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We prove that every infinite-dimensional C∗-algebra X satisfies that every slice of the unit ball of⊗̂
N,s,πX (N -fold projective symmetric tensor product of X) has diameter two. We deduce that

every infinite-dimensional Banach space X whose dual is an L1-space satisfies the same result. As a
consequence, if X is either a C∗-algebra or either a predual of an L1-space, then the space of all N -
homogeneous polynomials on X, PN (X), is extremely rough, whenever X is infinite-dimensional. If
Y is a predual of a von Neumann algebra, then Y is infinite-dimensional if, and only if, every w∗-slice
of the unit ball of PN

I (Y ) (the space of integral N -homogeneous polynomials on Y ) has diameter
two. As a consequence, under the previous assumptions, the N -fold symmetric injective tensor
product of Y is extremely rough. Indeed, this isometric condition characterizes infinite-dimensional
spaces in the class of preduals of von Neumann algebras.

Keywords: Banach spaces, slice, homogeneous polynomial, integral polynomial, symmetric projec-
tive tensor product, symmetric injective tensor product, C∗-algebra
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1. Introduction

Since many of the classical Banach spaces do not satisfy the Radon-Nikodým property,
the characterization of such property in terms of slices gives us that some bounded,
closed and convex set in such a Banach space do not have arbitrarily small slices.
Schachermayer, Sersouri and Werner [31] introduced a modulus of non-dentability.
For a (non empty) bounded, closed and convex subset C of a Banach space, its
modulus of non-dentability, denoted by δ1(C), is given by δ1(C) := inf{diamS :
S is a slice of C}. A well-known characterization states that a Banach space X sat-

∗The first named author was supported by MEC projects MTM2006-04837, MTM-2009-07498 and
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isfies the Radon-Nikodým property if, and only if, every closed, convex and bounded
subset C of X satisfies that δ1(C) = 0. Schachermayer, Sersouri and Werner proved
that for every Banach space X not satisfying the Radon-Nikodým property and for
each ε > 0, there is a subset C of X with diamC = 1 and δ1(C) > 1− ε.

For some classical Banach spaces X (without the Radon-Nikodým property), it holds
that the modulus of non-dentability of the unit ball is two. The above phenomena
happens in the following cases:

• X is an infinite-dimensional uniform algebra [25].

• X is a space satisfying the Daugavet property [32].

• C(K,X), where K is an infinite Hausdorff and compact topological space and
X is any nontrivial Banach space [7, 26].

• L1(µ,X), when µ is an atomless measure and X is a nontrivial Banach space [7].

• X is any infinite-dimensional C∗-algebra [9, 8].

• Some L-embedded and M -embedded Banach spaces under some additional as-
sumptions [24].

•
⊗̂

N,s,πC(K), the N -fold symmetric projective tensor product of C(K), in the

case that K is an infinite compact and Hausdorff topological space) [1].

•
⊗̂

N,s,πL1(µ), the N -fold symmetric projective tensor product of L1(µ), if µ is a

σ-finite and atomless measure [1].

• The interpolation spaces L1(R
+) + L∞(R+) (endowed with two natural norms)

and L1(R
+) ∩ L∞(R+) (endowed with the maximum norm) [2].

In this paper we obtain new results along the same line for the N -fold symmetric
projective and injective tensor product of certain Banach spaces with a good algebraic
structure. Let us point out that there are just a few results on isometric properties of
the symmetric tensor product of Banach spaces (see [29], [10], [4], [19] and [1]). Let us
also notice that for a finite-dimensional normed space, the modulus of non-dentability
of the unit ball is zero.

Now we will list the results that we obtained in this paper. In the first section we
give a quantitative version of Smulyan test of Fréchet differentiability for PN(X), by
recalling the modulus of roughness of an element of a Banach space. As a consequence,
we give a criteria in terms of X for a polynomial P ∈ PN(X) to have a certain
modulus of roughness. In Section 3 we will apply this criteria to deduce that for
X = C(K) (K infinite) the modulus of roughness of every polynomial is 2 and so,
PN(X) has no points of Fréchet differentiability. Indeed, the same result is true for
every infinite predual of an L1-space. Let us recall that Boyd and Ryan proved that
the space PN(X) is never smooth, for every Banach space X with dimension greater
or equal to 2 and N ≥ 2 [10, Proposition 17] (see also [29, Corollary 7]).

By localizing the result for C(K), we will prove in Section 4 that for a JB∗-triple X, if
PN(X) is not extremely rough, then X is isomorphic (as a Banach space) to a Hilbert
space (Theorem 4.2). As a consequence, for every infinite dimensional C∗-algebra X,
the modulus of roughness of every N -homogeneous polynomial on X is 2. That is,

every slice of the unit ball of
⊗̂

N,s,πX have diameter two.
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The last section of the paper contains results of the same kind for the dual of the

symmetric injective tensor product of a Banach space X,
⊗̂

N,s,εX. It follows from

known results that for every normalized element x in X, if the norm of X is Fréchet

differentiable at x, then the symmetric injective tensor norm of
⊗̂

N,s,εX is Fréchet

differentiable at x⊗ N. . . ⊗x (see [10, Theorem 11] and [13, Corollary I.1.5]). Hence,

for every space X isomorphic to a Hilbert space, the unit sphere of
⊗̂

N,s,εX has

points of Fréchet differentiability of the norm.

