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We show the connexions between the maximality of a monotone set-valued mapping and some conti-
nuity conditions on the domain of the mapping and on the mapping itself. We provide an original and
simple proof of the famous characterization of maximal monotone mapping of Minty. Some words are
said on monotone variational and generalized equilibrium problems.
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1. Introduction and notation

An optimization problem is of the form

Find a ∈ C such that γ(a, x) = g(x)− g(a) ≥ 0 ∀x ∈ C (Ep)

where g : Ω → R and C ⊆ Ω ⊆ R
n. The problem is said to be convex if the constraint

set C is convex and the objective function g is convex on Ω. In this case, the problem
can be written as

Find a ∈ C s.t. g′(a, x− a) = sup[〈a∗, x− a〉 : a∗ ∈ ∂g(a)] ≥ 0 ∀x ∈ C (Cp)

where ∂g(a) denotes the subdifferential of g at a and g′(a, h) the directional derivative
of g at a along the direction h. Convex optimization problems are particular cases of
monotone variational inequality problems. Among the various formulations of these
problems, the closest to (Cp) is as follows

Find a ∈ C s.t. γ(a, x) = sup[〈a∗, x− a〉 : a∗ ∈ Γ(a)] ≥ 0 ∀x ∈ C (V ip)

where C ⊆ Ω is convex and Γ : Ω
−→
−→ R

n is a monotone set-valued mapping.

If monotone variational inequality problems encompass convex optimization problems,
there are real world monotone variational inequality problems which cannot be ex-
pressed as convex optimization problems. Maximality of Γ holds in these problems the
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role played by lower semicontinuity of the objective function g in convex optimization
problems. It is defined in terms of inclusion: Γ is said to be maximal monotone on Ω if
it is not contained in another monotone mapping on Ω. Maximality implies some forms
of continuity of the domains (Sections 2 and 3) and of the mappings itself (Section 4
and 5). Conversely, we shall show that these continuities imply maximality. As a corol-
lary, we provide a simple and original proof of the celebrated Minty’s characterization
of maximality.

In the past years a number of papers have appeared devoted to monotone equilibrium
problems which are presumed to encompass monotone variational inequality problems.
These problems are of the form

Find a ∈ C such that γ(a, x) ≥ 0 ∀x ∈ C (Eqp)

where the bifunction γ : Ω×Ω → R is such that, for all x, y ∈ Ω, γ(x, x) = 0, γ(x, .) is
convex and γ(x, y)+γ(y, x) ≤ 0. Usually an upper semicontinuity condition is required
on the functions γ(., y). We shall show in Section 6 that the problem is nothing else
than a classical monotone variational inequality problem and the equilibrium problem
is nothing but a complicated formulation.

Now, let us precise the notation used throughout the paper. Given a subset S 6= ∅
of a topological vector space X, we denote by co (S) and co (S) the convex hull and
the closed convex hull of S respectively. Given a ∈ S, lin (S) denotes the linear space
generated by S−a, this space does not depend on the point a chosen in S, and dim(S)
denotes the dimension of lin (S). The affine space generated by S is aff (S) = lin (S)+a.

Denote by X∗ the topological dual space of X. With G ⊂ X × X∗, we associate the
set-valued mappings Γ : X

−→
−→ X∗ and Γ−1 : X∗ −→

−→ X such that

G = {(x, x∗) : x∗ ∈ Γ(x)} = {(x, x∗) : x ∈ Γ−1(x∗)}.

Thus G can be considered, up to a permutation of the two variables, as the graph of
both mappings Γ and Γ−1. The domains of Γ and Γ−1 are the projections of G on X
and X∗, namely,

dom (Γ) = {x : Γ(x) 6= ∅} = Pr X(G),

dom (Γ−1) = {x∗ : Γ−1(x∗) 6= ∅} = Pr X∗(G).

The normal cone at x ∈ D to a convex set D ⊂ X is

ND(x) = {x∗ ∈ X∗ : 〈x∗, y − x〉 ≤ 0 ∀ y ∈ D}.

In particular ND(x) = {0} when x ∈ int (D).

If for any sequence {(xk, x
∗
k)}k ⊂ G converging to (x, x∗) one has (x, x∗) ∈ G then the

mapping Γ is said to be closed at x and the mapping Γ−1 closed at x∗. If G is closed,
V ⊂ dom (Γ) is open and there exists a compact set K ⊇ Γ(V ), then Γ is usc on V in
the sense of multivalued mappings, i.e., for all a ∈ V and all open Ω ⊇ Γ(a), there is a
neighbourhood W of a such that Γ(W ) ⊆ Ω .

