Banach space, for \(h \) to represent a maximal monotone operator [3]:

Theorem 1.2 ([3, Theorem 3.1]). Let \(h \in \mathbb{R}^{X \times X^*} \) be proper, convex, l.s.c. and

\[
h(x, x^*) \geq \langle x, x^* \rangle, \quad h^*(x^*, x) \geq \langle x, x^* \rangle, \quad \forall (x, x^*) \in X \times X^*. \tag{5}
\]

If \(X \) is reflexive, then

\[
T := \{(x, x^*) \in X \times X^* \mid h(x, x^*) = \langle x, x^* \rangle\}
\]

is maximal monotone and \(h, Jh \in \mathcal{F}_T \).

Marques Alves and Svaiter generalized Theorem 1.2 to non-reflexive Banach spaces as follows:

Theorem 1.3 ([5, Corollary 4.4]). If \(h \in \mathbb{R}^{X \times X^*} \) is convex and

\[
h(x, x^*) \geq \langle x, x^* \rangle, \quad \forall (x, x^*) \in X \times X^*,
\]

\[
h^*(x^*, x^{**}) \geq \langle x^*, x^{**} \rangle, \quad \forall (x^*, x^{**}) \in X^* \times X^{**} \tag{6}
\]

then

\[
T := \{(x, x^*) \in X \times X^* \mid h^*(x^*, x) = \langle x, x^* \rangle\}
\]

is maximal monotone and \(Jh \in \mathcal{F}_T \). Moreover, if \(h \) is l.s.c. then \(h \in \mathcal{F}_T \).

Condition (6) of Theorem 1.3 enforces the operator \(T \) to be of type (NI) [6] and is not necessary for maximal monotonicity of \(T \) in a non-reflexive Banach space. Note that the weaker condition (5) of Theorem 1.2 is still necessary in non-reflexive Banach spaces for the inclusion \(h \in \mathcal{F}_T \), where \(T \) is a maximal monotone operator. The main result of this paper is another generalization of Theorem 1.2 to non-reflexive Banach spaces which uses condition (5) instead of (6). To obtain this generalization, we add a regularity assumption on the domain of \(h \).

If \(T : X \rightrightarrows X^* \) is maximal monotone, it is easy to prove that \(\varphi_T \) is minimal in the family of all convex functions in \(X \times X^* \) which majorizes the duality product. So, it is natural to ask whether the converse also holds, that is:

Is any minimal element of this family (convex functions which majorizes the duality product) a Fitzpatrick function of some maximal monotone operator?

To give a partial answer to this question, Martínez-Legaz and Svaiter proved the following results, which we will use latter on:

Theorem 1.4 ([8, Theorem 5]). Let \(\mathcal{H} \) be the family of convex functions in \(X \times X^* \) which majorizes the duality product:

\[
\mathcal{H} := \left\{ h \in \mathbb{R}^{X \times X^*} \mid h \text{ is proper, convex and } h \geq \pi \right\}. \tag{7}
\]

The following statements hold true:
1. The family \mathcal{H} is (downward) inductively ordered;
2. For any $h \in \mathcal{H}$ there exists a minimal $h_0 \in \mathcal{H}$ such that $h \geq h_0$;
3. Any minimal element g of \mathcal{H} is l.s.c. and satisfies $Jg \geq g$.

Note that item 2. is a direct consequence of item 1. Combining item 3. with Theorem 1.2, Martínez-Legaz and Svaiter concluded that in a reflexive Banach space, any minimal element of \mathcal{H} is the Fitzpatrick function of some maximal monotone operator [8, Theorem 5]. We will also present a partial extension of this result for non-reflexive Banach spaces.

2. Basic results and notation

The weak-star topology of X^* will be denoted by ω^* and by s we denote the strong topology of X. A function $h \in \mathbb{R}^{X \times X^*}$ is lower semicontinuous in the strong \times weak-star topology if $E(h)$ is a closed subset of $X \times X^* \times \mathbb{R}$ in the $s \times \omega^* \times | \cdot |$ topology.