In this section we provide a class of Banach spaces for which the converse holds true
(Corollary 5.2). As a consequence, if X is a Banach space whose dual is an infinite-

dimensional von Neumann algebra, and N ∈ N, the space
⊗̂

N,s,εX is extremely

rough. That is, every w∗-slice of the space of the integral N -homogeneous polyno-
mials on X, endowed with the usual norm has diameter two. Indeed, this isometric
condition characterizes the infinite-dimensional spaces belonging to this class.

We notice that for Banach spaces such that every slice of the unit ball has diameter
two, there are not weak-norm points of continuity (of the identity mapping) on the
unit ball.

2. Notation and general results

Throughout the paper, X will be a Banach space over the scalar field K (R or C)
and X∗ will be its topological dual. We will denote by SX and BX the unit sphere
and the closed unit ball of X, respectively.

For a Banach space X and N ∈ N, we will consider the symmetric projective N-

tensor product
⊗̂

N,s,πX := X⊗̂π,s
N. . . ⊗̂π,sX. This space is the completion of the

linear space generated by {x⊗ N. . . ⊗x : x ∈ X} under the norm given by

‖z‖ = inf

{
m∑

i=1

|λi| : z =
m∑

i=1

λixi⊗ N. . . ⊗xi,m ∈ N, λi ∈ K, xi ∈ SX , ∀1 ≤ i ≤ m

}
.

Its topological dual can be identified with the space of all N -homogeneous (and
bounded) polynomials on X, denoted by PN(X). Every polynomial P ∈ PN(X) acts

as a linear functional P on the N -fold symmetric tensor product and the identification

is given by P (x) = P (x⊗ N. . . ⊗x) for every element x ∈ X.

The dual norm of the symmetric projective tensor product on PN(X) is the usual
polynomial norm, given by

‖P‖ = sup{|P (x)| : x ∈ X, ‖x‖ ≤ 1} (P ∈ PN(X)).

For a Banach space X, given an element u ∈ SX , we recall that the modulus of
roughness at u is given by

η(X, u) := inf
δ>0

{
sup

{
‖u+ h‖+ ‖u− h‖ − 2

‖h‖
: h ∈ X, ‖h‖ ≤ δ

}}
.
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Let us notice that 0 ≤ η(X, u) ≤ 2. The norm of X is Fréchet differentiable at u if,
and only if, η(X, u) = 0 (see [13, Lemma I.1.3]). We say that X is extremely rough
whenever η(X, u) = 2 for every u ∈ SX ([13, Section I.1]).

Also, for an element x∗ ∈ X∗, a slice of a (nonempty) bounded subset A ⊂ X is given
by

S(A, x∗, α) := {x ∈ A : Re x∗(x) > sup
a∈A

Re x∗(a)− α},

where 0 < α < supRe x∗(A). If X = Y ∗ for some Banach space Y , A ⊂ Y ∗ and
y ∈ Y , then we will say that the slice

S(A, y, α) := {z∗ ∈ A : Re z∗(y) > sup
y∗∈A

Re y∗(y)− α},

is a w∗-slice of A.

The next result is a local quantitative version of the result due to Smulyan stating
that the norm of the dual space is Fréchet differentiable at a point x∗ if, and only if,
x∗ strongly exposes the unit ball of X. We recall that an element x∗ ∈ SX∗ strongly
exposes BX if any sequence (xn) in BX satisfying (x∗(xn)) → 1 converges in the norm
topology.

Lemma 2.1 ([13, Proposition I.1.11]). Let x ∈ SX and x∗ ∈ SX∗, then it is
satisfied

η(X∗, x∗) = inf{diamS(BX , x
∗, α) : 0 < α < 1},

and
η(X, x) = inf{diamS(BX∗ , x, α) : 0 < α < 1}.

We will check that the modulus of roughness can be computed by using slices of a
set whose convex hull is dense in the unit ball.

Proposition 2.2. Assume that BX = co(A), for some set A ⊂ X and let x∗ ∈ SX∗.
Then

inf
α>0

diamS(BX , x
∗, α) = inf

α>0
diamS(A, x∗, α).

Proof. We can clearly assume that X is a real Banach space. Of course, it holds

diamS(BX , x
∗, α) ≥ diamS(A, x∗, α)

and so it is satisfied

inf
α>0

diamS(BX , x
∗, α) ≥ inf

α>0
diamS(A, x∗, α).