The relative interior ri (S) of S is the interior of S when considered as a subset of aff (S)
and the relative boundary is the set of points in cl (S) which are not in ri (S). WhenX is
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finite dimensional and S ⊂ X is convex and nonempty, then aff (S) = aff (cl (S)), ri (S)
is convex and nonempty, cl (S) = cl (ri (S)) and ri (S) = ri (cl (S)). Because some of
the main results in this paper are based on this very important property, it is assumed
throughout all the paper that X = X∗ = R

n.

By convention, A+ ∅ = ∅ for all A ⊆ R
n.

2. Monotonicity: definitions

In this section, we briefly recall some definitions and basic facts on monotone mappings.

A set-valued mapping Γ : Rn −→
−→ R

n is said to be monotone if

〈x∗ − y∗, x− y〉 ≥ 0 for all (x, x∗), (y, y∗) ∈ G, (1)

where G = graph (Γ). Then, Γ−1 is monotone as well. Although the definition of
monotonicity is often given for mappings, the true definition is on sets: a subset G of
R

n × R
n is said to monotone if (1) holds.

G is said to be maximal monotone if G is monotone and if G ⊆ F with F monotone
implies G = F . Then the mappings Γ and Γ−1 associated with G are called maximal
monotone. It is usual to associate with G the set

G̃ :=
⋂

(y,y∗)∈G

{(x, x∗) ∈ R
n × R

n : 〈x∗ − y∗, x− y〉 ≥ 0} . (2)

G is monotone if and only if G ⊆ G̃. In this case,

G̃ = {(x, x∗) ∈ R
n × R

n : G ∪ {(x, x∗)} is monotone}. (3)

From that one deduces that G is maximal monotone if and only if G = G̃. In the
line of this property, we say that a monotone mapping Γ is maximal monotone at a if
Γ(a) = Γ̃(a) where Γ̃ : Rn −→

−→ R
n is the associated mapping with G̃.

The mapping Γ is said to be cyclically monotone if for any finite ordered family
{(xi, x

∗
i )}i=0,1,··· ,p ⊂ G = graph (Γ) with (x0, x

∗
0) = (xp+1, x

∗
p+1), one has

p∑

i=0

〈x∗
i , xi+1〉 ≤

p∑

i=0

〈x∗
i , xi〉. (4)

A cyclically monotone mapping is monotone. Setting j = p+ 1− i in (4) one obtains

p∑

j=0

〈xj, x
∗
j+1〉 ≤

p∑

j=0

〈xj, x
∗
j〉.

Therefore, as for monotonicity, Γ is cyclically monotone if and only if Γ−1 is so. As for
monotonicity, cyclic monotonicity is defined in terms of the set G as well as in terms
of the associated mappings Γ and Γ−1.
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G is said to be maximal cyclically monotone if it is cyclically monotone and if F ⊇ G
with F cyclically monotone implies G = F . Then Γ and Γ−1 are said to be maximal
cyclically monotone. In line with (3), we associate with G the set

Ĝ := {(x, x∗) ∈ R
n × R

n : G ∪ {(x, x∗)} is cyclically monotone}.

When G is cyclically monotone we also have

Ĝ =
⋂

J∈J

{
(x, x∗) : 〈x∗, a1〉+ 〈a∗p, x〉+

p−1∑

i=1

〈a∗i , ai+1〉 ≤ 〈x∗, x〉+

p∑

i=1

〈a∗i , ai〉

}
(5)

where J denotes the family of all ordered finite subsets J = {(ai, a
∗
i )}i=1,··· ,p of G.

Hence one deduces that G is maximal cyclically monotone if and only if G = Ĝ.
A cyclically monotone mapping Γ is said to be maximal cyclically monotone at a if
Γ(a) = Γ̂(a) where Γ̂ : Rn −→

−→ R
n is associated with Ĝ.

Let us list some immediate additional properties of G̃, Ĝ and their associated mappings
Γ̃, Γ̃−1, Γ̂ and Γ̂−1.

• G̃ and Ĝ are closed subsets of Rn × R
n.

• Ĝ ⊆ G̃.

• If G ⊂ F , then F̃ ⊆ G̃ and F̂ ⊆ Ĝ.

• For all x ∈ R
n, Γ̃(x) and Γ̂(x) are closed convex subsets of Rn.

• For all x∗ ∈ R
n, Γ̃−1(x∗) and Γ̂−1(x∗) are closed convex subsets of Rn.

We observe that ifG is cyclically monotone and maximal monotone, thenG ⊆ Ĝ ⊆ G̃ =
G and therefore, G is also maximal cyclically monotone. One question: is a maximal
cyclically monotone subset maximal monotone? Let us quote Rockafellar and Wets ([5],
p. 546 ): “Every cyclically monotone mapping is monotone. It doesn’t immediately
follow that every maximal cyclically monotone mapping is maximal monotone�. Their
proof is the conjunction of two theorems, the first one says that a maximal cyclically
monotone mapping is the subdifferential of a lower semicontinuous convex function and
the second one says that the subdifferential of such a function is maximal monotone.
The proof that we propose in Section 5 is a direct consequence of continuity properties
of maximal (cyclically) monotone mappings.

3. Almost convex sets

Almost convex sets have been introduced by Himmelberg [2]. They are defined as
follows

Definition 3.1. A subset C of a locally convex topological vector space E is said
to be almost convex if for any neighbourhood U of 0 ∈ E and for any finite subset
{x1, · · · , xk} of C there exist z1, · · · , zk ∈ C such that zi − xi ∈ U for all i, and
co ({z1, · · · , zk}) ⊂ C.

It is easily seen that convex sets are almost convex and closed almost convex sets are
convex. It is a simple exercise to prove that the closure of an almost convex set is
convex. But C is not necessarily almost convex when its closure is convex.
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We shall give more speaking characterizations of almost convex sets in the case of finite
dimensional spaces.

Proposition 3.2. Let ∅ 6= C ⊂ R
n. Then, the three following conditions are equivalent

1. C is almost convex.

2. cl (C) is convex and ri (cl (C)) = ri (C).

3. ri (C) is convex and cl (C) = cl (ri (C)).

Proof. i) Assume that 1. holds. Then cl (C) is convex and therefore ri (cl (C)) is
nonempty. Let some a ∈ ri (cl (C)) and p = dim (aff (C)). There are x0, x1, · · · , xp

in cl (C) such that a ∈ ri (co ({x0, x1, · · · , xp})). Next, there are y0, y1, · · · , yp ∈ C
such that a ∈ ri (co ({y0, y1, · · · , yp})). Finally, since C is almost convex, there are
z0, · · · , zp ∈ C such that a ∈ ri (co ({z0, z1, · · · , zp})) and co ({z0, · · · , zp}) ⊂ C. It
follows that a ∈ ri (C). We have proved that 1. implies 2.

ii) Assume that 2. holds. Then ri (cl (C)) is convex and therefore ri (C) is convex. Also,
cl (C) = cl (ri (cl (C))) = cl (ri (C)). We have proved that 2. implies 3.

iii) Finally, assume that 3. holds. Fix some a ∈ ri (C). Let x1, · · · , xp ∈ C and
t ∈ (0, 1). Take zi = xi + t(a − xi), i = 1, · · · , p. Then zi ∈ ri (C) and therefore the
convex hull of points zi is contained in ri (C) and therefore in C. We have proved that
3. implies 1.

Such characterizations do not exist in the infinite dimensional setting. Consider for
instance the space E of real continuous functions on [0, 1]. Next, consider the norm
‖f‖ = sup [|f(x)| : 0 ≤ x ≤ 1] and C = C1 ∪C2 where C1 is the open unit ball and C2

is the set of polynomial functions on [0, 1]. Then C is almost convex, cl (C) = E and
int (C) = C1. Clearly, 2. and 3. do not hold.

In R
n almost convexity can be considered as a kind of continuity on sets. Indeed,

if C is almost convex then ri (co (C)) = ri (C) and therefore is convex. Moreover, if
x ∈ ri (co (C)) and y ∈ C, then x+ t(y − x) ∈ ri (C) ⊆ C for all t ∈ (0, 1). There is no
discontinuity in the portion of line connecting the two points x and y.

4. Continuity of the domains of monotone mappings

In this section, we show that the domains of maximal monotone and maximal cyclically
monotone mappings are almost convex. Theorem 4.3 extend to cyclic monotone map-
pings results already known for monotone mappings (Theorem 4.2), the proof is more
complex but is in the same spirit than the one given in [1] for monotone mappings. For
the sake of comprehension and comparisons we give the two proofs. We begin with a
lemma on monotone sets of finite cardinality.

Lemma 4.1. Let S = {(xi, x
∗
i ) : i = 1, 2, · · · , p} be a finite monotone subset of Rn×R

n

and Σ be the mapping with graph S. Denote by C the convex hull of the points xi. Let
x̄ ∈ int (C). Then a neighbourhood V ⊂ int (C) of x̄ and a compact K exist such that

∅ 6= Σ̃(x) =

p⋂

i=0

{x∗ : 〈x∗, x− xi〉 ≥ 〈x∗
i , x− xi〉} ⊂ K for all x ∈ V.
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It follows that int (C) ⊂ dom (Σ̃).