The indicator function of $V \subset X$ is δ_V, $\delta_V(x) := 0$, $x \in V$ and $\delta_V(x) := \infty$, otherwise. The closed convex closure of $f \in \mathbb{R}^X$ is defined by

$$
\text{cl conv } f \in \mathbb{R}^X, \quad \text{cl conv } f(x) := \inf\{\mu \in \mathbb{R} | (x, \mu) \in \text{cl conv } E(f)\}
$$

where for $U \subset X$, $\text{cl conv } U$ is the closed convex hull (in the s topology) of U. The effective domain of a function $f \in \mathbb{R}^X$ is

$$
D(f) := \{x \in X | f(x) < \infty\},
$$

and f is proper if $D(f) \neq \emptyset$ and $f(x) > -\infty$ for all $x \in X$. If f is proper, convex and l.s.c., then f^* is proper. For $h \in \mathbb{R}^{X \times X^*}$, we also define

$$
\text{Pr}_X D(h) := \{x \in X | \exists x^* \in X^* | (x, x^*) \in D(h)\}.
$$

Let $T : X \rightrightarrows X^*$ be maximal monotone. In [2] Burachik and Svaiter defined and studied the biggest element of \mathcal{F}_T, namely, the \mathcal{S}-function, $\mathcal{S}_T \in \mathcal{F}_T$ defined by

$$
\mathcal{S}_T \in \mathbb{R}^{X \times X^*}, \quad \mathcal{S}_T := \sup_{h \in \mathcal{F}_T} \{h\},
$$

or, equivalently

$$
\mathcal{S}_T = \text{cl conv}(\pi + \delta_T).
$$

Recall that $\mathcal{J}(\mathcal{F}_T) \subset \mathcal{F}_T$. Additionally [2]

$$
\mathcal{J} \mathcal{S}_T = \varphi_T
$$

and, in a reflexive Banach space, $\mathcal{J} \varphi_T = \mathcal{S}_T$.

In what follows we present the Attouch-Brezis’s version of the Fenchel-Rockafellar duality theorem:
Theorem 2.1 ([1, Theorem 1.1]). Let Z be a Banach space and $\varphi, \psi \in \mathbb{R}^Z$ be proper, convex and l.s.c. functions. If

$$\bigcup_{\lambda > 0} \lambda [D(\varphi) - D(\psi)],$$

is a closed subspace of Z, then

$$\inf_{z \in Z} \varphi(z) + \psi(z) = \max_{z^* \in Z^*} -\varphi^*(z^*) - \psi^*(-z^*).$$

Given X, Y Banach spaces, $\mathcal{L}(Y, X)$ denotes the set of continuous linear operators of Y into X. The range of $A \in \mathcal{L}(Y, X)$ is denoted by $R(A)$ and the adjoint by $A^* \in \mathcal{L}(X^*, Y^*)$:

$$\langle Ay, x^* \rangle = \langle y, A^* x^* \rangle \ \forall y \in Y, x^* \in X^*,$$

where X^*, Y^* are the topological duals of X and Y, respectively. The next proposition is a particular case of Theorem 3 of [10]. For the sake of completeness, we give the proof in the Appendix A.

Proposition 2.2. Let X, Y Banach spaces and $A \in \mathcal{L}(Y, X)$. For $h \in \mathbb{R}^{X \times X^*}$, proper convex and l.s.c., define $f \in \mathbb{R}^{Y \times Y^*}$

$$f(y, y^*) := \inf_{x^* \in X^*} h(Ay, x^*) + \delta_{\{0\}}(y^* - A^* x^*).$$

If

$$\bigcup_{\lambda > 0} \lambda [\text{Pr}_X D(h) - R(A)],$$

is a closed subspace of X, then

$$f^*(z^*, z) = \min_{u^* \in X^*} h^*(u^*, Az) + \delta_{\{0\}}(z^* - A^* u^*).$$

Martínez-Legaz and Svaiter [7] defined, for $h \in \mathbb{R}^{X \times X^*}$ and $(x_0, x_0^*) \in X \times X^*$, $h_{(x_0, x_0^*)} \in \mathbb{R}^{X \times X^*}$

$$h_{(x_0, x_0^*)}(x, x^*) := h(x + x_0, x^* + x_0^*) - [\langle x, x_0^* \rangle + \langle x_0, x^* \rangle + \langle x_0, x_0^* \rangle]$$

$$= h(x + x_0, x^* + x_0^*) - \langle x + x_0, x^* + x_0^* \rangle + \langle x, x^* \rangle.$$ (12)

The operation $h \mapsto h_{(x_0, x_0^*)}$ preserves many properties of h, as convexity and lower semicontinuity. Moreover, one can easily prove the following Proposition:

Proposition 2.3. Let $h \in \mathbb{R}^{X \times X^*}$. Then it holds that

1. $h \geq \pi \iff h_{(x_0, x_0^*)} \geq \pi, \ \forall (x_0, x_0^*) \in X \times X^*$;
2. $Jh_{(x_0, x_0^*)} = (Jh)_{(x_0, x_0^*)}, \ \forall (x_0, x_0^*) \in X \times X^*.$
3. Main results

In the next theorem we generalize Theorem 1.2 to non-reflexive Banach spaces under condition (5) instead of condition (6) used in Theorem 1.3. To obtain this generalization, we add a regularity assumption (14) on the domain of h.