For the reversed inequality, let us notice that for every 0 < ε < 1
2
and each

x ∈ S(BX , x
∗, ε2), since the closed convex hull of A is dense in the unit ball, we

know that there is a convex combination
∑n

i=1 tiai of elements {ai : 1 ≤ i ≤ n} in A
satisfying ∥∥∥∥∥x−

n∑

i=1

tiai

∥∥∥∥∥ < ε2,
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and so

1− ε2 ≤ x∗(x) ≤ ε2 + x∗

(
n∑

i=1

tiai

)

Let denote by P := {i : x∗(ai) ≤ 1− ε}. Hence we obtain that

1− ε2 ≤ ε2 +
∑

i∈P

ti(1− ε) +
∑

i/∈P

ti

≤ 1 + ε2 − ε
∑

i∈P

ti.

From the last inequality we obtain that
∑

i∈P

ti ≤ 2ε.

We deduce that
∥∥∥∥∥x−

∑

i/∈P

tiai

∥∥∥∥∥ ≤

∥∥∥∥∥x−
n∑

i=1

tiai

∥∥∥∥∥+
∥∥∥∥∥
∑

i∈P

tiai

∥∥∥∥∥ ≤ ε2 + 2ε ≤ 3ε.

Since
∑

i/∈P ti ≥ 1− 2ε > 0, we have

1∑
i/∈P ti

∥∥∥∥∥x−
∑

i/∈P

tiai

∥∥∥∥∥ ≤
3ε

1− 2ε
.

It follows that∥∥∥∥∥x−
1∑
i/∈P ti

∑

i/∈P

tiai

∥∥∥∥∥ ≤

∥∥∥∥x−
1∑
i/∈P ti

x

∥∥∥∥+
1∑
i/∈P ti

∥∥∥∥∥x−
∑

i/∈P

tiai

∥∥∥∥∥

≤
2ε

1− 2ε
+

3ε

1− 2ε

=
5ε

1− 2ε
.

We showed that, given x ∈ S(BX , x
∗, ε2), there is an element y ∈ co(S(A, x∗, ε)) with

‖y − x‖ ≤ 5ε
1−2ε

.

Hence

diamS(A, x∗, ε) = diam co(S(A, x∗, ε))

≥ diamS(BX , x
∗, ε2)−

10ε

1− 2ε

≥ inf
α>0

diamS(BX , x
∗, α)−

10ε

1− 2ε
.

Since the function ε 7→ diamS(A, x∗, ε) is increasing, by taking limit when ε → 0, we
deduce the inequality

inf
α>0

diamS(A, x∗, α) ≥ inf
α>0

diamS(BX , x
∗, α).



518 M. D. Acosta, J. Becerra Guerrero / Slices in the Unit Ball of the Symmetric ...

By the definition of the norm on the symmetric projective N -tensor product of a
Banach space X, the subset A given by

A = {tx⊗ N. . . ⊗x : t ∈ {+1,−1}, x ∈ SX},

satisfies that its closed convex hull is dense in the unit ball of
⊗̂

N,s,πX. By using

Lemma 2.1 and Proposition 2.2, we obtain the following quantitative version of [17,
Theorem 2.4].

Proposition 2.3. For P ∈ PN(X) satisfying ‖P‖ = 1 and ε > 0, the following
conditions are equivalent:

i) η(PN(X), P ) < ε

ii) For every sequences {xn}, {yn} in the unit ball of X with limn{P (xn)} = s‖P‖,
limn{P (yn)} = t‖P‖, where s, t ∈ {+1,−1}, we get that

lim sup{|sQ(xn)− tQ(yn)|} < ε

uniformly for Q in the unit ball of PN(X).

Let us observe that

sup{|sQ(x)− tQ(y)| : Q ∈ PN(X), ‖Q‖ = 1} = ‖s(x⊗ N. . . ⊗x)− t(y⊗ N. . . ⊗y)‖,

and so the second condition says that the diameter of the slices determined by the

functional associated to P on
⊗̂

N,s,πX is less than ε.

In case that we can apply the previous result for every positive number, taking into
account that η(X, x) = 0 iff x is a point of Fréchet differentiability of the norm, we
obtain the result proved by Ferrera (see [17, Theorem 2.4 and Proposition 2.3] and
[10, Theorem 14]).

Corollary 2.4. For P ∈ PN(X), it is satisfied that P is a point of Fréchet differen-
tiability of the norm iff P determines slices of arbitrarily small diameter iff

∀{xn}, {yn} ⊂ SX : lim{P (xn)} = s‖P‖, lim
n
{P (yn)} = t‖P‖, where s, t ∈ {+1,−1}

⇒ lim{|sQ(xn)− tQ(yn)|} = 0 uniformly on Q ∈ BPN (X).

In the following result we obtain the largest possible modulus of roughness under
certain assumptions that are satisfied by some classical spaces, as we will see later.