Proof. By assumption C = co (dom (Σ)). It results from (3) that

Σ̃(x) =

p⋂

i=0

{x∗ : 〈x∗, x− xi〉 ≥ 〈x∗
i , x− xi〉} for all x ∈ R

n.

i) We first prove that Σ̃ is bounded around x̄. Otherwise, a sequence {(zk, z
∗
k)} ⊂

graph (Σ̃) exists such that zk → x̄ and ‖z∗k‖ → ∞, when k → ∞. Without loss
of generality, we can assume that there is w∗ such that the sequence w∗

k = z∗k/‖z
∗
k‖

converges to w∗. Then ‖w∗‖ = 1. Since 〈z∗k − x∗
i , zk − xi〉 ≥ 0 it holds 〈w∗, x̄− xi〉 ≥ 0

for any i. This is not possible since x̄ ∈ int (C) and w∗ 6= 0. It follows that there exist

a neighbourhood V ⊂ int (C) of x̄ and a compact K such that Σ̃(x) ⊂ K for all x ∈ V .

ii) Assume for contradiction that there is some x ∈ V such that Σ̃(x) = ∅. Let A be
the n × p matrix whose columns are the vectors (x − xi) and a be the vector of Rp

whose component ai is 〈x
∗
i , x−xi〉. Then, there is no x∗ such that Atx∗ ≥ a. In view of

the alternative theorems, a vector u ≥ 0 exists such that Au = 0 and 〈u, a〉 > 0. One
can assume

∑
ui = 1. The equality Au = 0 implies x =

∑
uixi. On the other hand,

〈u, a〉 = −

p∑

i,j=0

uiuj〈x
∗
i − x∗

j , xi − xj〉.

Since Σ is monotone and u ≥ 0, one obtains 〈u, a〉 ≤ 0. A contradiction with 〈u, a〉 >
0.

This result is now extended to the general case.

Theorem 4.2. Assume that Γ : Rn −→
−→ R

n is monotone and x̄ ∈ int (co (dom (Γ))).
Then a neighbourhood V of x̄ and a compact K exist such that

∅ 6= Γ̃(x) ⊂ K for all x ∈ V.

It follows that dom (Γ̃) contains the interior of co (dom (Γ)).

Proof. By assumption there exist a set S = {(xi, x
∗
i )}∈I ⊂ G = graph (Γ) such that

card (S) < ∞ and a point x̄ in the interior of the convex hull of points xi. Denote by

Σ the mapping with graph S. Then Σ is monotone and Γ̃(x) ⊂ Σ̃(x) for all x. Apply
the lemma to Σ. Then there exist V and K such that

Γ̃(x) ⊂ Σ̃(x) =

p⋂

i=0

{x∗ : 〈x∗, x− xi〉 ≥ 〈x∗
i , x− xi〉} ⊂ K ∀x ∈ V.

Next, assume for contradiction that there is some x ∈ V with Γ̃(x) = ∅. Then

∅ =
⋂

(y,y∗)∈G

{x∗ : 〈x∗, x− y〉 ≥ 〈y∗, x− y〉},

∅ =
⋂

(y,y∗)∈G

[
{x∗ : 〈x∗, x− y〉 ≥ 〈y∗, x− y〉} ∩ Σ̃(x)

]
.
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The sets {x∗ : 〈x∗, x − y〉 ≥ 〈y∗, x − y〉} ∩ Σ̃(x) are compact. Thence a finite family
{(xi, x

∗
i )}i∈J ⊂ G exists such that

∅ =
⋂

i∈J

[
{x∗ : 〈x∗, x− xi〉 ≥ 〈x∗

i , x− xi〉} ∩ Σ̃(x)
]
.

Then,

∅ =
⋂

i∈I∪J

{x∗ : 〈x∗, x− xi〉 ≥ 〈x∗
i , x− xi〉}. (6)

Denote by T = {(xi, x
∗
i )}∈I∪J and by Θ the mapping with graph T . Then x is in the

interior of the convex hull of the domain of Θ and, in view of the lemma, (6) cannot
occur. The other claim follows.

We shall prove that the same result holds for cyclic monotonicity. The proof is more
complicated.

Theorem 4.3. Assume that Γ : Rn −→
−→ R

n is a cyclically monotone mapping with
graph G. Let x̄ be in the interior of the convex hull of dom (Γ). Then a neighbourhood
V of x̄ and a compact K exist such that

∅ 6= Γ̂(x) ⊂ K for all x ∈ V.

It follows that dom (Γ̃) contains the interior of co (dom (Γ)).

Proof. Let S and Σ be defined as in the proof of Theorem 4.2. Since S ⊂ G, S is
cyclically monotone and Γ̂(x) ⊆ Σ̂(x) ⊆ Σ̃(x) for all x ∈ R

n. We know by Lemma 4.1

that a neighbourhood V ⊂ dom (Σ̃) of x̄ and a compact K exist such that

Γ̂(x) ⊆ Σ̂(x) ⊆ Σ̃(x) =

p⋂

i=0

Bi ⊂ K ∀x ∈ V

where, for i = 1, · · · , p,

Bi = {x∗ : 〈x∗, x− xi〉 ≥ 〈x∗
i , x− xi〉}.