Theorem 3.1. Let $h \in \mathbb{R}^{X \times X^*}$ be proper, convex and

$$
\begin{align*}
 h(x, x^*) &\geq \langle x, x^* \rangle, \\
 h^*(x^*, x) &\geq \langle x, x^* \rangle, \\
 \forall (x, x^*) &\in X \times X^*.
\end{align*}
$$

If

$$
\bigcup_{\lambda > 0} \lambda \text{Pr}_X D(h),
$$

is a closed subspace of X, then

$$
T := \{ (x, x^*) \in X \times X^* \mid h^*(x^*, x) = \langle x, x^* \rangle \}
$$

is maximal monotone and $Jh \in \mathcal{F}_T$.

Proof. First, define $\tilde{h} := \text{cl} \, h$ and note that \tilde{h} is proper, convex, l.s.c., satisfies (13), (14) and $\tilde{J}h = Jh$. So, it suffices to prove the theorem for the case where h is l.s.c., and we assume it from now on in this proof. Monotonicity of T follows from Theorem 5 of [7]. Note that for any $x \in X$

$$
T(x) = \{ x^* \in X^* \mid h^*(x^*, x) - \langle x, x^* \rangle \leq 0 \}.
$$

Therefore, $T(x)$ is convex and ω^*-closed.

To prove maximality of T, take $(x_0, x^*_0) \in X \times X^*$ such that

$$
\langle x - x_0, x^* - x^*_0 \rangle \geq 0, \quad \forall (x, x^*) \in T
$$

and suppose $x^*_0 \notin T(x_0)$. As $T(x_0)$ is convex and ω^*-closed, using the geometric version of the Hahn-Banach theorem in X^* endowed with the ω^* topology we conclude that (even if $T(x_0)$ is empty) there exists $z_0 \in X$ such that

$$
\langle z_0, x^*_0 \rangle < \langle z_0, x^* \rangle, \quad \forall x^* \in T(x_0).
$$

Let $Y := \text{span} \{ x_0, z_0 \}$. Define $A \in \mathcal{L}(Y, X), A \, y := y, \forall y \in Y$ and the convex function $f \in \mathbb{R}^{Y \times Y^*}$,

$$
\begin{align*}
 f(y, y^*) := \inf_{x^* \in X^*} h(Ay, x^*) + \delta_{\{0\}}(y^* - A^* x^*).
\end{align*}
$$

Using Proposition 2.2 we obtain

$$
\begin{align*}
 f^*(y^*, y) &= \min_{x^* \in X^*} h^*(x^*, Ay) + \delta_{\{0\}}(y^* - A^* x^*).
\end{align*}
$$

Using (13), (17) and (18) it is easy to see that

$$
\begin{align*}
 f(y, y^*) &\geq \langle y, y^* \rangle, \\
 f^*(y^*, y) &\geq \langle y, y^* \rangle, \\
 \forall (y, y^*) &\in Y \times Y^*.
\end{align*}
$$
Define \(g := \mathcal{J}f \). As \(Y \) is reflexive we have \(\mathcal{J}g = \text{cl} \ f \). Therefore, using (19) we also have
\[
g(y, y^*) \geq \langle y, y^* \rangle, \quad g^*(y^*, y) \geq \langle y, y^* \rangle, \quad \forall (y, y^*) \in Y \times Y^*.
\tag{20}
\]

Now, using (20) and item 1. of Proposition 2.3 we obtain
\[
g_{(x_0, A^*x_0^*)}(y, y^*) + \frac{1}{2} \|y\|^2 + \frac{1}{2} \|y^*\|^2 \\
\geq \langle y, y^* \rangle + \frac{1}{2} \|y\|^2 + \frac{1}{2} \|y^*\|^2 \geq 0, \quad \forall (y, y^*) \in Y \times Y^*.
\tag{21}
\]

and
\[
(\mathcal{J}g)_{(x_0, A^*x_0^*)}(y, y^*) + \frac{1}{2} \|y\|^2 + \frac{1}{2} \|y^*\|^2 \\
\geq \langle y, y^* \rangle + \frac{1}{2} \|y\|^2 + \frac{1}{2} \|y^*\|^2 \geq 0, \quad \forall (y, y^*) \in Y \times Y^*.
\tag{22}
\]

Using Theorem 2.1 and item 2. of Proposition 2.3 we conclude that there exists \((\tilde{z}, \tilde{z}^*) \in Y \times Y^*\) such that
\[
\inf_{(y, y^*) \in Y \times Y^*} g_{(x_0, A^*x_0^*)}(y, y^*) + \frac{1}{2} \|y\|^2 + \frac{1}{2} \|y^*\|^2 = 0.
\tag{23}
\]

From (21), (22) and (23) we have
\[
\inf_{(y, y^*) \in Y \times Y^*} g_{(x_0, A^*x_0^*)}(y, y^*) + \frac{1}{2} \|y\|^2 + \frac{1}{2} \|y^*\|^2 = 0.
\tag{24}
\]

As \(Y \) is reflexive, from (12), (24) we conclude that there exists \((\hat{y}, \hat{y}^*) \in Y \times Y^*\) such that
\[
g(\hat{y} + x_0, \hat{y}^* + A^*x_0^*) - \langle \hat{y} + x_0, \hat{y}^* + A^*x_0^* \rangle + \langle \hat{y}, \hat{y}^* \rangle + \frac{1}{2} \|\hat{y}\|^2 + \frac{1}{2} \|\hat{y}^*\|^2 = 0.
\tag{25}
\]

Using (25) and the first inequality of (20) (and the definition of \(g \)) we have
\[
f^*(\hat{y}^* + A^*x_0^*, \hat{y} + x_0) = \langle \hat{y} + x_0, \hat{y}^* + A^*x_0^* \rangle
\tag{26}
\]
and
\[
\langle \hat{y}, \hat{y}^* \rangle + \frac{1}{2} \|\hat{y}\|^2 + \frac{1}{2} \|\hat{y}^*\|^2 = 0.
\tag{27}
\]

Using (18) we have that there exists \(w_0^* \in X^* \) such that
\[
f^*(\hat{y}^* + A^*x_0^*, \hat{y} + x_0) = h^*(w_0^*, A(\hat{y} + x_0)), \quad \hat{y}^* + A^*x_0^* = A^*w_0^*.
\tag{28}
\]

So, combining (26) and (28) we have
\[
h^*(w_0^*, A(\hat{y} + x_0)) = \langle \hat{y} + x_0, A^*w_0^* \rangle = \langle A(\hat{y} + x_0), w_0^* \rangle.
\]

In particular, \(w_0^* \in T(A(\hat{y} + x_0)) \). As \(x_0 \in Y \), we can use (15) and the second equality of (28) to conclude that
\[
\langle A(\hat{y} + x_0) - x_0, w_0^* - x_0^* \rangle = \langle \hat{y}, A^*(w_0^* - x_0^*) \rangle = \langle \hat{y}, \hat{y}^* \rangle \geq 0.
\tag{29}
\]
Using (27) and (29) we conclude that $\hat{y} = 0$ and $\hat{y}^* = 0$. Therefore,

$$w_0^* \in T(x_0), \quad A^* x_0 = A^* w_0^*.$$

As $z_0 \in Y$, we have $z_0 = A z_0$ and so

$$\langle z_0, x_0^* \rangle = \langle A z_0, x_0^* \rangle = \langle z_0, A^* x_0^* \rangle = \langle z_0, A^* w_0^* \rangle = \langle z_0, w_0^* \rangle,$$

that is,

$$\langle z_0, x_0^* \rangle = \langle z_0, w_0^* \rangle, \quad w_0^* \in T(x_0)$$

which contradicts (16). Therefore, $(x_0, x_0^*) \in T$ and so T is maximal monotone and $J h \in F_T$.

Observe that if h is convex, proper and l.s.c. in the strong \times weak-star topology, then $J^2 h = h$. Therefore, using this observation we have the following corollary of Theorem 3.1:

Corollary 3.2. Let $h \in \mathbb{R}^{X \times X^*}$ be proper, convex, l.s.c. in the strong \times weak-star topology and

$$h(x, x^*) \geq \langle x, x^* \rangle, \quad h^*(x^*, x) \geq \langle x, x^* \rangle, \quad \forall (x, x^*) \in X \times X^*.$$

If

$$\bigcup_{\lambda > 0} \lambda \Pr_X D(h),$$

is a closed subspace of X, then

$$T := \{ (x, x^*) \in X \times X^* \mid h(x, x^*) = \langle x, x^* \rangle \}$$

is maximal monotone and $h, J h \in F_T$.