Proposition 2.5. Let X be aBanach space and P ∈SPN (X) with 1= supx∈BX
ReP (x).

Assume that for every α > 0 and for every functional x∗ ∈ SX∗ such that

S := ({x ∈ BX : Re P (x) > 1− α} ∩ S(BX , x
∗, α}) 6= ∅,

then diamS = 2. It holds η(PN(X), P ) = 2.

Proof. For every n, we denote by

Sn(P ) :=

{
x ∈ BX : Re P (x) > 1−

1

n

}
.
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If un ∈ SX ∩ Sn(P ) and u∗
n is a norm one functional satisfying u∗

n(un) = 1, then it is
clear that un ∈ Sn(P ) ∩ S(BX , u

∗
n,

1
n
). Because of the assumption, we know that the

previous subset has diameter two. Hence, we can find sequences {xn}, {yn} in SX

and {v∗n} in SX∗ satisfying

i) lim{‖xn − yn‖} = 2 .

ii) lim{Re P (xn)} = 1 = lim{Re P (yn)}.

iii) lim{u∗
n(xn)} = 1 = lim{u∗

n(yn)}.

iv) lim{v∗n(xn)} = 1 = − lim{v∗n(yn)}.

If N is odd and n is a natural number, we consider the N -homogeneous polynomial
given by

Qn = (v∗n)
N ,

which is clearly an N -homogeneous polynomial on X. Because of condition iv) it is
satisfied lim{‖Qn‖} = 1 and also

lim

{
Qn

‖Qn‖
(xn)−

Qn

‖Qn‖
(yn)

}
= 2.

If N is even, we consider the polynomial Qn = (v∗n)
N−1u∗

n. By iii) and iv), lim{‖Qn‖}
= 1 and we also obtain that

lim

{
Qn

‖Qn‖
(xn)−

Qn

‖Qn‖
(yn)

}
= 2.

In view of Proposition 2.3, we obtain that η(PN(X), P ) = 2.

3. Results for C(K)

Finite-dimensional spaces have the Radon-Nikodým property. Hence the unit ball of
a finite-dimensional space has slices of arbitrarily small diameter. In this section we
will show that the symmetric projective tensor product of an isometric predual of an
L1-space is far from satisfying the above condition in the infinite-dimensional case.
In order to prove such result we will show first a stronger property for C(K). To
this purpose we will use the following technical result that follows from the Urysohn
Lemma.

Lemma 3.1 ([1, Lemma 2.1]). Let K be a compact and Hausdorff infinite topo-
logical space. Then there are two sequences of non-empty open sets {Vn} and {Un}
satisfying that

Vn ⊂ Un, Un ∩ Um = ∅ (n 6= m),

and two sequences of functions {gn} and {hn} in C(K) satisfying that

{gn}
w

−→ 0, {hn}
w

−→ 0,

and also

0 ≤ gn, hn ≤ 1, supp hn ⊂ Vn, ‖hn‖∞ = 1, supp gn ⊂ Un, gn(Vn) = {1}.
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Proposition 3.2. Let K be an infinite compact Hausdorff topological space and
X := C(K) (either real or complex valued) functions. Given an N-homogeneous
polynomial P on X with ‖P‖ = 1, α > 0 and x∗ ∈ SX∗ such that

S := ({x ∈ BX : Re P (x) > 1− α} ∩ S(BX , x
∗, α}) 6= ∅,

we have that diamS = 2.

Proof. By assumption, since P is N -homogeneous, then there is an element f in
S ∩ SX . By Lemma 3.1, there are sequences of functions {gn} and {hn} in C(K)
satisfying that

{gn}
w

−→ 0, {hn}
w

−→ 0

and sequences of pairwise disjoint open sets, {Vn} and {Un}, satisfying

0 ≤ gn, hn ≤ 1, supp hn ⊂ Vn, ‖hn‖∞ = 1, supp gn ⊂ Un, gn(Vn) = {1}. (1)

Since {gn} and {hn} converges weakly to zero, then the sequences

{un} = {f(1− gn) + hn}, {vn} = {f(1− gn)− hn}

converges weakly to f . Also, both sequences are in the unit ball of the space. We
check this assertion. If n ∈ N and t ∈ K, by using conditions (1), then depending on
the fact that t ∈ Vn or t /∈ Vn, one of the two following cases holds

|(f(1− gn)± hn)(t)| = |hn(t)|, |(f(1− gn)± hn)(t)| = |f(1− gn)(t)|,

and so, both sequences {un} and {vn} are in the unit ball of C(K). Finally, by using
that the space C(K) has the Dunford-Pettis property and, by [28, Theorem 2.1], it
has the polynomial Dunford-Pettis property, that is, polynomials on C(K) preserve
weak convergence of sequences, we obtain that

{P (un)} → P (f), {P (vn)} → P (f).

Hence, for n large enough, then un, vn satisfy that

un, vn ∈ {x ∈ BX : Re P (x) > 1− α} ∩ S(BX , x
∗, α}

Now let us note that
‖un − vn‖∞ = ‖2hn‖∞ = 2,

and so diamS = 2.

In view of Proposition 2.5, we deduce that η(PN(C(K)), P ) = 2 for every N -homo-
geneous polynomial P on C(K), whenever K is infinite ([1, Corollary 2.3]).

Proposition 3.3. Let X be an infinite-dimensional L1 predual. Given an N-homo-
geneous polynomial P on X satisfying ‖P‖ = 1, if we assume that α > 0, x∗ ∈ X∗

and
S := ({x ∈ BX : Re P (x) > 1− α} ∩ S(BX , x

∗, α}) 6= ∅,

then diamS = 2.
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Proof. We can clearly assume that X is a real Banach space. Since S is non-empty
and P an N -homogeneous polynomial, we can choose x ∈ S ∩ SX . By [3], every
homogeneous polynomial P on X can be extended to a polynomial on its bidual. We

denote by P̃ this canonical extension that also satisfies ‖P̃‖ = 1. We consider the set
S∗∗ given by

S∗∗ := {x∗∗ ∈ BX∗∗ : P̃ (x∗∗) > 1− α} ∩ S(BX∗∗ , x∗, α}.

Since x ∈ S, then x ∈ S∗∗ and so S∗∗ is non empty. Under the assumptions, X∗∗

is isometrically isomorphic to C(K) for suitable infinite compact topological space
K. By using Proposition 3.2, given ε > 0, there exist x∗∗, y∗∗ ∈ S∗∗ such that
‖x∗∗ − y∗∗‖ > 2 − ε. By [12, Theorem 2], there are nets {xα} and {yα} in BX

satisfying that

{Q(xα)} → Q̃(x∗∗), {Q(yα)} → Q̃(y∗∗), (2)

for every k-homogeneous polynomial Q on X with k ≤ N . In view of the w∗-lower
semicontinuity of the norm of X∗∗ we have

lim inf ‖xα − yα‖ ≥ ‖x∗∗ − y∗∗‖.

By condition (2), for α large enough, xα, yα belongs to S∗∗ and hence in S. We
conclude that

diamS ≥ lim inf ‖xα − yα‖ > 2− ε,

for every ε > 0 and so diamS = 2.

In view of Proposition 2.5 we deduce the following:

Corollary 3.4. Let X be an infinite-dimensional L1 predual and P be an N-homo-
geneous polynomial on X. Then η(PN(X), P ) = 2.

Given a locally compact Hausdorff topological space Ω, we denote by C0(Ω) the
Banach space of all scalar (either real or complex) valued continuous functions on Ω
vanishing at infinity.

Corollary 3.5. Let Ω be an infinite locally compact Hausdorff topological space and
P be any N-homogeneous polynomial on C0(Ω). Then η(PN(C0(Ω)), P ) = 2.

4. Results for JB*-triples

We recall that a JB∗-triple [23, 21] is a complex Banach space J with a continuous
triple product { } : J × J × J → J which is linear and symmetric in the outer
variables, and conjugate-linear in the middle variable, and satisfies:

1. For all x in J , the mapping y → {xxy} from J to J is a hermitian operator on J
and has nonnegative spectrum.

2. The main identity

{ab{xyz}} = {{abx}yz} − {x{bay}z}+ {xy{abz}}

holds for all a, b, x, y, z in J .
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3. ‖{xxx}‖ = ‖x‖3 for every x in J .

JB∗-triples are of capital importance in the study of bounded symmetric domains in
complex Banach spaces. Indeed, open balls in JB∗-triples are bounded symmetric do-
mains, and every symmetric domain in a complex Banach space is biholomorphically
equivalent to the open unit ball of a suitable JB∗-triple (see [22]).

Several classical spaces are JB∗-triples. For instance, every C∗-algebra and the space
of operators between two complex Hilbert spaces are JB∗-triples, endowed with their
usual norm and the triple product given by

{xyz} :=
1

2
(xy∗z + zy∗x).

As a consequence, a complex Hilbert space (usual norm) belongs to this class. There
are more JB∗-triples isomorphic to Hilbert spaces, the so-called spin factors. These
are constructed from an arbitrary complex Hilbert space (H, (·|·)) of dimension ≥ 3,
by taking a conjugate-linear involutive isometry σ on H, and then by defining the
triple product and the norm by the formulas

{xyz} := (x|y)z + (z|y)x− (x|σ(z))σ(y) (x, y, z ∈ H)

and
‖x‖2 := (x|x) +

√
(x|x)2 − |(x|σ(x))|2 (x ∈ H).

A subtriple of a JB∗-triple J is a vector subspace of J invariant under the triple
product. An element x ∈ J is called algebraic if the subtriple of J generated by x is
finite-dimensional. In the case that every element in J is algebraic, then the triple J
is called algebraic.