Next, assume for contradiction that there is some x ∈ V such that Σ̂(x) = ∅. Then, in
view of (5),

∅ = ∩A∈A(x)A,

where A ∈ A(x) if there exist (aj, a
∗
j), j = 1, · · · q, such that

A =

{
x∗ : 〈x∗, x− a1〉 ≥

q−1∑

j=1

〈a∗j , aj+1 − aj〉+ 〈a∗q, x− aq〉

}
.

The sets Bi = {x∗ : 〈x∗, x− xi〉 ≥ 〈x∗
i , x− xi〉} belong to A(x) and their intersection

is compact. Therefore, there exist a finite number of elements belonging to A(x) with
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empty intersection. Namely, there are positive integers r, qj and (aij, a
∗
ij) ∈ G such

that

∅ =
r⋂

j=1

{
x∗ : 〈x∗, x− a1,j〉 ≥

qj−1∑

i=1

〈a∗i,j, ai+1,j − ai,j〉+ 〈a∗qj ,j, x− aqj ,j〉

}
. (7)

This means that there is no feasible solution for the linear system Btx∗ ≥ b where B
is the n × r matrix whose column j is the vector (x − a1,j) and b is the vector of Rr

whose component j is
∑qj−1

i=1 〈a∗i,j, ai+1,j − ai,j〉+ 〈a∗qj ,j, x− aqj ,j〉.

In view of alternative theorems, a vector u ≥ 0 exists such that

Bu = 0 and 〈u, b〉 > 0. (8)

Without loss of generality, we assume that
∑

uj = 1. It is clear that Bu = 0 implies
x =

∑r

k=1 uka1,k. Let us compute 〈b, u〉,

〈b, u〉 =
r∑

j=1

uj

[
qj−1∑

i=1

〈a∗i,j, ai+1,j − ai,j〉+ 〈a∗qj ,j, x− aqj ,j〉

]
,

〈b, u〉 =
r∑

j,k=1

ujukαj,k

where

αj,k = 〈a∗qj ,j, a1,k − aqj ,j〉+

qj−1∑

i=1

〈a∗i,j, ai+1,j − ai,j〉.

Then,

2αj,k =

qj−1∑

i=1

〈a∗i,j, ai+1,j − ai,j〉+ 〈a∗qj ,j, a1,k − aqj ,j〉+ · · ·

+

qk−1∑

l=1

〈a∗l,k, al+1,k − al,k〉+ 〈a∗qk,k, a1,j − aqk,k〉.

One has αj,k ≤ 0 because G is cyclically monotone and therefore 〈b, u〉 ≤ 0 in contra-
diction with (8). The result follows.

Next, we shall consider the case where aff (dom (Γ)) 6= R
n. Let us denote by L the

linear space aff (dom (Γ)) − a where a is an arbitrary point of dom (Γ) and by L⊥

the orthogonal space to L. Without loss of generality, we assume that the first n1

components of Rn correspond to L and the last n2 = n − n1 to L⊥. Let us define
Σ : Rn1

−→
−→ R

n1 by

x∗
1 ∈ Σ(x1) ⇐⇒ ∃x∗

2 such that (x∗
1, x

∗
2) ∈ Γ(x1 + a1, a2).

Γ is monotone if and only if Σ is so. It is easily seen that for all x = (x1, x2) ∈ R
n

Γ̃(x) = Σ̃(x1)× R
n2 and Γ̂(x) = Σ̂(x1)× R

n2 .
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Hence, one obtains generalizations of Theorems 4.2 and 4.3 to the casewhere aff(dom(Γ))
6= R

n. In particular, we have the following result on the domains of maximal monotone
mappings and maximal cyclically monotone mappings.

Theorem 4.4 (Continuity of the domain). If Γ : Rn −→
−→ R

n is maximal mono-
tone or maximal cyclically monotone then its domain is almost convex. Furthermore
for all a ∈ ri (dom (Γ)) there are a neighbourhood V of a and a compact K ⊂ L such
that one has

∅ 6= Γ(x) = Γ(x) + L⊥ ⊂ K + L⊥ ∀x ∈ V ∩ (a+ L)

where L = lin (dom (Γ)) and L⊥ is the orthogonal space to L.

One sees that it is enough to study mappings with domains having the interior of their
convex hull nonempty.

Let us relate the results of this section with some already known results in the literature.

i) First consider the case where Γ is maximal monotone, cyclically monotone and
dim(dom (Γ)) = n. Then the result of Theorem 4.4 is well known. The proof consists to
says that there exists a convex function f such that Γ coincides with the subdifferential
of f . Hence the domain of Γ = ∂f is almost convex and Γ is locally bounded on the
interior of its domain. Our proof is direct, it does not needs to make appeal to the
function f .

ii) Theorem 26.2 in [6] says that if Γ is monotone and a belongs to interior of its
domain, then Γ is locally bounded in a neighbourhood of a. Our Theorem 4.2 deals
with Γ̃ instead of Γ and adds a nonvacuity result. Also the proof in [6] makes appeal to
the conjugate of a function obtained by fitzpatrication. Our proof is more direct and
simple.

5. Continuity of monotone mappings

If Γ is maximal monotone (maximal cyclically monotone), then its graph G coincides

with G̃ (Ĝ) and therefore is closed. It follows that Γ is closed at any x, Γ(x) is closed
and convex for any x. If, in addition, x ∈ int (dom (Γ)), then Γ is locally bounded in a
neighbourhood of x and therefore upper semi-continuous at this point. The transposed
results hold for Γ−1.

Upper semi-continuity is a weak form of continuity for set-valued mappings as shown by
the following example: Γ : R

−→
−→ R is defined by Γ(x) = {0} if x 6= 0 and Γ(0) = [−1, 1].

The graph of Γ is closed, Γ is usc at any x. The point 1 ∈ Γ(0) cannot be recovered
from the knowledge of the values of Γ(x) at points x 6= 0 in a neighbourhood of 0.

Maximal monotone (maximal cyclically monotone) mappings enjoy a very strong con-
tinuity property that we shall describe.

With Γ : Rn −→
−→ R

n and S ⊂ R
n, let us associate the set-valued mappings Γl(·, S) and

Γc(·, S) defined as follows: for x ∈ R
n

x∗ ∈ Γl(x, S) ⇐⇒

{
∃ a sequence {(xk, x

∗
k)}k ⊂ [graph (Γ)] ∩ [S × R

n],
xk 6= x ∀ k, converging to (x, x∗)

(9)
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and
Γc(x, S) := co (Γl(x, S)). (10)

One easily sees that

• If Γ is monotone, then Γc(·, S) is monotone and Γc(x, S) ⊂ Γ̃(x) for all x.

• If Γ is cyclically monotone, then Γc(·, S) is cyclically monotone and Γc(x, S) ⊂ Γ̂(x)
for all x.

The following theorem is proved in [1].

Theorem 5.1 (Continuity of the mapping). Let Γ : Rn −→
−→ R

n be monotone and
S ⊂ dom (Γ). Let a ∈ D = co (dom (Γ). Assume that int (D) 6= ∅ and there exists an

open neighbourhood V of a such that cl (V ∩ D) = cl (V ∩ S). Then Γ̃(a) = Γc(a, S) +
ND(a). It follows that Γ is maximal monotone at a ∈ V ∩D if and only if Γ(a) coincides
with Γc(a, S) +ND(a).

Recall that ND(a) = {0} if a ∈ int (D). In this case, the condition reduces to Γ̃(a) =
Γc(a, S).

We shall prove that the same result holds for cyclically monotone mappings

Theorem 5.2 (Continuity of the mapping). Let Γ : Rn −→
−→ R

n be cyclically mono-
tone and S ⊂ dom (Γ). Let a ∈ D = co (dom (Γ). Assume that int (D) 6= ∅ and
there exists an open neighbourhood V of a such that cl (V ∩ D) = cl (V ∩ S). Then

Γ̂(a) = Γc(a, S)+ND(a). It follows that Γ is maximal cyclically monotone at a ∈ V ∩D
if and only if Γ(a) coincides with Γc(a, S) +ND(a).

Proof. For any x ∈ D one has Γ̂(x) ⊆ Γ̃(x) = Γc(x, S) + ND(x). Let us prove the
reverse inclusion. Let x∗ = y∗ + z∗ with y∗ ∈ Γc(x, S) and z∗ ∈ ND(x). In view of (5)
we must prove that for any finite ordered family {(ai, a

∗
i )}i=1,··· ,p contained in graph (Γ)

one has

〈x∗, a1〉+ 〈a∗p, x〉+

p−1∑

i=1

〈a∗i , ai+1〉 ≤ 〈x∗, x〉+

p∑

i=1

〈a∗i , ai〉.

On one hand, 〈z∗, a1〉 ≤ 〈z∗, x〉 because z∗ belongs to the normal cone at x to D and
on the other hand

〈y∗, a1〉+ 〈a∗p, x〉+

p−1∑

i=1

〈a∗i , ai+1〉 ≤ 〈y∗, x〉+

p∑

i=1

〈a∗i , ai〉

because Γc(., S) is cyclically monotone. The result follows.

Theorems 5.1 and 5.2 are easily transposed to the case where aff (dom (Γ)) 6= R
n.

We are now ready to give a first characterization of maximal monotone and maximal
cyclically monotone mappings in terms of continuity of the domain and of the mapping.
Of course the same result holds for Γ−1.

Theorem 5.3. Let Γ : Rn −→
−→ R

n be monotone (cyclically monotone), D 6= ∅ be the
closed convex hull of dom (Γ) and S ⊂ D be such that D = cl (D ∩ S). Then Γ is
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maximal monotone (maximal cyclically monotone) if and only if dom (Γ) is almost
convex and Γ(x) = Γc(x, S) +ND(x) at any x ∈ D.

As a direct consequence we get the equivalence of maximal monotonicity and maximal
cyclic monotonicity. As announced at the end of Section 2, the proof does not make
appeal to a convex function.

Corollary 5.4. Assume that Γ : Rn −→
−→ R

n is cyclically monotone. Then it is maximal
cyclically monotone if and only if it is maximal monotone.

Another consequence is the celebrated Minty’s characterization of maximal monotone
mappings [3]. Here again, we provide a proof which is simpler than the classical ones
which are given.

Corollary 5.5 (Minty theorem). Assume that Γ : Rn −→
−→ R

n is monotone. Then
Γ is maximal monotone if and only if for all x∗ ∈ R

n there exists x ∈ R
n such that

x∗ ∈ x+ Γ(x). This x is unique.

Proof. i) Clearly dom (Γ) = dom (Γ + I). It is immediately shown that Γ + I is
monotone and Γc(x, S) + x = (Γ + I)c(x, S) for any x ∈ R

n and S ⊂ R
n. Hence, from

Theorem 5.3, Γ is maximal monotone if and only if Γ + I is so.

Denote by Σ the inverse mapping of Γ + I and let (x∗, x), (y∗, y) ∈ graph (Σ). Then,

‖x− y‖2 ≤ 〈x∗ − y∗, x− y〉 ≤ ‖x∗ − y∗‖‖x− y‖.

It follows that, for all x∗, Σ(x∗) is either empty or reduced to a singleton and

‖Σ(x∗)− Σ(y∗)‖ ≤ ‖x∗ − y∗‖ ∀x∗, y∗ ∈ dom (Σ).

ii) Assume that Σ is maximal monotone. Assume for contradiction that dom (Σ) 6= R
n.

Since dom (Σ) is almost convex, there exists some a∗ in its relative interior and b∗ in
its relative boundary. Let a ∈ Σ(a∗). For all t ∈ (0, 1), a∗ + t(b∗ − a∗) ∈ ri (dom (Σ)) ⊂
dom (Σ) and ‖Σ(a∗ + t(b∗ − a∗)) − Σ(a∗)‖ ≤ ‖b∗ − a∗‖. One deduces that Σ(b∗) =
Σc(b

∗,Rn) is nonempty. Next, in view of Theorem 5.3, Σ(b∗) is unbounded. This
cannot be since Σ(b∗) is either empty or reduced to a singleton.

iii) Assume that dom (Σ) = R
n. On one hand dom (Σ) is almost convex and on the

other hand Σc(x
∗,Rn) = Σ(x∗) for any x∗ because Σ is single valued and continuous.

Hence, again in view of Theorem 5.3, Σ is maximal monotone.

Given x ∈ dom (Γ) and h ∈ R
n, let us define

g+(x, h) = sup [〈x∗, h〉 : x∗ ∈ Γ(x)], (11)

g−(x, h) = inf [〈x∗, h〉 : x∗ ∈ Γ(x)]. (12)

By construction, g+(x, .) is convex, lower semi-continuous, positively homogeneous and
one has g+(x, h) ≥ g−(x, h) = −g+(x,−h). Moreover, in the case where Γ is monotone,
it holds for all x, y ∈ dom (Γ),

g−(x, y − x) ≤ g+(x, y − x) ≤ g−(y, y − x) ≤ g+(y, y − x) (13)
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and
g+(x, y − x) + g+(y, x− y) ≤ 0. (14)

Proposition 5.6. Assume that Γ is maximal monotone and a ∈ dom (Γ). Then

Γ(a) = {x∗ : 〈x∗, h〉 ≤ g+(a, h) ∀h ∈ R
n}, (15)

Assume in addition that a ∈ int (dom (Γ)). Then

−∞ < g+(a, h) = lim
t↓0

[g+(a+ th, h)] = lim
t↓0

[g−(a+ th, h)] < ∞. (16)

Moreover, for all ε > 0, there exists a neighbourhood V of a depending on ε such that
g+(x, h) ≤ g+(a, h) + ε for all x ∈ V .

Proof. (15) holds because Γ(x) is a nonempty convex set. (13) implies

−∞ < g+(a, h) ≤ lim
t↓0

[g−(a+ th, h)] = lim
t↓0

[g+(a+ th, h)] ≤ +∞

In case where a ∈ int (dom (Γ)), Γ(a) is bounded and the inequality on the right is
strict. Let us introduce

Ω = {x∗ = a∗ + b∗ : a∗ ∈ Γ(a), ‖b∗‖‖h‖ < ε}.

Ω is an open set containing Γ(a). Therefore there exists a neighbourhood V of a such
that Γ(V ) ⊆ Ω. For all x ∈ V one has g+(x, h) ≤ g+(a, h) + ε. Hence (16) follows.

6. Monotone equilibrium problems

Recall that these problems are of the form:

Find a ∈ C such that γ(a, x) ≥ 0 ∀x ∈ C (Eqp)

The problem is said to be monotone if:

1. C is convex;

2. γ(x, x) = 0 for all x ∈ Ω;

3. γ(x, .) is convex on Ω for all x ∈ Ω;

4. γ(x, y) + γ(y, x) ≤ 0 for all x, y ∈ Ω.

A monotone variational inequality problem can be formulated as a monotone gener-
alized equilibrium problem: take γ(x, y) = g+(x, y − x). We shall show that a mono-
tone equilibrium problem can also be formulated as a monotone variational inequality
problem. Under some continuity conditions on the bifunction γ, the mapping in the
variational inequality problem is maximal monotone.

Proposition 6.1. Assume that we are given an open convex subset Ω of Rn and g :
Ω× Ω → R fulfilling items 2, 3, 4 above. Let us define on Ω a mapping Γ by

Γ(x) =
⋂

y∈Ω

{x∗ ∈ R
n : 〈x∗, y − x〉 ≤ γ(x, y)}. (17)

Then Γ is monotone on Ω and ∅ 6= Γ(a) ⊆ Γc(a,R
n) at any a ∈ Ω. If, in addition, the

function γ(., y) is upper semicontinuous for any y, then Γ is maximal monotone on Ω.
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Proof. i) It follows from items 2 and 3 that x∗ ∈ Γ(x) if and only if for all y ∈ Ω and
t ∈ (0, 1)

t〈x∗, y − x〉 ≤ γ(x, x+ t(y − x))− γ(x, x) ≤ t[γ(x, y)− γ(x, x)].

Therefore,

Γ(x) =
⋂

h∈R n

{
x∗ ∈ R

n : 〈x∗, h〉 ≤ γ′
x(h) = lim

t↓0

γ(x, x+ th)− γ(x, x)

t

}
. (18)

The function γ′
x is finite, convex and positively homogeneous. Hence Γ(x) is a nonempty

compact convex set and thereby dom (Γ) = Ω is almost convex

ii) Let x, y ∈ Ω, x∗ ∈ Γ(x) and y∗ ∈ Γ(y). Then 〈x∗, y− x〉 ≤ γ(x, y) and 〈y∗, x− y〉 ≤
γ(y, x). Combining with item 4 we obtain 〈x∗ − y∗, x − y〉 ≥ 0. Thus Γ is monotone
on the open convex set Ω. Therefore it is locally bounded at any a ∈ Ω according to
Theorem 4.2.

iii) Let a ∈ Ω, we shall prove that Γ(a) ⊆ Γc(a,R
n). Since the sets Γ(a) and Γc(a,R

n)
are convex and compact, it is sufficient to prove that if a∗ is an extremal point of Γ(a)
it belongs also to Γc(a,R

n). There is some h ∈ R
n such that 〈x∗, h〉 < 〈a∗, h〉 for any

x∗ ∈ Γ(a) with x∗ 6= a∗. For k integer large enough so that xk = a + k−1h ∈ Ω, let us
take some x∗

k ∈ Γ(xk). The sequence {x∗
k} is bounded and 〈a∗, xk − a〉 ≤ 〈x∗

k, xk − a〉
for any k. Let x∗ be a cluster point of the sequence x∗

k, then 〈a∗, h〉 ≤ 〈x∗, h〉 which
implies a∗ = x∗ ∈ Γc(a,R

n).

iv) Finally, assume that γ(., y) is upper semicontinuous for any y. In order to prove
that Γ is maximal monotone on Ω, it is sufficient in view of Theorem 5.1 that Γ(a) ⊇
Γc(a,R

n) for any a ∈ Ω. Because Γ(a) is a compact convex set, it is enough to prove
that if {xk, x

∗
k} ⊂ graph (Γ) is a sequence converging to (a, a∗), then a∗ ∈ Γ(a). Let

any y ∈ Ω. Because 〈x∗
k, y − xk〉 ≤ γ(xk, y) and γ(., y) is upper semicontinuous, one

has 〈a∗, y − a〉 ≤ γ(a, y). Therefore a∗ ∈ Γ(a).

Under the assumptions of Proposition 6.1, (Eqp) reduces to the simpler equivalent
problem:

Find a ∈ C so that sup[〈a∗, x− a〉 : a∗ ∈ Γ(a)] ≥ 0 ∀x ∈ C. (V ip)

Indeed the generalized equilibrium formulation of (V ip) is

Find a ∈ C such that γ′
a(x) ≥ 0 ∀x ∈ C.

The function γ′
a is simpler than the original function γ(a, .): it is convex and positively

homogeneous. Theoretical results on monotone generalized equilibrium problems are
nothing else than consequences of results on variational equilibrium problems.
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