Proof. Using Theorem 3.1 we conclude that the set

$$S := \{ (x, x^*) \in X \times X^* \mid h^*(x^*, x) = \langle x, x^* \rangle \}$$

is maximal monotone. Take $(x, x^*) \in S$. As π is Gateaux differentiable, $h \geq \pi$ and $\pi(x, x^*) = h(x, x^*)$, we have (see Lemma 4.1 of [5])

$$D\pi(x, x^*) \in \partial J h(x, x^*),$$

where $D\pi$ stands for the Gateaux derivative of π. As $D\pi(x, x^*) = (x^*, x)$, we conclude that

$$J h(x, x^*) + J^2 h(x, x^*) = \langle (x, x^*), (x^*, x) \rangle.$$

Substituting $J h(x, x^*)$ by (x, x^*) in the above equation we conclude that $J^2 h(x, x^*) = \langle x, x^* \rangle$. Therefore, as $J^2 h(x, x^*) = h(x, x^*)$,

$$S \subset T.$$

To end the proof use the maximal monotonicity of S (Theorem 3.1) and the monotonicity of T (see Theorem 5 of [7]) to conclude that $S = T$.

It is natural to ask whether we can drop lower semicontinuity assumptions. In the context of non-reflexive Banach spaces, we should use the l.s.c. closure in the strong \times weak-star topology. Unfortunately, as the duality product is not continuous in this topology, it is not clear whether the below implication holds:

$$ h \geq \pi \Rightarrow \text{cl}_{s\times\omega^*} h \geq \pi. $$

Corollary 3.3. Let $h \in \mathbb{R}^{X \times X^*}$ be proper, convex and

$$ h(x, x^*) \geq \langle x, x^* \rangle, \quad h^*(x^*, x) \geq \langle x, x^* \rangle, \quad \forall (x, x^*) \in X \times X^*. $$

If

$$ \bigcup_{\lambda > 0} \lambda \text{Pr}_X D(h) $$

is a closed subspace of X, then

$$ \text{cl}_{s\times\omega^*} h \in F_T, $$

where $\text{cl}_{s\times\omega^*}$ denotes the l.s.c. closure in the strong \times weak-star topology and T is the maximal monotone operator defined as in Theorem 3.1:

$$ T := \{(x, x^*) \in X \times X^* \mid h^*(x^*, x) = \langle x, x^* \rangle\}. $$

In particular, $\text{cl}_{s\times\omega^*} h \geq \pi$.

Proof. First use Theorem 3.1 to conclude that T is maximal monotone and $\mathcal{J} h \in F_T$. In particular,

$$ \mathcal{S}_T \geq \mathcal{J} h \geq \varphi_T. $$

Therefore,

$$ \mathcal{J} \varphi_T \geq \mathcal{J}^2 h \geq \mathcal{J} \mathcal{S}_T. $$

As $\mathcal{J} \mathcal{S}_T = \varphi_T \in F_T$ and $\mathcal{J} \varphi_T \in F_T$, we conclude that $\text{cl}_{s\times\omega^*} h = \mathcal{J}^2 h \in F_T$. \hfill \square

In the next corollary we give a partial answer for an open question proposed by Martínez-Legaz and Svaiter in [8], in the context of non-reflexive Banach spaces.

Corollary 3.4. Let \mathcal{H} be the family of convex functions on $X \times X^*$ bounded below by the duality product, as defined in (7). If g is a minimal element of \mathcal{H} and

$$ \bigcup_{\lambda > 0} \lambda \text{Pr}_X D(g) $$

is a closed subspace of X, then there exists a maximal monotone operator T such that $g = \varphi_T$, where φ_T is the Fitzpatrick function of T.

Proof. Using item 3. of Theorem 1.4 and Theorem 3.1 we have that

$$ T := \{(x, x^*) \in X \times X^* \mid g^*(x^*, x) = \langle x, x^* \rangle\} $$

is maximal monotone, $\mathcal{J} g \in F_T$ and

$$ T \subset \{(x, x^*) \in X \times X^* \mid g(x, x^*) = \langle x, x^* \rangle\}. $$

As g is convex and bounded below by the duality product, using Theorem 5 of [7], we conclude that the rightmost set on the above inclusion is monotone. Since T is maximal monotone, the above inclusion holds as an equality and, being l.s.c., $g \in F_T$.

To end the proof, note that $g \geq \varphi_T \in \mathcal{H}$. \hfill \square
A. Proof of Proposition 2.2

Proof of Proposition 2.2. Using the Fenchel-Young inequality we have, for any $(y, y^*), (z, z^*) \in Y \times Y^*$ and $x^*, u^* \in X^*$,
\[
 h(Ay, x^*) + \delta_{01}(y^* - A^*x^*) + h^*(u^*, Az) + \delta_{01}(z^* - A^*u^*) \geq \langle Ay, u^* \rangle + \langle Az, x^* \rangle.
\]
Taking the infimum over $x^*, u^* \in X^*$ on the above inequality we get
\[
f(y, y^*) + \inf_{u^* \in X^*} h^*(u^*, Az) + \delta_{01}(z^* - A^*u^*) \geq \langle y, z^* \rangle + \langle z, y^* \rangle = \langle (z^*, z), (y, y^*) \rangle,
\]
that is,
\[
\langle (z^*, z), (y, y^*) \rangle - f(y, y^*) \leq \inf_{u^* \in X^*} h^*(u^*, Az) + \delta_{01}(z^* - A^*u^*).
\]
Now, taking the supremum over $(y, y^*) \in Y \times Y^*$ on the left hand side of the above inequality we obtain
\[
f^*(z^*, z) \leq \inf_{u^* \in X^*} h^*(u^*, Az) + \delta_{01}(z^* - A^*u^*). \tag{30}
\]
For a fixed $(z, z^*) \in Y \times Y^*$ such that $f^*(z^*, z) < \infty$, define $\varphi, \psi \in \mathbb{R}^{Y \times X \times Y^* \times X^*}$,
\[
 \varphi(y, x, y^*, x^*) := f^*(z^*, z) - \langle y, z^* \rangle - \langle z, y^* + A^*x^* \rangle + \delta_{01}(y^*) + h(x, x^*),
\]
\[
 \psi(y, x, y^*, x^*) := \delta_{01}(x - Ay).
\]
Direct calculations yields
\[
 \bigcup_{\lambda > 0} \lambda[\varphi(\varphi) - D(\varphi)] = Y \times \bigcup_{\lambda > 0} \lambda[\Pr_X D(h)] - R(A)] \times Y^* \times X^*. \tag{31}
\]
Using (11), (31) and Theorem 2.1 for φ and ψ, we conclude that there exists $(y^*, x^*, y^{**}, x^{**}) \in Y^* \times X^* \times Y^{**} \times X^{**}$ such that
\[
 \inf \varphi + \psi = -\varphi^*(y^*, x^*, y^{**}, x^{**}) - \psi^*(-y^*, -x^*, -y^{**}, -x^{**}). \tag{32}
\]
Now, notice that
\[
 (\varphi + \psi)(y, x, y^*, x^*) \geq f^*(z^*, z) + f(y, A^*x^*) - \langle (z^*, z), (y, A^*x^*) \rangle \geq 0. \tag{33}
\]
Using (32) and (33) we get
\[
 \varphi^*(y^*, x^*, y^{**}, x^{**}) + \psi^*(-y^*, -x^*, -y^{**}, -x^{**}) \leq 0. \tag{34}
\]
Direct calculations yields
\[
\psi^*(-y^*, -x^*, -y^{**}, -x^{**}) = \sup_{(y, z^*, w^*)} (y, -y^* - A^*x^*) + \langle z^*, -y^{**} \rangle + \langle w^*, -x^{**} \rangle
\]
\[
= \delta_{01}(y^* + A^*x^*) + \delta_{01}(y^{**}) + \delta_{01}(x^{**}). \tag{35}
\]
Now, using (34) and (35) we conclude that

\[y^{**} = 0, \quad x^{**} = 0 \quad \text{and} \quad y^* = -A^*x^*. \]

Therefore, from (34) we have

\[
\varphi^*(-A^*x^*, x^*, 0, 0) = \sup_{(y, x, w^*)} \left(\langle y, z^* - A^*x^* \rangle + \langle x, x^* \rangle + \langle Az, w^* \rangle - h(x, w^*) \right) - f^*(z^*, z)
\]

\[
= h^*(x^*, Az) + \delta_{\{0\}}(z^* - A^*x^*) - f^*(z^*, z) \leq 0,
\]

that is, there exists \(x^* \in X^* \) such that

\[f^*(z^*, z) \geq h^*(x^*, Az) + \delta_{\{0\}}(z^* - A^*x^*). \]

Finally, using (30) we conclude the proof. \(\square \)

References