The following result shows that two properties of very different nature, one algebraic
and one isometric, are related.

Proposition 4.1. Let X be a complex JB∗-triple and assume that X is not algebraic.
If for some normalized N-homogeneous polynomial P on X, α > 0 and x∗ ∈ SX∗ the
set

S := ({x ∈ BX : Re P (x) > 1− α} ∩ S(BX , x
∗, α})

is non-empty, then diamS = 2.

Proof. Since S has non-empty norm interior in X and we are assuming that X is not
algebraic, S contains an element x that is not algebraic [9, Lemma 2.3]. Denote by
Jx the closed subtriple of X generated by x. It is known that there is a unique locally
compact subset Sx of ]0,∞[ and a surjective triple isomorphism φx : Jx → CC

0 (Sx)
such that Sx ∪ {0} is compact and φx(x) is the inclusion mapping Sx → C (see [18],
[21, 4.8] and [22, 1.15]).

Since surjective triple isomorphisms between JB∗-triples are isometries (see again
[22]), we can identify Jx and CC

0 (Sx) as Banach spaces. By using that x ∈ S, it is
clear that there exists β > 0 which the following property

{y ∈ BJx : Re P (y) > ‖P |Jx‖ − β} ∩ S(BJx , x
∗
|Jx , β} ⊆ S.
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On the other hand, since x is not an algebraic element, Jx is infinite dimensional and
by Proposition 3.3, we have

diam({y ∈ BJx : Re P (y) > ‖P |Jx‖ − β} ∩ S(BJx , x
∗, β)) = 2.

We conclude that diamS = 2.

Assume that X is a Banach space with the Radon-Nikodým property. Then for
every ε > 0 there is a functional x∗ ∈ SX∗ such that some slice S(BX , x

∗, α) does
have diameter less than ε. If N is odd, then P := (x∗)N is an N -homogeneous
polynomial on X such that the diameter of {x ∈ BX : Re P (x) > 1− α} is less than
ε. Hence, by using polarization formula we deduce that

diamS
(
B⊗̂

N,s,πX
, P,

ε

2α

)
≤

(
1 +

NN+1

N !

)
ε

and so PN(X) is not extremely rough. As we mentioned before, there are JB∗-triples
with the Radon-Nikodým property (indeed isomorphic to Hilbert spaces as Banach
spaces) and so PN(X) is not extremely rough in these cases. We will show that this
is the only exception in this class.

Theorem 4.2. Let X be a complex JB∗-triple and N ∈ N. The following assertions
are equivalent:

i) X is isomorphic (as a Banach space) to a Hilbert space.

ii) The norm of PN(X) has some points of Fréchet differentiability.

iii) PN(X) is not extremely rough.

iv) There exists a slice of the unit ball of
⊗̂

N,s,πX with diameter less than 2.

Proof. i) ⇒ ii) A Hilbert space has the Radon-Nikodým property. Hence, by the
result of J. Ferrera [17, Theorems 2.4 and 2.6], the points of Fréchet differentiability
of the norm in SPN (X) is dense.

ii) ⇒ iii) Trivial (for any Banach space).

iii) ⇒ iv) It suffices to use Lemma 2.1.

iv) ⇒ i) By the assumption and Lemma 2.1, there is a normalized N -homogeneous
polynomial P on X with η(PN(X), P ) < 2. Then by Proposition 2.5, there is α, x∗ ∈
SX∗ with

0 < diam ({x ∈ BX : Re P (x) > ‖P‖ − α} ∩ S(BX , x
∗, α)) < 2.

By applying the previous result and [9, Lemma 2.3], then X is algebraic. Now, since
Sx is finite for every x in X, the result follows easily from the proof of [11, Proposition
4.5].

Since C∗-algebras are finite-dimensional spaces whenever they are reflexive [30, Propo-
sition 2], and C∗-algebras are always JB∗-triples, we deduce:
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Corollary 4.3. Let X be a C∗-algebra and N ∈ N. The following assertions are
equivalent:

i) X is finite-dimensional.

ii) The norm of PN(X) is Fréchet differentiable at some point.

iii) There exists a slice of the unit ball of
⊗̂

N,s,πX with diameter less than 2.

By applying the same argument in the proof of Proposition 3.3, we deduce:

Corollary 4.4. Let X be a infinite-dimensional complex Banach space such that X∗∗

is a C∗-algebra and N ∈ N. Then PN(X) is extremely rough.

The analogous result of Corollary 4.3 for preduals of C∗-algebras cannot be expected.
Indeed there are infinite-dimensional spaces X with the Radon-Nikodým property
whose dual are C∗-algebras (for instance ℓ1). For these spaces PN(X) does have
points of Fréchet differentiability in view of [17, Theorems 2.4 and 2.6].

5. Big slices in the unit ball of spaces of integral polynomials

An N -homogeneous polynomial P is said to be integral [16] if there is a regular Borel
measure µ on (BX∗ , σ(X∗, X)) such that

P (x) =

∫

BX∗

(x∗(x))N dµ(x∗), ∀x ∈ X. (3)

We will denote by PN
I (X) the space of all N -homogeneous integral polynomials on

X. Let us recall that the integral norm of an integral polynomial P , ‖P‖I , is the
infimum of ‖µ‖ taken over all regular Borel measures satisfying (3). With the integral
norm PN

I (X) becomes a Banach space. It is satisfied that ‖P‖ ≤ ‖P‖I for every
integral polynomial P and so PN

I (X) ⊆ PN(X). If x∗ ∈ X∗, it is immediate that
(x∗)N is an integral N -homogeneous polynomial (represented by the measure δx∗)
and ‖(x∗)N‖I = ‖(x∗)N‖.

Given an element
∑k

i=1 λixi ⊗ xi ⊗ ...⊗ xi in
⊗

N,s X, the symmetric injective tensor

norm is given by

sup
x∗∈BX∗

∣∣∣∣∣

k∑

i=1

λi(x
∗(xi))

N

∣∣∣∣∣ .

This norm in the symmetric tensor product of X is inherited from PN(X∗). The

completion of
⊗

N,s X with respect to the above norm will be denoted by
⊗̂

N,s,εX.

Its dual is isometrically isomorphic to (PN
I (X), ‖.‖I) ([14]).

A complex JBW ∗-triple is a complex JB∗-triple having a (complete) predual. We
note that the predual of a JBW ∗-triple is unique [6]. The bidual X∗∗ of every JB∗-
triple X is a JBW ∗-triple under suitable triple product which extends the one of X
[15].

It is known that for every reflexive space X, SX contains points of Fréchet-differentia-
bility of the norm [5]. We will exhibit a class of spaces for which this phenomenon
can happen only for reflexive spaces (on the injective symmetric tensor product).
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Theorem 5.1. Let X be the predual of a non reflexive JBW ∗-triple and N ∈ N.

Then
⊗̂

N,s,εX is extremely rough.

Proof. By Lemma 2.1,
⊗̂

N,s,εX is extremely rough if the diameter of S(BPN
I (X), z, α)

is two for every z ∈ S⊗̂
N,s,εX

and every 0 < α < 1.

Let us fix an element z in
⊗̂

N,s,εX and 0 < α < 1. Since PN
I (X) is a dual Banach

space it follows from the Krein-Milman Theorem that S(BPN
I (X), z, α) contains an

extreme point of BPN
I (X). In view of [10, Proposition 1], there exists y∗ ∈ SX∗ such

that (y∗)N ∈ S(BPN
I (X), z, α). Since S(BPN

I (X), z, α) has nonempty norm interior in

BPN
I (X), the above slice contains a ball and so, there exist ρ > 0 such that for every

x∗ in SX∗ with ‖x∗ − y∗‖ ≤ ρ we have that (x∗)N ∈ S(BPN
I (X), z, α). Since we are

assuming that X∗ is a non reflexive JB∗-triple, then X∗ is not algebraic (see [8,
Theorems 2.3 and 3.8]).

It follows from [9, Lemma 2.3], that there exists a non algebraic element x∗ in SX∗ ∩
(y∗ + ρBX∗). Hence we can assume without lost of generality that y∗ is not algebraic
and (y∗)N ∈ S(BPN

I (X), z, α). Denote by Jy∗ the w∗-closed subtriple of X∗ generated

by y∗. It is known that there is a compact Hausdorff topological space K such that
Jy∗ is linearly isometric to CC(K) (see [20]). Since y∗ is not algebraic, so Jy∗ is infinite
dimensional.

By Lemma 3.1, there are sequences of continuous functions {gn} and {hn} on K
satisfying that

{gn}
w

−→ 0, {hn}
w

−→ 0

and sequences of disjoint open sets, {Vn} and {Un}, satisfying

0 ≤ gn, hn ≤ 1, supp hn ⊂ Vn, ‖hn‖∞ = 1, supp gn ⊂ Un, gn(Vn) = {1}. (4)

In view of (4) then for every f ∈ BCC(K), f(1− gn)± hn ∈ BCC(K) and the sequences

{f(1− gn)± hn} converges weakly to f .

Let T : CC(K) −→ Jy∗ be a linear isometry from CC(K) onto Jy∗ . Then the sequences

{u∗
n} =

{
T
(
T−1(y∗)(1− gn) + hn

)}
, {v∗n} =

{
T
(
T−1(y∗)(1− gn)− hn

)}

are in the unit ball of Jy∗ ⊂ X∗ and converges weakly to y∗. Therefore, {u∗
n} and

{v∗n} also converges weakly to y∗ in X∗. As a consequence, {(u∗
n)

N} and {(v∗n)
N}

converge to (y∗)N in the weak-∗ topology of PN
I (X). Since (y∗)N ∈ S(BPN

I (X), z, α)

and S(BPN
I (X), z, α) is a weak-∗ open set in BPN

I (X), then for n large enough, we have

that (u∗
n)

N and (v∗n)
N belong to S(BPN

I (X), z, α).

From now on, let us fix n large enough such that the previous conditions hold. By
using (4) ‖u∗

n − v∗n‖ = 2‖T (hn)‖ = 2‖hn‖∞ = 2. Then there is a sequence {xm}
in SX such that {u∗

n(xm)}m → 1 and {v∗n(xm)}m → −1. For each m, the element

xm⊗ N. . . ⊗xm belongs to B⊗̂
N,s,εX

and we have:
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1. If N is odd, then ‖(u∗
n)

N −(v∗n)
N‖I ≥ |(u∗

n(xm))
N −(v∗n(xm))

N |, for every m ∈ N

and so, by taking m → ∞, ‖(u∗
n)

N − (v∗n)
N‖I ≥ 2.

2. For the argument in case that N is even we will use the following remark. Given
w := x1⊗ N. . . ⊗xN in

⊗
N X, we recall that the element ws :=

1
n!

∑
σ∈ΠN

xσ(1)⊗

N. . . ⊗xσ(N) belongs to
⊗̂

N,s,εX (ΠN is the set of all permutations on {1, 2, . . . ,

N}). It is immediate that ws ∈ B⊗̂
N,s,εX

if the elements xi ∈ BX for every

1 ≤ i ≤ N .
We know that y∗ ∈ SX∗ , so for each ε > 0, let y ∈ SX be such that y∗(y) =
Re y∗(y) > 1− ε. Since {u∗

n} and {v∗n} converges weakly to y∗, then for n large
enough it holds

Re u∗
n(y) > 1− ε, Re v∗n(y) > 1− ε.

By using the fact that N is even and the above remark we deduce that

‖(u∗
n)

N − (v∗n)
N‖I ≥ |((u∗

n)
N − (v∗n)

N)(xm⊗ N−1. . . ⊗xm ⊗ y)s|

≥ |(u∗
n(xm))

N−1u∗
n(y)− (v∗n(xm))

N−1v∗n(y)|

for every m ∈ N. By taking limit (m → ∞) we deduce that

‖(u∗
n)

N − (v∗n)
N‖I ≥ |u∗

n(y) + v∗n(y)| ≥ Re u∗
n(y) + v∗n(y) > 2− ε.

In any case, by the choice of n, we have diamS(BPN
I (X), z, α) ≥ 2 and so

diamS(BPN
I (X), z, α) = 2, as we wanted to show.

From the previous theorem and some known results, we will establish the following
characterization:

Corollary 5.2. Let X be the predual of a JBW ∗-triple and N ∈ N. Then the fol-
lowing conditions are equivalent:

i) X is isomorphic (as a Banach space) to a Hilbert space.

ii) The norm of
⊗̂

N,s,εX is Fréchet differentiable at some element.

iii) There exists a w∗-slice of the unit ball of PN
I (X) with diameter less than 2.

iv)
⊗̂

N,s,εX is not extremely rough

Proof. i) ⇒ ii) Since X is a reflexive space, then the unit sphere of X contains at
least one point x of Fréchet differentiability. Hence x determines slices of BX∗ with
diameter arbitrarily small in view of Lemma 2.1. By [10, Proposition 1] and the

argument used in Proposition 2.2, then x⊗
N
· · · ⊗x determines w∗-slices of the unit

ball of its dual PN
I (X) with diameter arbitrarily small. Then the norm of

⊗̂
N,s,εX

is Fréchet differentiable at some point by using again Lemma 2.1.

ii) ⇒ iii) and iii) ⇒ iv) are clear in view of Lemma 2.1.

iv) ⇒ i) By Theorem 5.1, X is reflexive. Then X∗ is a reflexive JB∗-triple and by
[9, Proposition 2.4], X is isomorphic (as a Banach space) to a Hilbert space.
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By using again that C∗-algebras are finite-dimensional spaces whenever they are
reflexive [30, Proposition 2], and C∗-algebras are always JB∗-triples, we deduce the
main result of this section.

Corollary 5.3. Let X be the predual of a von Neumann algebra and N ∈ N. Then
the following conditions are equivalent:

1. X is finite-dimensional.

2. The norm of
⊗̂

N,s,εX is Fréchet differentiable at some element.

3. There exists a w∗-slice of the unit ball of PN
I (X) with diameter less than 2.

The analogous result of Theorem 5.1 is not true in the class of JB∗-triples. For

instance, if we take X = c0 and N ∈ N, then
⊗̂

2,s,εX is an Asplund space by [27,

Theorem 1.9].
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