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Generic Fréchet Differentiability

on Asplund Spaces via A.E. Strict

Differentiability on Many Lines∗
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We prove that a locally Lipschitz function on an open subset G of an Asplund space X, whose
restrictions to “many lines” are essentially smooth (i.e., almost everywhere strictly differentiable),
is generically Fréchet differentiable on X. In this way we obtain new proofs of known Fréchet
differentiability properties of approximately convex functions, Lipschitz regular functions, saddle
(or biconvex) Lipschitz functions, and essentially smooth functions (in the sense of Borwein and
Moors), and also some new differentiability results (e.g., for partially DC functions). We show that
classes of functions Sg

e
(G) and Rg

e
(G) (defined via linear essential smoothness) are respectively

larger than classes Se(G) (of essentially smooth functions) and Re(G) studied by Borwein and
Moors, and have also nice properties. In particular, we prove that members of Sg

e
(G) are uniquely

determined by their Clarke subdifferentials. We also show the inclusion Se(G) ⊂ Re(G) for
Borwein-Moors classes.
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1. Introduction

It is well-known that some kinds of (non-convex) locally Lipschitz functions which
naturally arise in applications have similar differentiability properties as convex
functions. In this article we are interested in generic Fréchet differentiability; i.e., in
Fréchet differentiability except a first category (meager) set. Recall that a Banach
space X is called an Asplund space if each continuous convex function on X is
generically Fréchet differentiable.

For the sake of brevity, we will say (in this section only) that a property (P ) (which
a function can have) is a (GFD) property (i.e. a generic Fréchet differentiability
property), if each function f which is locally Lipschitz on an open subset G of
an Asplund space and has the property (P ) is generically Fréchet differentiable on
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G. Using this abbreviation, we will now present a brief survey of known relevant
differentiability results. The definitions of involved notions are recalled in Section 2.

Now it is well known that approximate convexity in the sense of [25] (and there-
fore also local semiconvexity and strong paraconvexity) are (GFD) properties in the
above sense (see [36] or [26]). It seems that the first (GFD) property (weaker than
convexity) appears in [15], where it is considered the following property (P1) of f :

(P1) f(x) = supα∈A fα(x), x ∈ G, where each fα is Fréchet differentiable on G and
the derivatives f ′

α, α ∈ A, are equally uniformly continuous on G.

Ekeland and Lebourg [15] proved that “(P1) is a (GFD) property� if X admits a
Fréchet smooth bump function, and it was proved that (P1) is a (GFD) property
in [34]. The proof in [34] is based on the fact that the property (P1) implies that
f is Fréchet subdifferentiable at all points of G. Moreover, the following property
(P2) is a (GFD) property (see [35, Theorem 10]).

(P2) f is generically Fréchet subdifferentiable on G.

Note that if f has the property (P1), then f is semiconvex (=strongly paraconvex),
and if X is superreflexive, then also the converse implication holds (see [14]). Fur-
ther note that generic approximate convexity is also a sufficient property (see [26]),
and that this fact immediately follows (via [25, Theorem 3.6]) from the fact that
(P2) is a (GFD) property.

Independently, by different methods, and almost in the same time, further (GFD)
properties were found. Georgiev [17] (see also [18] and [26] for another proofs)
proved that regularity (in Clarke’s sense) is a a (GFD) property, and de Barra,
Giles and Fitzpatrick [12] proved that even pseudoregularity is a (GFD) property.
Moreover, they proved (using the deep Preiss theorem on Fréchet differentiability of
general Lipschitz functions) that the following weaker property is a (GFD) property
(cf. also [5]).

(P3) If f is Fréchet differentiable at a point x ∈ G, then f is strictly Gateaux
differentiable at x.

Notice that generic strict Gateaux differentiability is not a (GFD) property. Indeed,
in ℓ2 there exists a Lipschitz everywhere Gateaux differentiable function f which is
generically Fréchet non-differentiable (see [28]). Since f is generically pseudoregular
(see (11) below), it is generically strictly Gateaux differentiable. Two other (GFD)
properties weaker than pseudoregularity (cf. Proposition BM above Remark 6.1)
are considered in [2], [6] and [8]:

(P4) f is strictly Gateaux differentiable at all points x ∈ G except a Haar null set.

(P5) f is essentially smooth on G (i.e., f is locally Lipschitz on G and, for each
v ∈ X, f is strictly differentiable in the direction v at all points x ∈ G except
a Haar null set).

Clearly, (P4) is stronger than (P5), but (see [8, Theorem 3.3]) for locally Lipschitz
functions,

if X is separable, then (P4) and (P5) are equivalent. (1)

The properties (P4) and (P5) are (GFD) properties. This fact is proved in [2,
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Theorem 4.1] in the separable case. The non-separable result is not mentioned in
[8], but it follows from [8, Theorem 3.4] as in the proof of [2, Theorem 4.1]. Namely,
[13, Lemma 1.6] easily implies (cf., e.g., [2, Proposition 3.1(d)]) that the property

(P6) the Clarke subdifferential mapping ∂Cf : (G, ‖ · ‖) → (X∗, w∗) is a minimal
usco mapping

is a (GFD) property and [8, Theorem 3.4] asserts that (P5) implies (P6).

Recall that a multi-valued mapping F : (G, ‖ · ‖) → (X∗, w∗) is usco (where G is an
open subset of X and (X∗, w∗) is the dual space endowed with w∗-topology), if F (x)
is a non-empty compact in (X∗, w∗) for each x ∈ G and F is upper semicontinuous.
(In this situation, it is frequently said that F is a w∗-usco from G to X∗.) The

mapping F is called a minimal usco if there exists no usco F̃ : (G, ‖ · ‖) → (X∗, w∗)
whose graph is a proper subset of graph of F . The important Christensen-Kenderov
result [13, Lemma 1.6] implies that if F : (G, ‖ · ‖) → (X∗, w∗) is a minimal usco,
then there exists a first category set N ⊂ G such that F is single-valued and
semicontinuous as a mapping from (G, ‖ · ‖) to (X∗, ‖ · ‖) at all points of G \N .

To formulate our results, which give new (GFD) properties, we need the following
definition.

Definition 1.1. Let f be a real function defined on an open subset G of a Banach
space X.

(i) We say that f is essentially smooth on the line L = a + Rv (where a ∈ X,
0 6= v ∈ X) if the function ϕ(t) := f(a + tv) of one variable is strictly
differentiable at a.e. points of its (possibly empty) domain. (Obviously, the
definition is correct; it does not depend on the choice of a and v).

(ii) We say that f is linearly essentially smooth, and write f ∈ S l
e(G), if f is

essentially smooth on all lines.

(iii) We say that f is essentially smooth on a generic line parallel to 0 6= v ∈ X, if
f is essentially smooth on all lines parallel to v, except a first category set of
lines in the factor space X/ span{v}.

Remark 1.2. The system of all essentially smooth functions on G is denoted by
Se(G) in [8]. So, f is essentially smooth on the line L = a + Rv if and only if
H := {t ∈ R : a + tv ∈ G} = ∅ or H 6= ∅ and ϕ ∈ Se(H), where ϕ(t) :=
f(a + tv), t ∈ H. Further, if f is strictly differentiable in the direction v at a.e.
points of L (i.e., except a set of null Hausdorff one-dimensional measure), then f is
clearly essentially smooth on L (but the opposite implication does not hold).

We will show that also the following property (P7) is a (GFD) property:

(P7) f is linearly essentially smooth.

In fact, we prove that the following weaker properties are (GFD) properties.

(P8) There exist closed subspaces X1,. . . , Xn of X such that X = X1 ⊕ · · · ⊕Xn

and f is essentially smooth on each line, which is parallel to someXi,1 ≤ i≤ n.

(P9) There exists a dense subsetD of the unit sphere SX such that, for each v ∈ D,



26 L. Zaj́ıček / Generic Fréchet Differentiability in Asplund Spaces

f is essentially smooth on a generic line parallel to v.

The fact that (P8) is a (GFD) property generalizes the well-known fact (see [1]) that
all locally Lipschitz saddle and biconvex functions on Asplund spaces are generically
Fréchet differentiable. Moreover (cf. Section 8), it shows that also locally Lipschitz
partially DC (or partially approximately convex) functions are generically Fréchet
differentiable on Asplund spaces.

The condition (P9) is weaker than (P5) (see Proposition 6.4), and so also weaker
than (P1) and psudoregularity. (On the other hand, it seems that (P9) is neither
weaker nor stronger than (P2), (P3) or (P6).)

Recall that the class of all essentially smooth functions on G is denoted by Se(G)
in [8]. We will consider several related classes:

Definition 1.3. Let G be an open subset of a Banach space X.

(i) We will denote by Sg
e (G) (resp. Sgg

e (G), resp. Sgd
e (G)) the class of all locally

Lipschitz functions on G such that f is essentially smooth on a generic line
parallel to an arbitrary 0 6= v ∈ X (resp. to an arbitrary v from a set which
is residual in SX , resp. to an arbitrary v from a dense subset of SX).

(ii) If X = X1 ⊕ · · · ⊕ Xn (and this decomposition is fixed), then we denote by
Sp
e (G) the class of all locally Lipschitz functions on G such that f is essentially

smooth on each line parallel to some Xi (1 ≤ i ≤ n).

Remark 1.4.

(i) Sgd
e (G) (resp. Sp

e (G)) is the system of all locally Lipschitz functions fulfilling
(P9) (resp. (P8)) on G.

(ii) In the above notation, “g� is for “generic�, “d� for “dense�, and “p� for
“partial�.

(iii) We can define by the obvious way also the class Sdd
e (G). But the members

of this class need not be generically differentiable even for X = R
2. (In this

time, I know only a rather technical example, so I do not present it here.)

Obviously, S l
e(G) ⊂ Sg

e (G) ⊂ Sgg
e (G) ⊂ Sgd

e (G) and we will show (see Proposition
6.4) that, if dimX > 1, then

Se(G) ⊂ Sg
e (G) and this inclusion is strict. (2)

It seems that the class Sgd
e (G) is rather unstable, but the classes Sg

e (G) and Sgg
e (G)

have the same stability properties as Se(G): they are linear lattices closed under
multiplication and division (when it is defined on G), see Proposition 7.1. Further,
on Asplund spaces, the members of these classes are generically Fréchet differen-
tiable and are uniquely determined by their Clarke subdifferentials (see Proposition
7.5). So, they can be, similarly as the smaller class Se(G), of some interest.

The structure of the article is the following. In Section 2 we recall some notions and
known facts. In Section 3 we prove a general differentiability result (Proposition
3.3) in a separable Asplund space; its proof contains the main idea of the article.
The results in nonseparable Asplund spaces are proved by the well-known method
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of separable reduction (see, e.g., [35]). However, for the proof of some more subtle
results (e.g. Theorem 5.2), the improvement (from [9] and [22]) of the separable
reduction method, which is based on the notion of a “rich family� of separable sub-
spaces, was very useful. The method of rich families is used in Section 4 to prove,
among others, Theorem 4.7 on separable reduction of generic Fréchet differentia-
bility, which improves [35, Theorem 8]. Differentiability results in nonseparable
spaces (which imply that (P7), (P8) and (P9) are (GFD) properties) are proved
in Section 5. In Section 6, we discuss the relation between Borwein-Moors classes
Se(G) and Re(G) and the corresponding classes Sg

e (G), Rg
e(G). We prove (2) and

also the inclusion Se(X) ⊂ Re(X) which is not mentioned in [9], where the class
Re(X) is defined. In Section 7 we show stability properties of our classes and also
prove that the members of the classes Sgg

e (G) and Sp
e (G) are uniquely determined

by their Clarke subdifferentials. In Section 8 we present some consequences of our
results.

2. Preliminaries

In the following, if it is not said otherwise, X will be a real Banach space. We set
SX := {x ∈ X : ‖x‖ = 1}. If a, b ∈ X, then a, b denotes the closed segment. By
spanM we denote the linear span of M ⊂ X. The equality X = X1 ⊕ · · · ⊕ Xn

means that X is the direct sum of non-trivial closed linear subspaces X1, . . . , Xn

and the corresponding projections πi : X → Xi are continuous. The symbol B(x, r)
will denote the open ball with center x and radius r. The word “generically� has
the usual sense; it means “at all points except a first category set�.

Recall that X is called an Asplund space if each continuous convex function on X
is generically Fréchet differentiable and that

X is Asplund if and only if Y ∗ is separable for each separable subspace Y ⊂ X.
(3)

We will need several times the following easy well-known fact.

Lemma 2.1. Let X be a Banach space, 0 6= u ∈ X, and let X = W ⊕ span{u}.
Then the mapping w ∈ W 7→ w + Ru ∈ X/ span{u} is a linear homeomorphism.

In the following, f is a real function defined on an open subset G of X.

We say that f has a property generically on G, if f has this property at each point
of G except a first category set. We allow also the case G = ∅ (then f is the empty
function and has generically each property on G).

Recall (see [24]) that x∗ ∈ X∗ is called a strict derivative of f at a ∈ G if

lim
(x,y)→(a,a), x6=y

f(y)− f(x)− x∗(y − x)

‖y − x‖
= 0.

By [35, Theorem 3],

the set of all points of strict differentiability of f is a Gδ set. (4)
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Strict differentiability is a stronger condition than Fréchet differentiability, but (see
e.g. [35, Theorem B, p. 476])

f is generically strictly differentiable iff it is generically Fréchet differentiable.
(5)

The directional and one-sided directional derivatives of f at x in the direction v are
defined respectively by

f ′(x, v) := lim
t→0

f(x+ tv)− f(x)

t
and f ′

+(x, v) := lim
t→0+

f(x+ tv)− f(x)

t
.

The upper (Dini) one-sided directional derivative of f at x in the direction v is
defined by

d+f(x, v) := lim sup
t→0+

(f(x+ tv)− f(x))t−1.

We will use the obvious fact that, if a, v ∈ X and ϕ(t) := f(a+ tv), t ∈ R, then

d+f(a+ tv, v) = D+ϕ(t), whenever a+ tv ∈ G, (6)

where D+ϕ is the classical right upper Dini derivative.

If f is locally Lipschitz on G then (see [21, Proposition 3.1]), for each x ∈ G,

the function v 7→ d+f(x, v) is continuous on X (7)

and (see the proof of [21, Lemma 3.5]), for each v ∈ X,

the function x 7→ d+f(x, v) is Borel measurable on G. (8)

The Fréchet subdifferential of f at a is defined by

∂Ff(a) :=

{

x∗ ∈ X∗ : lim inf
h→0

f(a+ h)− f(a)− x∗(h)

‖h‖
≥ 0

}

.

We say that f is Fréchet subdifferentiable at a, if ∂Ff(a) 6= ∅.

We will say that f is (ε)-Fréchet differentiable at a ∈ G for some ε > 0 if there
exists p ∈ X∗ such that

lim sup
h→0

|f(a+ h)− f(a)− p(h)|

‖h‖
≤ ε.

We will need the well-known fact that

f is Fréchet differentiable at a iff it is (ε)-Fréchet differentiable at a for each ε > 0.
(9)

This fact follows from the note mentioned in [20] after Definition 1.1 (for an easy
proof see [22]).

Further we suppose that f is locally Lipschitz on G. Then

f 0(a, v) := lim sup
z→a,t→0+

f(z + tv)− f(z)

t
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is the Clarke derivative of f at a in the direction v and

∂Cf(a) := {x∗ ∈ X∗ : x∗(v) ≤ f 0(a, v) for all v ∈ X}

is the Clarke subdifferential of f at a (which is always non-empty). We say that f
is (Clarke) regular at x ∈ G if f 0(x, v) = f ′

+(x, v) for each v ∈ X. We say that f
is pseudoregular at x ∈ G if f 0(x, v) = d+f(x, v) for each v ∈ X. We say that f is
regular (psudoregular) on G, if f is regular (psudoregular) at each point of G.

Let f be a locally Lipschitz function on an open G ⊂ X, a ∈ X, 0 6= v ∈ X, t ∈ R,
and x := a+ tv ∈ G. Set ϕ(τ) := f(a+ τv), τ ∈ R. It is easy to see, that

if f is pseudoregular (regular) at x, then ϕ is pseudoregular (regular) at t. (10)

We will need the well-known fact (see [21, Lemma (3.6)] or [19]) that if G is an
open subset of a separable Banach space, then

each locally Lipschitz function on G is generically pseudoregular on G. (11)

We say that f is strictly differentiable at x in a direction v if

lim
z→x,t→0+

f(z + tv)− f(z)

t
= f ′(x, v).

We say that f is strictly Gateaux differentiable at x if it is strictly differentiable at
x in all directions v ∈ X.

Recall (see [3, Proposition 1], cf. [8, p. 316]) that f is strictly differentiable at x in
the direction v, if and only if, f 0(x, v) = −f 0(x,−v), and in this case f 0(x, v) =
−f 0(x,−v) = f ′(x, v).

Further observe that, for each v ∈ X, the function x 7→ f 0(x, v) is upper semicon-
tinuous. Consequently, for each a ∈ G,

f 0(a, v) ≥ lim sup
x→a

f 0(x, v) ≥ lim sup
x→a

d+f(x, v). (12)

Moreover, we obtain that the “oscillation function�

h(x) := ω(f, x, v) := f 0(x, v) + f 0(x,−v) is upper semicontinuous on G. (13)

Note that clearly ω(f, x, v) ≥ 0, and f is strictly differentiable at x ∈ G in the
direction v if and only if ω(f, x, v) = 0.

It is easy to see that f is strictly Gateaux differentiable at x ∈ G if and only if f is
both Gateaux differentiable at x and is regular (or pseudoregular) at x.

Recall also that (see e.g. [6, Proposition 1.1]), if f is locally Lipschitz on G, then

f is strictly Gateaux differentiable at a ∈ G if and only if ∂Cf(a) is a singleton.
(14)
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(Note that, in [6], strict differentiability is called “Fréchet strict differentiability�,
and Gateaux strict differentiability is called “strict differentiability�.) If X is finite-
dimensional and f is Lipschitz on a neighbourhood of a ∈ X, then it is easy to
show (see also the note after Ex. 3.64 of [24]) that

f is strictly differentiable at a if and only if it is Gateaux strictly differentiable at a.
(15)

We will work also with approximately convex functions in the sense of [25] (which
are different from ε-convex functions in the sense of Hyers and Ulam) and with
semiconvex (and semiconcave; see [10]) functions with general modulus.

Definition 2.2 ([25]). A real valued function f on an open subset Ω of a Banach
space X is called approximately convex at x0 ∈ Ω if for every ε > 0 there exists
δ > 0 such that

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) + ελ(1− λ)‖x− y‖ (16)

whenever λ ∈ [0, 1] and x, y ∈ B(x0, δ). We say that f is approximately convex on
Ω if it is approximately convex at each x0 ∈ Ω.

Definition 2.3. Denote by M the set of all functions ω : [0,∞) → [0,∞) with
ω(0) = 0 which are non-decreasing and right continuous at 0. A continuous real val-
ued function f on an open convex subset Ω of a Banach spaceX is called semiconvex
with modulus ω ∈ M if

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) + λ(1− λ)ω(‖x− y‖)‖x− y‖, (17)

whenever λ ∈ [0, 1] and x, y ∈ Ω.

A function is called semiconvex on Ω if it is semiconvex on Ω with some modulus
ω ∈ M.

A function g on Ω is called semiconcave (with modulus ω) if the function −g is
semiconvex (with modulus ω).

Note that semiconvex functions coincide with Rolewicz’s strongly paraconvex func-
tions (cf. [36]).

We will use the following facts about these notions.

If f is a locally Lipschitz function on an open subset of a Banach space, then:

if f is locally convex, then f is locally semiconvex (=strongly paraconvex); (18)

if f is locally semiconvex, then f is approximately convex; (19)

if f is is approximately convex, then f is regular. (20)

Note that (18) and (19) follow easily from definitions, and (20) is proved in [25,
Corollary 3.5 and Theorem 3.6]).

Since Borwein-Moors class Se(G) is defined using Haar null sets in Banach spaces,
we recall basic relevant facts about these sets (cf. [8]). Let X be a Banach space. A
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Borel set is called Haar null, if there exists a Borel Radon probability measure µ on
X such that µ(B+x) = 0 for each x ∈ X. The system of all Borel Haar null sets in
X is stable with respect to countable unions and contains no nonempty open set.
If X = R

n, then Borel Haar null sets coincide with Borel Lebesgue null sets. We
will need the following fact which is an easy consequence of [8, Theorem 2.3].

Lemma 2.4. Let X be a Banach space, 0 6= v ∈ X, and let W be a topological
complement of span{v}. Let B ⊂ X be a Borel Haar null set. Then there exists a
set D ⊂ W dense in W such that the set {t ∈ R : d+ tv ∈ B} is Lebesgue null for
each d ∈ D.

3. Differentiability results in separable Asplund spaces

Lemma 3.1. Let X be a Banach space and g a locally Lipschitz function on an
open set B ⊂ X. Let a ∈ B, s ≥ 0, u ∈ SX , and let a, b ⊂ B, where b := a + su.
Let g be essentially smooth on a generic line parallel to u. Let α ∈ R, and let there
exist a first category set M ⊂ X such that d+g(x, u) ≥ α for each x ∈ B \M . Then
g(b)− g(a) ≥ αs.

Proof. Choose a topological complement W of span{u}. Using the canonical iso-
morphism between X = W ⊕ span{u} and W ×R, and using the Kuratowski-Ulam
theorem (“Fubini theorem for category�, see [27, p. 56]) in W × R, we obtain that
there exists a residual set S1 ⊂ W such that M ∩ (w+Ru) is a first category set in
the line w + Ru for each w ∈ S1. Further, using Lemma 2.1, we obtain a residual
set S2 ⊂ W such that g is essentially smooth on the line w + Ru for each w ∈ S2.
Write a = wa + λu, wa ∈ W , λ ∈ R, and, for each n ∈ N, choose wn ∈ S1 ∩ S2

with ‖w − wn‖ < 1/n. Setting an := wn + λu, we have ‖a − an‖ < 1/n and
Ln := an+Ru = wn+Ru. Consequently, M∩Ln is a first category set in the line Ln

and g is essentially smooth on Ln. Obviously, for each sufficiently large n, we have
an, bn ⊂ B, where bn := an + su. Set, for any such n, hn(t) = g(an + tu), t ∈ [0, s].
Then hn is a.e. strictly differentiable on (0, s), and since D+hn(t) ≥ α generically on
(0, s) by (6), we easily infer from (12) that h′

n(t) ≥ α for a.e. t ∈ (0, s). Consequently

g(bn)− g(an) = hn(s)− hn(0) =

∫ s

0

h′
n(t) dt ≥ αs.

Since g(bn) → g(b) and g(an) → g(a), we obtain g(b)− g(a) ≥ αs.

Lemma 3.2. Let X be a separable Banach space, f a locally Lipschitz function on
an open set G ⊂ X, and p ∈ X∗. Then the function

g(x) := lim sup
h→0

|f(x+ h)− f(x)− p(h)|

‖h‖

is Borel measurable on G.

Proof. Since g is clearly Borel measurable if and only if it is locally Borel measur-
able inG, and each Lipschitz function on B(a, r) ⊂ G can be extended to a Lipschitz
function on X, we can suppose without any loss of generality that G = X. Then,
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for each 0 6= h ∈ X, the function x 7→ g(x, h) := |f(x + h) − f(x) − p(h)|/‖h‖ is
clearly continuous on X. So, for each n ∈ N, the function gn(x) := sup{g(x, h) :
0 < ‖h‖ < 1/n} is lower semicontinuous on X. Therefore, g(x) = limn→∞ gn(x) is
Borel measurable on X.

Our main results follow from the following proposition.

Proposition 3.3. Let X = X1 ⊕ · · · ⊕Xn be a Banach space with a separable dual
X∗. Let G ⊂ X be an open set and f : G → R a locally Lipschitz function. Let,
for each 1 ≤ i ≤ n, there exists a dense set Di ⊂ SXi

such that, for each v ∈ Di, f
is essentially smooth on a generic line parallel to v. Then f is generically Fréchet
differentiable on G.

Proof. Choose K > 0 such that K‖v‖ ≥
∑n

i=1 ‖vi‖, whenever v =
∑n

i=1 vi and
vi ∈ Xi for each 1 ≤ i ≤ n.

Suppose on the contrary that the set N of all points x ∈ G at which f is not Fréchet
differentiable is of the second category (i.e., is not of the first category).

Choose a sequence (pj)
∞
j=1 which is dense in X∗, and define, for m, j ∈ N, the set

N j
m as the set of all x ∈ G for which

lim sup
h→0

|f(x+ h)− f(x)− pj(h)|

‖h‖
>

1

m
, and (21)

d+f(x, v) ≥ pj(v)−
1

2Km
for each v ∈ SX . (22)

First we will show that each set N j
m is Borel. To this end observe that each set Aj

m

of all x ∈ G for which (21) holds is Borel by Lemma 3.2. Second, denote by Cj
m the

set of all x ∈ G for which (22) holds. Let E be a countable dense subset of SX . By
(7), we can write equivalently “v ∈ E� instead of “v ∈ SX� in (22). Thus (8) easily
implies that Cj

m is Borel. So each N j
m = Aj

m ∩ Cj
m is Borel.

Further we will show that

N j
m is of the second category for some m, j ∈ N. (23)

To this end denote by A the set of points x ∈ G at which f is not pseudoregular.
By (11), A is a first category set. So, to prove (23), it is sufficient to show that

N \ A ⊂
∞
⋃

m,j=1

N j
m. (24)

For each x ∈ G, choose a functional ϕx ∈ ∂Cf(x). To prove (24), choose an arbitrary
x ∈ N \A. By (9), we can choose m ∈ N such that (21) holds for each j ∈ N. Now
choose j ∈ N such that ‖ϕx − pj‖ ≤ 1

2Km
. Since x /∈ A, we obtain that, for each

v ∈ SX ,

d+f(x, v) = f 0(x, v) ≥ ϕx(v) ≥ pj(v)−
1

2Km
,
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and thus x ∈ N j
m. So (24) is proved and we can choose m, j such that N j

m is of the
second category.

Denoting g := f − pj, we easily see that, for each x ∈ N j
m, we have

lim sup
h→0

|g(x+ h)− g(x)|

‖h‖
>

1

m
, (25)

and

d+g(x, v) ≥ −
1

2Km
for each v ∈ SX . (26)

Further, obviously

g is essentially smooth on a line L if and only if f is essentially smooth on L.
(27)

Since N j
m is a second category set which is Borel (and so has the Baire property),

we can choose a ball B = B(x0, r) ⊂ G and a first category set M ⊂ X, such that
B \M ⊂ N j

m.

SinceN j
m is dense in B, by (25) we can find x, y ∈ B(x0,

r
8K

) such that |g(y)−g(x)| >
(1/m)‖y − x‖. We can and will suppose that

g(y)− g(x) < −
1

m
‖y − x‖. (28)

Write y − x =
∑n

i=1 vi with vi ∈ Xi. For each ε > 0 and 1 ≤ i ≤ n choose ui ∈ Di

and si > 0 such that ‖vi − siui‖ < ε. Observe that

K‖y − x‖ ≥
n

∑

i=1

‖vi‖ ≥
n

∑

i=1

si − nε. (29)

Set c0 := x, ck := x+
∑k

i=1 siui for 1 ≤ k ≤ n, and denote yε := cn. Obviously, ‖yε−
y‖ ≤ nε. Since ‖y−x‖ ≤ r

4K
, we easily obtain by (29) that, for all sufficiently small

ε > 0, we have ck−1, ck ⊂ B, 1 ≤ k ≤ n. Observe that ck = ck−1+ skuk, 1 ≤ k ≤ n.
Since uk ∈ Dk (and (27) holds), B\M ⊂ N j

m (and so (26) holds for each x ∈ B\M),
we can apply Lemma 3.1 with a := ck−1, b := ck, s := sk, u := uk, α := − 1

2Km
, and

obtain
g(ck)− g(ck−1) ≥ −

sk
2Km

for each 1 ≤ k ≤ n.

Consequently, using also (29), we obtain

g(yε)− g(x) =
n

∑

k=1

(g(ck)− g(ck−1)) ≥ −
1

2Km

n
∑

k=1

sk ≥ −
1

2Km
(K‖y − x‖+ nε).

Since limε→0+ yε = y, we obtain

g(y)− g(x) = lim
ε→0+

(g(yε)− g(x)) ≥ −
1

2m
‖y − x‖,

which contradicts (28).
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Corollary 3.4. Let X be a separable Asplund space and G ⊂ X an open set. Then:

(i) Each f ∈ Sgd
e (G) (resp. f ∈ Sgg

e (G), f ∈ Sg
e (G), f ∈ S l

e(G)) is generically
Fréchet differentiable on G.

(ii) If X = X1 ⊕ · · · ⊕Xn and f ∈ Sp
e (G), then f is generically Fréchet differen-

tiable on G.

4. Separable reduction for generic Fréchet differentiability, rich fami-
lies, and related lemmas

We will need the following [35, Lemma 1].

Lemma 4.1. Let X be a normed linear space, S a Banach space, G ⊂ X an open
set, and let f : G → S be an arbitrary mapping. Then there exists a mapping t
which assigns to each closed separable subspace V of X a separable closed space
V ⊂ t(V ) ⊂ X such that the following assertion holds: If Y is a closed subspace
of X such that the set D(Y ) :=

⋃

{V : t(V ) ⊂ Y } is dense in Y , then f is strictly
differentiable at each point of Y at which f |Y is strictly differentiable.

The following useful notion is taken from [9].

Definition 4.2. Let X be a normed linear space. A family F of closed separable
subspaces of X is called a rich family if:

(R1) If Yi ∈ F (i ∈ N) and Y1 ⊂ Y2 ⊂ . . . , then
⋃

{Yn : n ∈ N} ∈ F .

(R2) For each closed separable subspace Y0 of X there exists Y ∈ F such that
Y0 ⊂ Y .

A basic fact ([9, Proposition 1.1]) concerning rich families is the following.

Lemma 4.3. Let X be a normed linear space and let {Fn : n ∈ N} be rich families
of closed separable subspaces of X. Then F :=

⋂

{Fn : n ∈ N} is also a rich family
of closed separable subspaces of X.

We will need also the following simple facts.

Lemma 4.4. Let X be a normed linear space and let X = X1 ⊕ · · · ⊕Xn. Let Fk

be a rich family of closed separable subspaces of Xk, 1 ≤ k ≤ n. Then

F := F1 ⊕ · · · ⊕ Fn := {Y 1 ⊕ · · · ⊕ Y n : Y k ∈ Fk, 1 ≤ k ≤ n}

is a rich family in X.

Proof. Suppose that Z1 ⊂ Z2 ⊂ · · · are spaces belonging to F and let Zi =
Y 1
i ⊕ · · · ⊕ Y n

i . Then clearly Y k
1 ⊂ Y k

2 ⊂ · · · , 1 ≤ k ≤ n. So, since Fk is a rich

family, we have
⋃∞

i=1 Y
k
i ∈ Fk, 1 ≤ k ≤ n. It is easy to check that

∞
⋃

i=1

Zi =
∞
⋃

i=1

Y 1
i ⊕ · · · ⊕ Y n

i =
∞
⋃

i=1

Y 1
i ⊕ · · · ⊕

∞
⋃

i=1

Y n
i .

Thus F satisfies the property (R1) from Definition 4.2.
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To prove (R2), consider an arbitrary closed separable space Z0 ⊂ X. Then clearly

Z0 ⊂ π1(Z0)⊕ · · · ⊕ πn(Z0),

where πk : X → Xk are natural projections. Since πk(Z0), 1 ≤ k ≤ n, is clearly

a closed separable subspace of Xk, we can find Yk ∈ Fk containing πk(Z0). So
Z0 ⊂ Y1 ⊕ · · · ⊕ Yn ∈ F , and (R2) is proved.

Lemma 4.5. Let X be a normed linear space and let t be a mapping which assigns
to each closed separable subspace V of X a separable closed space V ⊂ t(V ) ⊂ X.
Denote by Ft the system of all closed separable subspaces Y of X such that D(Y ) :=
⋃

{V : t(V ) ⊂ Y } is dense in Y . Then Ft is a rich family.

Proof. Let Yi ∈ Ft (i ∈ N) and Y1 ⊂ Y2 ⊂ . . . . Denote Y :=
⋃

{Yi : i ∈ N}. Since
clearly D(Yi) ⊂ D(Y ), i ∈ N, and D(Yi) is dense in Yi, it is easy to see that D(Y )
is dense in Y . So condition (R1) of Definition 4.2 holds.

To prove (R2), let Y0 be a closed separable subspace of X. Define Y1 := t(Y0),

Y2 := t(Y1), and so on. Setting Y :=
⋃

{Yn : n ∈ N}, we have clearly Y0 ⊂ Y , and
also Y ∈ Ft, since each Yn, n ∈ N, is obviously contained in D(Y ).

The following fact is contained (with another proof) already in [22], where the
method of rich families in the differentiability theory is developed.

Lemma 4.6. Let X be a Banach space and M ⊂ X a residual set. Then there
exists a rich family FM of closed separable subspaces of X such that M ∩ Y is
residual in Y for each Y ∈ F .

Proof. By [35, Lemma 2] there exists a mapping s which assigns to each closed
separable subspace V of X a separable closed space V ⊂ s(V ) ⊂ X such that
the following assertion holds: If Y is a closed subspace of E such that the set
C(Y ) :=

⋃

{V : s(V ) ⊂ Y } is dense in Y , then M ∩Y is residual in Y . So, denoting
by FM the system of all closed separable subspaces Y of X such that C(Y ) is dense
in Y , we have that FM has the desired property. Moreover, using Lemma 4.5 with
t := s, we obtain that FM is a rich family.

The following “separable reduction theorem for generic Fréchet differentiability�
improves [35, Theorem 8] (which shows that (ii) ⇒ (i) holds if F from (ii) is the
family of all separable closed subspaces of X). Note that [22] contains a separable
reduction statement (proved by a quite different method) which rather easily implies
Theorem 4.7.

Theorem 4.7. Let X be a normed linear space, S a Banach space, G ⊂ X an open
set, and let f : G → S be an arbitrary mapping. Then the following conditions are
equivalent.

(i) f is generically Fréchet differentiable.

(ii) There exists a rich family F of closed separable subspaces of X such that
f |Y ∩G is generically Fréchet differentiable on Y ∩G for each Y ∈ F .
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Proof. First suppose that (i) holds. Then there exists a first category set N ⊂ G
such that f is Fréchet differentiable at each point of G\N . Set M := X \N and let
F := FM be a rich family from Lemma 4.6. Then, for each Y ∈ F , the set M ∩Y is
residual in Y , and so N∩Y is a first category subset of Y . So (ii) holds, since f |Y ∩G

is clearly Fréchet differentiable at each point of (Y ∩G) \N = (Y ∩G) \ (N ∩ Y ).

Now suppose that (ii) holds. Let t be the mapping from Lemma 4.1 and let Ft be
the rich family from Lemma 4.5. Then F∗ := F ∩ Ft is a rich family by Lemma
4.3. Let now H 6= ∅ be an arbitrary open subset of G. Since F∗ is a rich family,
by condition (R2) we can clearly choose Y ∈ F∗ with Y ∩H 6= ∅. Since Y ∈ F , we
have by (ii) that f |Y ∩G is generically Fréchet differentiable (and so also generically
strictly differentiable by (5)) on Y ∩ G. Thus we can choose y0 ∈ Y ∩H at which
f |Y is strictly differentiable. Since Y ∈ Ft, we obtain that f is strictly differentiable
at y0 by the definitions of t and Ft. So f is strictly differentiable at all points of a
dense subset of G. Using (4), we obtain (i).

Lemma 4.8. Let X be a Banach space, G ⊂ X an open set, and let f : G → R be
a function. Let 0 6= v ∈ X and suppose that f is essentially smooth on a generic
line parallel to v. Then there exists a rich family Fv of closed separable subspaces
Y of X such that, for each Y ∈ Fv, the function f |G∩Y is essentially smooth on a
generic line in Y parallel to v.

Proof. Let W be a topological complement of V := span{v}; so X = W ⊕ V .
Using Lemma 2.1, we have that the set M of all w ∈ W such that f is essentially
smooth on the line w + V is residual in W . Let FM be the rich family of closed
separable subspaces of W from Lemma 4.6. The family F∗ := {V } is obviously a
rich family in V , so Lemma 4.4 implies that

Fv := FM ⊕F∗ = {Z ⊕ V : Z ∈ FM}

is a rich family in X.

Let Y ∈ Fv, i.e. Y = Z ⊕ V with Z ∈ FM . By the definition of FM , the set Z ∩M
is residual in Z. So, f |G∩Y is essentially smooth on the generic line in Y parallel to
v by Lemma 2.1.

Lemma 4.9. Let X be a Banach space and let B ⊂ X be a Borel Haar null set.
Then there exists a closed separable space Z ⊂ X such that B ∩ Y is Haar null in
Y for each closed separable space Y with Z ⊂ Y ⊂ X.

Proof. Let µ be a Borel Radon probability measure on X such that µ(B + x) = 0
for each x ∈ X. Since µ is Radon, the support of µ is a closed separable set. So,
there exists a closed separable space Z ⊂ X such that µ(X \ Z) = 0.

Now consider an arbitrary closed separable space Y with Z ⊂ Y ⊂ X. The restric-
tion ν of µ to the σ-algebra of all Borel subsets of Y is clearly a probability Radon
measure on Y . If y ∈ Y , then clearly (B ∩ Y ) + y = (B + y) ∩ Y , and so

ν((B ∩ Y ) + y) = ν((B + y) ∩ Y ) = µ(B + y) = 0.

So B ∩ Y is Haar null in Y .
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Lemma 4.10. Let X be a Banach space and let D ⊂ SX be a dense set. Then
for each closed separable space Y0 ⊂ X there exists a closed separable space Y with
Y0 ⊂ Y ⊂ X such that D ∩ Y is dense in SY .

Proof. We will define inductively a sequence Y0 ⊂ Y1 ⊂ Y2 ⊂ · · · of closed separa-
ble subspaces of X such that, for each n ∈ N,

SYn−1
⊂ D ∩ SYn

. (30)

The space Y0 is already defined. Let n ∈ N and suppose that Yn−1 is defined.
Choose a countable set Bn−1 ⊂ D such that SYn−1

⊂ Bn−1 (to this end, choose a

countable dense set A of SYn−1
, for each v ∈ A a countable set Bv ⊂ D with v ∈ Bv,

and set Bn−1 :=
⋃

v∈ABv) and define Yn := spanBn−1. Then clearly Yn ⊃ Yn−1 and

(30) holds. Setting Y :=
⋃∞

n=1 Yn, we easily see that Y0 ⊂ Y and D ∩ Y is dense in
SY .

5. Differentiability results in non-separable Asplund spaces

Theorem 5.1. Let X = X1 ⊕ · · · ⊕Xn be an Asplund space, G ⊂ X an open set,
and let f ∈ Sp

e (G). Then f is generically Fréchet differentiable on G.

Proof. Let Fi be the system of all closed separable subspaces of Xi, i = 1, . . . , n.
Then Fi is clearly a rich family in Xi, and so

F := {Y 1 ⊕ · · · ⊕ Y n : Y i ∈ Fi, 1 ≤ i ≤ n}

is a rich family in X by Lemma 4.4. For each Y ∈ F , the function f |Y ∩G clearly
belongs to Sp

e (Y ∩G), and so it is generically Fréchet differentiable on Y ∩G by (3)
and Corollary 3.4(ii). Thus f is generically Fréchet differentiable on G by Theorem
4.7.

Theorem 5.2. Let X be an Asplund space, ∅ 6= G ⊂ X an open set, and let
f ∈ Sgd

e (G) (i.e., f is locally Lipschitz on G and there exists a set D ⊂ SX dense in
SX such that, for each 0 6= v ∈ D, f is essentially smooth on a generic line parallel
to v). Then f is generically Fréchet differentiable on G.

Proof. Let t be the mapping from Lemma 4.1. Further, for each 0 6= v ∈ D, let
Fv be the rich family of closed separable subspaces of X from Lemma 4.8. For each
countable C ⊂ D we define the rich family (cf. Lemma 4.3) FC :=

⋂

{Fv : v ∈ C}.

Now suppose that an arbitrary closed separable space Y0 ⊂ X is given. We will
construct a closed separable space Y ⊃ Y0 such that

(i) f |G∩Y ∈ Sgd
e (G ∩ Y ) (in Y ), and

(ii) f is strictly differentiable at every point of G ∩ Y , at which f |G∩Y is strictly
differentiable (in Y ).
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To this end, we will construct inductively closed separable spaces Y0 ⊂ Y1 ⊂ · · ·
and countable sets Dn ⊂ SYn

∩D, n = 0, 1, . . . , so that, for each n ∈ N:

t(Yn−1) ⊂ Yn, (31)

SYn−1
⊂ Dn, (32)

Yn ∈ FD0∪···∪Dn
. (33)

The space Y0 is already given and we set D0 := ∅. If n ∈ N and Y0, . . . , Yn−1 and
D0, . . . , Dn−1 are already defined, we first choose by Lemma 4.10 a separable closed
space Zn ⊃ t(Yn−1) such that D ∩ Zn is dense in SZn

, then a countable set Dn

which is a dense subset of D ∩ Zn and then Yn ∈ FD0∪···∪Dn
with Zn ⊂ Yn. Set

Y :=
⋃∞

n=1 Yn.

To prove (i), observe that SY =
⋃∞

n=1 SYn
and so (32) implies that D∗ :=

⋃∞

n=1 Dn

is dense in SY . If v ∈ D∗, then v ∈ Dn for some n ∈ N, and thus Yk ∈ Fv for each
k ≥ n by (33). Since Fv is a rich family, we obtain Y ∈ Fv, which implies that f is
essentially smooth on a generic line in Y parallel to v.

To prove (ii), observe that
⋃∞

n=1 Yn is dense in Y and t(Yn) ⊂ Y by (31). So (ii)
holds by the choice of t (see Lemma 4.1).

Let now H 6= ∅ be an arbitrary open subset of G. Choose h ∈ H, set Y0 := span{h}
and find a closed separable space Y ⊃ Y0 such that (i) and (ii) hold. By (i), (3) and
Corollary 3.4(i), we obtain that f |Y ∩G is generically Fréchet differentiable (and so
also generically strictly differentiable by (5)) on Y ∩ G (in Y ). Since Y ∩ H 6= ∅,
we obtain by (ii) that f is strictly differentiable at a point of H. So f is strictly
differentiable at all points of a dense subset of G. Using (4), we obtain that f is
generically Fréchet differentiable on G.

Remark 5.3. In the first version of the present article, which I presented at 38th
Winter School in Abstract Analysis (January 2010), Theorem 5.1 was proved using
methods of [35] only. However, in this time I did not know the method of rich
families of [9] and [22] which was the reason why I was not able to prove Theorem
5.2. Using this method, I proved Theorem 5.2 in March 2010. Note that M. Cúth
(independenty and in the same time) in his diploma thesis [11] (supervised by O.
Kalenda) generalized Proposition 3.3 (using Proposition 3.3 for which he refers to
my lecture) to the case of an arbitrary Asplund space X (and so obtained a result
more general than Theorem 5.2). His proof does not use the method of rich families,
but uses a separable reduction argument based on the (set-theoretic) method of
elementary submodels. It seems that, in the differentiability theory, this method
has similar strength as the method of rich families.

Using the notion of a rich family, the authors of [9] defined the class Re(G). Now
we recall this definition and define some related classes.

Definition 5.4. Let X be an arbitrary Banach space and let ∅ 6= G ⊂ X be
an open set. We denote by Re(G) (Rl

e(G), Rg
e(G), Rgg

e (G), Rgd
e (G)) the class of

all those locally Lipschitz functions f on G for which there is a rich family F of
closed separable subspaces of X such that f |G∩Y belongs to Se(G∩ Y ) (S l

e(G∩ Y ),
Sg
e (G ∩ Y ), Sgg

e (G ∩ Y ), Sgd
e (G ∩ Y )) for each Y ∈ F with G ∩ Y 6= ∅.
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Obviously, Rl
e(G) ⊂ Rg

e(G) ⊂ Rgg
e (G) ⊂ Rgd

e (G). Using Corollary 3.4(i) and
Theorem 4.7, we immediately obtain the following result.

Proposition 5.5. Let X be an Asplund space, ∅ 6= G ⊂ X an open set, and let
f ∈ Rgd

e (G) (resp. f ∈ Rgg
e (G), f ∈ Rg

e(G), f ∈ Rl
e(G)). Then f is generically

Fréchet differentiable on G.

Remark 5.6. I do not know whether Theorem 5.2 can be deduced from Proposition
5.5, since I do not know whether Sgd

e (G) ⊂ Rgd
e (G) (cf. Proposition 6.5, which shows

that the inclusion Se(G) ⊂ Re(G) holds).

6. Comparison of classes defined via essential smoothness and via linear
essential smoothness

Recall that a function f defined on an open subset G of a Banach set X is called
essentially smooth on G, if f is locally Lipschitz and, for each v ∈ X, f is strictly
differentiable in the direction v at all points x ∈ G except a Haar null set. The
class of all essentially smooth functions on G is denoted (see [8]) by Se(G). In the
case X = R

n, essentially smooth functions were considered in [29] under the name
“primal functions� (see [2], where, in the case of a separable space X, the name
“essentially strictly differentiable functions� was used).

As observed in [6, Proposition 4.1, Corollary 4.3] and [8, Theorem 3.3], essential
smoothness is equivalent to some formally weaker properties. We will formulate
only two consequences of these observations. The first one is immediate and the
second quite easy.

Proposition BM. Let f be a locally Lipschitz function defined on an open subset
G of a Banach space X. Then the condition

(i) f is pseudoregular (resp. regular) on G except a Haar null set

implies f ∈ Se(G). If X is separable, then f ∈ Se(G) if and only if (i) holds.

Corollary BM. Let ϕ be a locally Lipschitz function defined on an open set H ⊂
R. Then ϕ ∈ Se(H) if and only if D+ϕ(x) = lim supy→x+ D+ϕ(y) for a.e. x ∈ H

(where D+ϕ is the classical right upper Dini derivative of ϕ).

Remark 6.1. Proposition BM and Corollary BM immediately imply (cf. Remark
1.2) that the following conditions are equivalent:

(i) f is essentially smooth on a line L = a+ Rv,

(ii) ϕ(t) := f(a+ tv) is a.e. pseudoregular on its domain,

(iii) ϕ is a.e. regular on its domain,

(iv) D+ϕ(x) = lim supy→x+ D+ϕ(y) for a.e. x from its domain.

So, also our classes defined via essential smoothness on lines have several equivalent
(formally weaker) definitions.

The class Se(G) was generalized in [3] (by the same definition, since the definition of
strict differentiability in a direction has sense also for mappings, see [3, Definition
2.1]) to the class Se(G, Y ) of (locally Lipschitz) mappings f : G → Y , where Y
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is a Banach space. (Note that, in the case of a nonseparable space Y , there is
an inconsistency in [3], since the theorems in [3] are proved under the definition
described above which uses property (P5) from Introduction, but the definition
given in [3, p. 15] uses property (P4), and so is probably strictly stronger.) Naturally
(cf. Remark 1.2), we can define also corresponding classes

S l
e(G, Y ), Sg

e (G, Y ), Sgg
e (G, Y ), Sgd

e (G, Y ), Sp
e (G, Y ). (34)

However, in this article, we will use these classes of mapping only in Proposition
7.4 and Proposition 8.2, and so we omit the (obvious) definitions.

It is easy to see that

f = (f1, . . . , fm) ∈ Se(G,Rm) if and only if fi ∈ Se(G), 1 ≤ i ≤ m. (35)

The main aim of this section is to prove Proposition 6.4 which shows that the
class Sg

e (G) (defined using one-dimensional Lebesgue measure and Baire category)
is larger than the class Se(G) (defined using Haar null sets). We start with an
example in R

2.

Lemma 6.2. Let ∅ 6= A ⊂ H ⊂ R
2, and let A, H be open sets. Then there exists

a function f ∈ Sg
e (H) such that f |A /∈ Se(A).

Proof. Let B ⊂ R
2 be a (“line�) Besicovitch set (see [23, Theorem 18.11]). Then

λ2(B) = 0 and for each 0 6= v ∈ R
2 there exists a line Lv ⊂ B parallel to v. Let

D ⊂ R
2 be a countable dense set and let B̃ :=

⋃

d∈D(B + d). Then λ2(B̃) = 0

and so we can choose a compact set F ⊂ A \ B̃ with λ2(F ) > 0. Set f(x) :=
dist(x, F ), x ∈ H. Then f is Lipschitz on H.

To prove that f ∈ Sg
e (H), choose an arbitrary 0 6= v ∈ R

2 and set V := span{v}.

Then F̃ := {x + Rv : x ∈ F} is a compact subset of R2/V . Further note that f
is locally semiconcave (with linear modulus) on H \ F (see [10, Proposition 2.2.2])
and therefore (see (19), (20), (10), and Remark 6.1) f is essentially smooth on each

line which does not intersect F , i.e. on each line from (R2/V ) \ F̃ . Since the set

{Lv+d : d ∈ D} is dense in R
2/V and disjoint with F̃ , we obtain that F̃ is nowhere

dense, and so f is essentially smooth on a generic line parallel to v.

To prove that f |A /∈ Se(A), it is (by (1) and (15)) sufficient to show that f is
strictly differentiable at no x ∈ F . So, suppose on the contrary that f is strictly
differentiable at some x ∈ F . Then clearly f ′(x) = 0, which contradicts the well-
known fact that ‖f ′(y)‖ = 1 for almost all y ