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We compute explicitly the Γ-limit of an energy functional modeling a connected mass-spring double-
chain in the limit of small separations. The point masses interact with each other through nearest
neighbor potentials that have to be convex and fulfill a growth condition (e.g. modeling harmonic
springs). This results in a continuous one-dimensional variational problem whose minimum ap-
proximates those of the discrete problem for large N , which is used to numerically compute the
deformation under various loadings. In a second step, we use our model to numerically optimize the
macroscopic distribution of material strength in the presence of stochastic loads.

1. Introduction

In this paper we consider a shape optimization problem for a one-dimensional peri-
odic microstructure, i.e, we want to numerically optimize the macroscopic distribu-
tion of material strength along its length (see for example Allaire [1] or Bucur and
Buttazzo [8] for an introduction to shape optimization). The microstructure is a
connected mass-spring double-chain with nearest neighbor potentials, which have to
be convex and fulfill a growth condition (e.g. modeling harmonic springs) (see Figure
1.1). This can be seen for example as a model for treating a structure composed of a
series of struts and joints. Despite the simple design, two numerical problems arise:
(i) The solution in the case of compression is not unique (similar to crumpling of
paper), and (ii) the grid-fineness of the algorithm is already fixed by the problem,
which results in a number of operations of order N to compute the energy for a given
configuration. A natural question is whether there is a way to use the periodicity of
the structure to reformulate the problem. For a continuous problem like the fine-scale
mixture of different materials we would think of homogenization (for example in the
framework of H-convergence) to approximate the problem with some effective mate-
rial (for further details on that topic see Cioranescu and Donato [10] and also [1],
[2]). In our case we use Γ-convergence to obtain a limit problem for N → ∞, which
yields a transition from a discrete to a continuous model with an effective potential,
capturing the behavior of the structure (see Theorem 3.3 and 3.7). This shows that
it is not necessary to have detailed information on the microstructure to understand
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Figure 1.1: Reference configuration of u and v for N = 3

the response to macroscopic loads. The resulting continuous one-dimensional varia-
tional problem, whose minimum approximates those of the discrete problem for large
N , is now the effective problem. The limit model retains the nonlinearity of the
discrete problem, which arises even when considering harmonic springs by the non-
linear treatment of rotations. Thus we have decoupled the grid-scale of the original
problem and the numerical algorithm and also, as we see later, are able to regularize
the problem to make the solution well posed even under compression. This enables
us to easily compute the deformation for a given load, which then allows us to use
standard numerical methods to solve the shape optimization problem with respect
to stochastic loads (see e.g. [3], [5], [16], [11]). This work can be seen as a starting
point to study other similar 11

2
-dimensional problems (e.g. carbon nanotubes). Also

it would be interesting to study a different scaling of the energy, in particular in the
situation where bending energy plays a role. This could be especially relevant when
extended to a higher dimension to study thin plates (see e.g. [14] in that direction).

Let us now go into details and write the problem in a more precise way. We consider
the functional

EN({uNi }, {vNi }) = δ

N−1∑

i=0

V

( |uNi − uNi+1|
δ

)
+ V

( |vNi − vNi+1|
δ

)

+ V

( |uNi − vNi |
δ

)
+ V

( |uNi+1 − vNi |
δ

)
,

(1)

where {uNi } = {uN0 , . . . , uNN} with uNi ∈ R
2 (and the same for {vNi }). The potential

V is a convex C0([0,∞),R) function with p-growth (p > 1), which for convenience
henceforth always assumes its minimum value 0 at the point 1. Here p-growth is
defined as:

c1|z|p − c2 ≤ V (z) ≤ c3(1 + |z|p). (2)

One can see EN as an energy functional modeling the discrete microstructure as
pictured in Figure 1.1.

In the following we want to solve two problems:

1. We want to compute the deformation after applying some load in the case of
very large N . This corresponds to finding the minimum of the energy functional
plus some force term.
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2. After introducing the macroscopic design parameter ϕ, which models the strength
of the potential at different points of the structure:

EN({uNi }, {vNi }) = δ

N−1∑

i=0

ϕi

[
V

( |uNi − uNi+1|
δ

)
+ . . .

]
, (3)

we want to solve the shape optimization problem of finding the ϕ, which mini-
mizes the deformation for a given set of forces.

1.1. Notation

Before we compute the Γ-limit of the discrete functional, we parameterize it over the
interval [0, 1]. Define

δ :=
1

N
, xi :=

i

N
= iδ, i = 0, . . . , N.

We now set IN := {x0, . . . , xN} and define AN to be the set of all functions uN :
IN → R

2. Then we parameterize: uNi = uN(xi) and v
N
i = vN(xi). Until now we have

seen EN as a functional defined on the discrete grid, i.e. EN : AN × AN → R. But
to compute the Γ-limit, we have to embed the domain for all N in a single space. So
we identify uN with

ũN(x) := uNi +
uNi+1 − uNi

δ
(x− xi) if x ∈ [xi, xi+1].

Now we assign to EN : AN × AN → R the functional ẼN : W 1,p ×W 1,p → R:

ẼN(ũ
N , ṽN) =

{
EN(u

N , vN) if uN ∈ AN and vN ∈ AN

+∞ else.

In the following we will simply write EN , u
N and vN instead of ẼN , ũ

N and ṽN .

2. Compactness

Theorem 2.1. If the energy of a sequence (uN , vN) is bounded, we can take weakly

converging subsequences of uN and vN . Precisely, if EN(u
N , vN) < C for all N and

if the boundary values are given by uN(0) = P1, v
N(0) = P2 then there exists ū, v̄

and a subsequence Nj such that uNj ⇀ ū and vNj ⇀ v̄ in W 1,p.

Proof. The statement follows almost directly from the growth condition:

C > EN(u
N , vN) ≥ δ

N−1∑

i=0

V

( |uNi − uNi+1|
δ

)

=

∫ 1

0

V (|(uN)′|) dx

≥ c1‖(uN)′‖pLp − c2.

With Poincaré and the weak compactness of W 1,p the statement follows for uN .
Repeating the proof using the already extracted subsequence and using vN instead
of uN completes the proof.
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Theorem 2.2. From EN(u
N , vN) < C for all N it follows that ‖uN − vN‖Lp → 0.

Proof. First we define the piecewise constant function z(x) by

zN(x) := uNi − vNi if x ∈ [xi − δ
2
, xi +

δ
2
).

Using the bound on the energy, we get

C > EN(u
N , vN) ≥ δ

N−1∑

i=0

V

( |uNi − vNi |
δ

)
= δ

N−1∑

i=0

V

( |zN(xi)|
δ

)

=

∫ 1

0

V

( |zN(x)|
δ

)
dx ≥ c1‖ zN

δ
‖pLp − c2

=
c1

δp
‖zN‖pLp − c2.

With N → ∞ (and hence δ → 0) we get

‖zN‖Lp → 0. (4)

Here zN is a piecewise constant function, which is equal to uN(x)−vN(x) at the points
xi, but for the proof we have to show that the difference between the piecewise affine
functions uN(x) − vN(x) has to vanish. To shorten things up, we write wN(x) :=
uN(x) − vN(x). What remains to be shown is that wN converges to zero in Lp. To
do that, we will show the following inequality

∫ 1

0

|wN(x)|p dx ≤
∫ 1

0

|zN(x)|p dx. (5)

Now consider the interval [xi, xi+1] for arbitrary i ∈ {0, . . . , N − 1}. There w is affine
and the modulus of an affine function is convex. Also because the p-th power of a
non-negative and convex C2 function is again convex, we can (still for x ∈ [xi, xi+1]))
make the estimate

|wN(x)|p ≤ g(x) := |wN(xi)|p +
|wN(xi+1)|p − |wN(xi)|p

δ
(x− xi),

and that gives us

∫ xi+1

xi

g(x) dx =
1

2
δ(|wN(xi)|p + |wN(xi+1)|p) =

∫ xi+1

xi

|zN(x)|p dx.

From that follows (5) and with (4) then the claim.
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Remark 2.3.

(i) From Theorem 2.2 we can conclude that both subsequences in Theorem 2.1
indeed converge to the same limit.

(ii) If there exists a u such that uN → u in Lp, then without extracting a sub-
sequence we know: uN ⇀ u in W 1,p (and because of Theorem 2.2 also for
vN ⇀ u)

(iii) Theorem 2.2 indicates that the Γ-limit of the functional EN(u
N , vN) will depend

only on one function.

3. The Γ-limit

In this section we want to compute the Γ-limit of the sequence EN . Γ-convergence
was originally introduced in the 70s by De Giorgi [13], [15]. Standard references about
this topic include amongst others Dal Maso [12], Braides [7] and Attouch [6].

Let us shortly review the definition and some important properties:

Definition 3.1 (Γ-Convergence). The sequence Fj : X → R Γ-converges in X to

F∞ : X → R, if for all x ∈ X the following conditions hold:

(i) (lim inf-inequality)

∀xj → x we have: F∞(x) ≤ lim inf
j→∞

Fj(xj). (6)

(ii) (existence of a recovery sequence)

∀x ∈ X ∃xj → x with: F∞(x) = lim
j→∞

Fj(xj). (7)

The function F∞ is called the Γ-Limit of (Fj) and we write F∞ = Γ-limj Fj.

Remark 3.2. Here we summarize some of the key properties of Γ-convergence:

(i) (convergence of minimizers) Let F∞ = Γ- limj Fj and let a compact set K ⊂ X

exist such that infX Fj = infK Fj for all j. Then

∃min
X

F∞ = lim
j→∞

inf
X
Fj.

If (xj) is a converging sequence with limj Fj(xj) = limj infX Fj, then its limit is
a minimum point for F∞

(ii) (Stability under continuous perturbations) If (Fj) is a sequence of functionals

with Fj
Γ−→ F∞ and g is a continuous function, then:

Γ- lim
j
(Fj + g) = F∞ + g.

In the following theorem we compute the Γ-limit of the sequence of functionals EN

and then extend it in Theorem 3.7 to include a macroscopic distribution ϕ.

Theorem 3.3. Let 1 < p < ∞ and let V : [0,∞) → [0,+∞) be a convex function,

which takes its minimum value 0 at the point 1 and fulfills the growth condition

c1|z|p − c2 ≤ V (z) ≤ c3(1 + |z|p). (8)
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Take EN to be the functional given by (1). Then the Γ-limit of EN with respect to

W 1,p([0, 1],R2) with weak topology is given by

F (u, v) =





∫ 1

0

ψ(|u′(x)|) dx if u = v

∞ else

with

ψ(z) :=





0 0 ≤ z ≤ 1

2V (z) 1 ≤ z ≤ 2

2V (z) + 2V
(
z
2

)
2 ≤ z.

Remark 3.4. Even when we are modeling harmonic springs (i.e., taking a quadratic
potential such as V (z) = (z − 1)2), the resulting model is clearly nonlinear.

Proof. Step 1: First we will show the liminf inequality. By Theorem 2.2 in the case
u 6= v both sides of the inequality are infinity and so we only have to consider the
case u = v. Now we split EN into three parts in the following way:

E1
N(u

N , vN) := δ

N−1∑

i=0

V

( |uNi − uNi+1|
δ

)
,

which corresponds in integral form to

F 1
N(u

N , vN) :=





∫ 1

0

V (|(uN)′(x)|) dx if uN ∈ AN

+∞ else.

Define E2
N in the same way by replacing uN with vN in E1

N . The remaining functional

E3
N(u

N , vN) := δ

N−1∑

i=0

V

( |uNi − vNi |
δ

)
+ V

( |uNi+1 − vNi |
δ

)

can be seen as only depending on wN – where wN ∈ A2N alternates between the
points of uN and vN . So

(wN
0 , . . . , w

N
2N+1) = (uN0 , v

N
0 , u

N
1 , . . . , v

N
N−1, u

N
N , v

N
N ),

E3
N(w

N) := 2
δ

2

N−1∑

i=0

V

(
1

2

|wN
2i − wN

2i+1|
δ
2

)
+ V

(
1

2

|wN
2i+2 − wN

2i+1|
δ
2

)
.

Keeping in mind that the fineness of the grid is doubled, we can assign the following
integral form to E3

N :

F 3
N(u

N , vN) := F 3
N(w

N) =





∫ 1

0

2V

( |(wN)′(x)|
2

)
dx wN ∈ A2N

+∞ else.
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Notice that also here we can assume wN → u in Lp.
Since an integral functional with convex integrand is weakly lower semi-continuous,
the following is true for arbitrary (uN , vN)⇀ (u, u):

lim inf
N

EN(u
N , vN) ≥ lim inf

N
E1

N(u
N , vN) + lim inf

N
E2

N(u
N , vN) + lim inf

N
E3

N(u
N , vN)

= lim inf
N

∫ 1

0

V (|(uN)′(x)|) dx+ lim inf
N

∫ 1

0

V (|(vN)′(x)|) dx

+ lim inf
N

∫ 1

0

2V

( |(wN)′(x)|
2

)
dx

≥ lim inf
N

∫ 1

0

V ∗∗(|(uN)′(x)|) dx+ lim inf
N

∫ 1

0

V ∗∗(|(vN)′(x)|) dx

+ lim inf
N

∫ 1

0

2V ∗∗

( |(wN)′(x)|
2

)
dx

≥
∫ 1

0

2V ∗∗(|u′(x)|) dx+
∫ 1

0

2V ∗∗(
|u′(x)|

2
) dx

= F (u, u).

Here V ∗∗(|·|) : R2 → R denotes the two-dimensional convex envelope of V (|·|) : R2 →
R, where V (|·|) is seen as a function mapping R

2 to R that only depends on the
modulus. So the envelope is also of that form and defined as

V ∗∗(|y|) = max
f :R2→R convex

{f(y) : f(x) ≤ V (x)∀x ∈ R
2}

And since V (·) : [0,∞) → [0,∞) is convex and takes its minimum value 0 at the
point 1, we get the following result:

V ∗∗(|y|) =
{
0 |y| ≤ 1

V (|y|) |y| > 1.

Since ψ(z) was defined as

ψ(z) =





0 0 ≤ z ≤ 1

2V (z) 1 ≤ z ≤ 2

2V (z) + 2V
(
z
2

)
2 ≤ z,

the proof of the lower bound is concluded.

Step 2: It remains to show the lim sup inequality or equivalently the existence of a
recovery sequence:

∀u ∈W 1,p ∃(uN , vN)⇀ (u, u) such that: lim
N
EN(u

N , vN) = F (u).

First we restrict u to be affine with derivative≥ 1 and to simplify notation, we assume
that it has the following form:

u(x) = (z · x, 0), u′(x) = (z, 0) for x ∈ [0, 1].
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zδ

zδ
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Figure 3.1: The recovery sequences uN and vN for z = 3

zδ

δ

Figure 3.2: The recovery sequences uN and vN for z = 1.5

We need different recovery sequences for the cases z > 2 and 1 ≤ z ≤ 2 (see Step 4

for 0 ≤ z < 1).

Case 1: [z > 2] choose for uN and vN (see Figure 3.1):

uN(xi) = (z · xi, 0), vN(xi) =
(
z ·
(
xi +

δ
2

)
, 0
)
.

Since ‖uN − u‖Lp = 0 and ‖vN − u‖Lp = |z · δ
2
|p, both sequences converge in Lp to u.

In Theorem 2.1 it was shown that uN and vN have a weak limit in W 1,p and by the
uniqueness of the limit in Lp this limit is equal to u.

lim
N
EN(u

N , vN)

= lim
N
δ

N−1∑

i=0

V

( |z · δ|
δ

)
+ V

( |z · δ|
δ

)
+ V

(
|z · δ

2
|

δ

)
+ V

(
|z · δ

2
|

δ

)

= lim
N
δ

N−1∑

i=0

2V (z) + 2V
(z
2

)

=

∫ 1

0

2V (z) + 2V
(z
2

)
dx = F (u).

Case 2: [1 ≤ z ≤ 2] Define the recovery sequence (see Figure 3.2) by

uN(xi) =
(
z · xi,− δ

4

√
4− z2

)
, vN(xi) =

(
z ·
(
xi +

δ
2

)
, δ
4

√
4− z2

)
.

One should notice here that the term δ
4

√
4− z2 was chosen so that |uNi − vNi | = δ.

The convergence of uN (and with Theorem 2.2 also of vN) follows with ‖uN −u‖Lp =
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| δ
4

√
4− z2|p ) in the same way as in Case 1.

lim
N
EN(u

N , vN) = lim
N
δ

N−1∑

i=0

V

( |z · δ|
δ

)
+ V

( |z · δ|
δ

)
+ V

(
δ

δ

)

︸ ︷︷ ︸
=0, assumption

+V

(
δ

δ

)

= lim
N
δ

N−1∑

i=0

2V (z) =

∫ 1

0

2V (z) dx = F (u).

Note: For the case [0 ≤ z ≤ 1] it is possible to construct a realizing sequence by
defining a simple folding pattern, that reduces the length of the chain (to be more
precise: each folding of a chain with N = 4 reduces the length to that of a chain with
N = 2, but does not change the distances between the mass-points and therefore
does not cost any energy). But we will instead deal with this case in Step 4 of this
proof.

Step 3: We now have to make the transition from the affine to the piecewise affine
functions with derivatives ≥ 1 (in the following we call the set of all such functions

P̃A([0, 1],R2)), i.e., consider u to be affine on intervals [aj, aj+1] with 0 = a0 < a1 <

. . . < an < an+1 = 1. In the intervals, where u is affine, we choose the recovery
sequences exactly as in Step 2 of this proof. The only thing to check is that nothing
bad happens at the breakpoints. Focusing on one of the finitely many breakpoints
with the pair of recovery sequences (uN , vN) and (ũN , ṽN), we get:

δ

(
V

( |uNi − ũNi+1|
δ

)
+ V

( |vNi − ṽNi+1|
δ

)
V

( |uNi − vNi |
δ

)
+ V

( |ũNi+1 − vNi |
δ

))

≤ δ · 4C2
δ→0→ 0

This holds, since by construction the terms |uNi − ũNi+1|, |vNi − ṽNi+1| and |ũNi+1 − vNi |
(for sufficiently small δ) are bounded by a constant C1 and so there exists a C2 ∈ R

such that V (x) ≤ C2 for x ∈ [0, C1].

Step 4: To make the final transition to W 1,p, we use Lemma 3.6 below. To fulfill the

assumptions of this lemma, we have to show that P̃A([0, 1],R2) is energy dense in
W 1,p.

But first we put a step in between and show the energy density of P̃A([0, 1],R2) in
the set of all piecewise affine functions without any restriction on the derivatives (in
the following called PA([0, 1],R2)).

Take an arbitrary u ∈ PA([0, 1],R2) and call the intervals where u is affine [aj, aj+1].
To construct u1, we set u1(aj) = u(aj) and insert for all j, where |u(aj)− u(aj+1)| <
|aj − aj+1|, a new point yj :=

aj+aj+1

2
into each of those intervals. Then we choose

u1(yj) to be in the intersection of the two spheres S(u(aj),
|aj−aj+1|

2
) and S(u(aj+1),

|aj−aj+1|

2
). To construct uk, we now insert 2k − 1 equidistant points (instead of just

inserting one point yj) into every [aj, aj+1] , where the derivative is< 1, and repeat the

construction as above. Clearly the distance between u and uk is bounded by
|aj−aj+1|

2k−1

and so we have uniform convergence. From that the convergence of the energy follows
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directly and by the usual compactness argument we get weak convergence of uk in
W 1,p.

To complete the density argument, we choose an arbitrary piecewise affine function
that converges to u inW 1,p. So u′k → u′ in Lp and from that we take an a.e. pointwise
converging subsequence.

With Fatou and the continuity of ψ we get:

∫ 1

0

ψ(|u′(x)|) dx ≤
∫ 1

0

lim inf
k

ψ(|u′k(x)|) dx ≤ lim inf
k

∫ 1

0

ψ(|u′k(x)|) dx.

And from the growth condition (8) follows: G(z) = C(1 + zp) − ψ(z) ≥ 0. Now
we apply Fatou on G and together with the Lp-convergence (limk

∫
C(1 + |u′k|p) =

limk

∫
C(1 + |u′|p)) we get:

−
∫ 1

0

ψ(|u′(x)|) dx ≤ − lim inf
k

∫ 1

0

ψ(|u′k(x)|) dx.

It follows F (uk) → F (u) and with that the energy density.

In Lemma 3.6 we choose for A a ball in W 1,p (i.e. A = {x ∈W 1,p : ‖x‖1,p < R}) with
the norm of Lp and for B ⊂ A a ball in the subspace of piecewise affine functions.
Since we want to find a recovery sequence for any given u ∈W 1,p, we have to choose
the radius so that u, the energy dense sequence, and the recovery sequences to the
elements of these sequences are contained.

To find the upper bound, we can use the coercivity of the energy: assuming uk → u

with F (uk) → F (u) and uik → uk with EN(uNk ) → F (uk), it follows (for N large
enough): EN(uNk ) < F (uk) + 1 < F (u) + 2. So EN(u

N
k ) and EN(uk) are uniformly

bounded from above and with the coercivity also the norms of the derivatives of uNk
and uk. With Poincaré we have found a bound C and so we can now set R = C,
where R was the radius of A.

Applying Lemma 3.6 gives us a recovery sequence that is bounded in W 1,p and con-
verges to u in Lp. From the weak compactness of W 1,p it follows that the sequence
is weakly converging to u in W 1,p.

We needed the following definition and lemma in the proof of Theorem 3.3:

Definition 3.5. Let A be a metric space, B ⊂ A and F : A→ R. B is energy dense
in A, if and only if:

∀u ∈ A ∃uk ∈ B such that uk → u and F (uk) → F (u).

Lemma 3.6. Let A be a metric space, B ⊂ A, Fi : A → R and F : A → R. In

addition let B be energy dense in A and assume that

∀u ∈ B ∃ui → u such that Fi(ui) → F (u). (9)

Then we get:

∀u ∈ A ∃ui → u such that Fi(ui) → F (u). (10)
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Proof. One can obtain the statement by taking an appropriate diagonal subsequence.

In the following theorem, we will extend our previous result to include the material
distribution ϕ in the energy functional.

Theorem 3.7. Take the assumptions as in Theorem 3.3. But here the energy func-

tional we consider is given by (3) with ϕ ∈ C0([0, 1], (0,∞)). Then the Γ-Limit is

given by

F (u, v) =





∫ 1

0

ψ(|u′(x)|)ϕ(x) dx if u = v

∞ else

with ψ(z) as before.

Proof. 1. If ϕ is constant, then the statement is true by Theorem 3.3.

2. Now we have to extend the result to piecewise constant ϕ, i.e.,

ϕ(x) =
n∑

j=0

cjχ[aj ,aj+1](x), cj ∈ R, 0 = a0 < a1 < . . . < an = an+1 = 1,

E
j
N(u

N , vN) = δ

N−1∑

i=0
aj≤xi<aj+1

ϕ(xi)

(
V

( |uNi − uNi+1|
δ

)
+ . . .

)
.

We already know from 1. that

Γ− limE
j
N(u

N , vN) = F j(u) =

∫ aj+1

aj

ψ(|u′(x)|)cj dx. (11)

So it remains to show

Γ− limEN(u
N , vN) = Γ− lim

n∑

j=0

E
j
N(u

N , vN) =
n∑

j=0

F j(u). (12)

The liminf inequality follows from the subadditivity:

∀(uN , vN)⇀ (u, u) lim inf
N

n∑

j=0

E
j
N(u

N , vN) ≥
n∑

j=0

lim inf
N

E
j
N(u

N , vN)

(11)

≥
n∑

j=0

F j(u).

To show the lim sup inequality, one has to put together the recovery sequences on the
intervals [aj, aj+1]. This works similar to Step 3 in the proof of Theorem 3.3. This
proofs (12).
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3. Now let ϕ be C0 and choose a sequence of piecewise constant ϕǫ so that for
arbitrary ǫ > 0

ϕǫ → ϕ in L∞ and Fǫ(u) :=

∫ 1

0

ψ(|u′(x)|)ϕǫ(x) dx ≤ F (u) + ǫ. (13)

The latter is valid, since we get from uniform convergences that Fǫ(u) → F (u).
Let u ∈ W 1,p now be arbitrary and choose (by Step 2) the recovery sequences
(uNǫ , v

N
ǫ )⇀ (u, u) so that

Eǫ
N(u

N
ǫ , v

N
ǫ ) := δ

N−1∑

i=0

ϕǫ(xi)

(
V

( |(uNǫ )i − (uNǫ )i+1|
δ

)
+ . . .

)

≤ Fǫ(u)
(13)

≤ F (u) + ǫ.

After taking a diagonal sequence, the lim sup inequality follows with ǫ→ 0.

It remains to be shown that the liminf inequality holds for all (uN , vN) → (u, u). So
we choose a sequence of piecewise constant ϕǫ with:

ϕǫ ≤ ϕ, ϕǫ → ϕ in L∞ and Fǫ(u) ≥ F (u)− ǫ. (14)

This leads to

lim inf
N

EN(u
N , vN) ≥ lim inf

N
Eǫ

N(u
N , vN) ≥ Fǫ(u)

(14)

≥ F (u)− ǫ.

Together with ǫ→ 0 this concludes the proof.

4. Application to shape optimization

4.1. Deformation

Before we can come to the shape-optimization problem, we have to find a way to
compute the deformation for a given load, i.e., to minimize

F (u) =

∫ 1

0

ψ(|u′(x)|)ϕ(x)− f(x)u(x) dx

with f : [0, 1] → R
2 ∈ W−1,p and where V and ψ are as in Theorem 3.3. Since ψ is

not strictly convex we cannot expect a unique minimizer. So we add a small strictly
convex term:

ψ̃(z) :=





1
N
|z|2 0 ≤ z ≤ 1

2V (z) + 1
N
|z|2 1 ≤ z ≤ 2

2V (z) + 2V
(
z
2

)
+ 1

N
|z|2 2 ≤ z.

To numerically solve the minimization problem, we have to discretize it first (i.e.
approximate u by a linear combination of some base functions and using a quadrature
formula to replace the integrals). Notice here that the choice of the grid-fineness is
not already given by the problem statement, but can be chosen so that we have a
sufficiently good approximation.
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What follows is a short summary of the numerical algorithm used:

1. Fix an initial point u0, e.g., the reference configuration.

2. Compute the gradient in u0 and use −∇I[u0] as search direction (note: in our
case, it is relatively easy to compute an explicit formulation of the derivative).
So the problem was reduced to an 1-dimensional minimization: Find t ∈ R such
that I[u0 − t∇I[u0]] is minimal.

3. Find the interval [a, b], in which the optimal t is.

4. Use golden section search (see e.g. Section 6.1.1 in Jarre and Stoer [17]) on the
functional I[u0 − t∇I[u0]] in the interval [a, b] to compute the minimizer t0.

5. Set: u1 = u0 − t0∇I[u0].
Now use u1 in Steps 2–4 and compute u2 as in Step 5. Repeat this steps until an
approximated limit of the sequence uk is achieved.

4.2. Shape Optimization

Now we are looking for the minimizer of the functional J [ϕ] : C0([0, 1], (0,∞)) → R

restricted to the set {ϕ ∈ C0([0, 1], (0,∞)) :
∫ 1

0
ϕ dx = 1}, where J is defined as:

J [ϕ] =
L∑

k=1

λk‖argmin
u

F (u, fk, ϕ)‖.

F (u, fk, ϕ) is the Γ-limit as in Section 4.1 with the force fk, and λk is the probability
that fk is present. Here fk has the form:

f
(1)
k (x) =

∑
a
(1)
j δxj

(x),

f
(2)
k (x) =

∑
a
(2)
j δxj

(x).

a
(1)
j , a

(2)
j ∈ R, f

(1)
k and f

(2)
k are the x- and y-components of the force, and δxj

(x) = 1
if x = xj and 0 otherwise.

Remark 4.1. Here we use Remark 3.2 (Stability of the Γ-limit under continuous
perturbations), since our force terms are continuous as functions from W 1,p weak to
R (see e.g. [9, Section 2.1]).

To solve the problem numerically, we have to discretize the functional as in 4.1. Here
ϕ will be approximated by a piecewise constant function on a grid with fineness 1

M
,

i.e. we identify ϕ with a vector in R
M . Since the forces are distributional, they should

apply on the grid-points and so, to make things easier, we want the grid of ϕ to be
included in the grid of u (i.e. M is a divisor of N − 1).

As before we have to solve a multidimensional optimization problem, but this time
there are linear restrictions and the gradient of the functional is not easy to compute.
To deal with the restrictions, we use a projection to rewrite the problem:

min
ϕ∈R

J [ϕ] = min
z∈RM−1

J [w + Zz]︸ ︷︷ ︸
=:D[z]

,
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(a) the optimal mass distribution ϕ
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(b) the solid line is u using the optimal

ϕ, the dotted line the u with ϕ ≡ 1 and
the arrows illustrate f

Figure 4.1: The result of the optimization with respect to Norm I in Example 4.2

where

R := {ϕ ∈ R
M : (1, . . . , 1)︸ ︷︷ ︸

:=A

ϕ =M}

is the restricted set, w a specific solution (here: w = (1, . . . , 1)) and Z a null space
matrix (i.e. a matrix with kernA = imZ, see [4] for details). In our case, we have:

D[z] = J [1− z1 − . . .− zM , 1 + z1, . . . , 1 + zM ].

Now we just have to solve an optimization problem on R
N−1 without having an

explicit gradient. We use the algorithm of Nelder and Mead, which is based on the
following idea: Start with setting up a simplex in the search space and then reflect (in
a certain way) the corner with the highest function value with respect to the opposite
side (or more precisely: the balance point of the remaining corners) to move step by
step to a region with lower values. For a detailed description of this algorithm, see
Section 10.3 in Numerical Recipes in C [18] or see W. Alt [4].

4.3. Examples

Now we want to use the algorithm to optimize ϕ with respect to a norm. There are
several canonical choices like compliance or displacement. We will discuss the latter
(though the results for compliance are similar)

I)

‖u− u0‖L2 =

(∫ 1

0

|u(x)− u0(x)|2
) 1

2

,

II)

‖∇u‖L∞ = ess sup
[0,1]

{|∇u(x)|}.
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(a) discrete u computed with N = 20
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(b) discrete u computed with N = 80

Figure 4.2: Computing the deformation using the discrete energy functional and the
force from Example 4.2

For the numerical computations we have to choose a specific potential, which in all
the following examples will be V (z) = (z − 1)2 with z ∈ R

+. We also set u0 ≡ 0 (for
Norm I) in this section.

Example 4.2. This example shows that optimization with respect to each norm
results in completely different ϕ’s. The force is given by (see Figure 4.1 for a scaled
illustration):

f (2) = −5δ 1

4

(x) + 5δ 1

2

(x)− 5δ 3

4

(x).

The resulting mass distributions are very different for Norm I and II: for Norm I (see
Figure 4.1) it is better to strengthen the sides to move the construction up, because
the norm adds the squares of the distances between all the points in the deformed and
the reference configuration - so it is optimal to decrease the big distances despite at
the same time increasing some small ones. For Norm II an even distribution (ϕ ≡ 1)
is optimal, since the distances between all points are constant and the norm sees only
the biggest elongation.

As a comparison, we can also compute the deformation directly with the discrete
energy functional (1) using the same algorithm as before. The result (with φ ≡ 1)
can be seen in Figure 4.2 and is, even for low N , already very close to the result
derived by minimizing the Γ-limit.

Example 4.3. In the case of compression the discrete problem does not have a
unique solution and unlike the Γ-limit no straightforward regularization. That means
the algorithm will reach a seemingly arbitrary local minimum (of course dependend
on the algorithm, the initial configuration, boundary conditions and the force term).
We demonstrate this with two very similar forces

f (1) = 3δ 1

4

(x)− 3δ 3

4

(x).

and

f
(1)

= 3.1δ 1

4

(x)− 3.1δ 3

4

(x).
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(a) discrete u with respect to f
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(b) discrete u with respect to f
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(c) continuous u with respect to f
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(d) continuous u with respect to f

Figure 4.3: Comparison of the deformation using the discrete energy (1) and the
Γ-limit with forces from Example 4.3

As expected, the result for the discrete problem is not stable, i.e., the small change
in the force term causes a large change in u (see Figure 4.3).

In Example 4.2 we have only looked at a single force, but the problem statement
was more general and allows multiple forces with a probability distribution. So
in the following examples we will consider two forces, both with 50% probability
(λi = 0.5). In particular we want to compare, what happens if we are averaging
‖argminu F (u, fk, ϕ)‖ or if we take the average of the forces before, i.e:

1. Averaging of ‖argminu F (u, fk, ϕ)‖ (hereafter called Problem A):

J [ϕ] =
L∑

k=1

λk‖argmin
u

F (u, fk, ϕ)‖.

2. Averaging the forces (Problem B):

J̃ [ϕ] =

∥∥∥∥∥argmin
u

F

(
u,

L∑

k=1

λkfk, ϕ

)∥∥∥∥∥ .

Example 4.4. Consider the two forces:

f
(2)
1 = −5δ 1

4

(x)− 2δ 1

2

(x)− 5δ 3

4

(x),

f
(2)
2 = 5δ 1

4

(x)− 2δ 1

2

(x) + 5δ 3

4

(x).

In Problem 2, we use the averaged force instead:

f1 + f2

2
= −2δ 1

2

(x).
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Figure 4.4: The result of the optimization in Example 4.4
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(b) u with respect to the force f2

Figure 4.5: The result of the optimization in Example 4.4

The results with respect to Norm II are shown in Figure 4.4 and 4.5.

While it was optimal with regard to both forces to reinforce the sides, this is not
true for the averaged force. This clearly shows that averaging and optimizing is not
commutative.

Another option is to compute ϕk for each fk and then to average these:

ϕ =
L∑

k=1

λk argmin
ϕ

‖argmin
u

F (u, fk, ϕ)‖
︸ ︷︷ ︸

:=ϕk

.

In a lot of cases this comes close to the result from Method A, e.g. for the following
example:
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Figure 4.6: The result of the optimization with respect to f1 and f2 in Example 4.5
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Figure 4.7: Comparison of the averaged ϕ with the minimizer of J [ϕ] in Example 4.5

Example 4.5. Consider the forces

f
(2)
1 = −5δ 1

4

(x)− 1δ 1

2

(x)− 5δ 3

4

(x),

f
(2)
2 = −6δ 1

4

(x) + 7δ 1

2

(x)− 3δ 3

4

(x).

The result of averaging the ϕ’s is very similar to the result from Method A (with
respect to Norm I, see Figures 4.6 and 4.7 – but the statement hold true also with
respect to Norm II).

The following example will show that this is not true in general:

Example 4.6. Consider the forces:

f
(1)
1 = 4δ 1

4

(x), f
(2)
1 = −1δ 1

4

(x),

f
(1)
2 = 3δ 3

4

(x), f
(2)
2 = −1δ 3

4

(x).
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Figure 4.8: Result of the optimization with respect to f1 and f2 in Example 4.6
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Figure 4.9: Comparison of the averaged ϕ with the minimum of J [ϕ] in Example 4.6

and compute (with respect to Norm II):

ϕ1 = argmin
ϕ

‖argmin
u

F (u, f1, ϕ)‖

ϕ2 = argmin
ϕ

‖argmin
u

F (u, f2, ϕ)‖

The results are shown in Figure 4.8. One can clearly see that in both cases nearly
the whole mass was distributed in the area that was under strong load.

As one can see in Figure 4.9, the averaged ϕ in not even close to optimal, since it
makes the middle area too weak, so that f2 causes such a strong deformation, that
the advantage with respect to force f1 does not compensate.
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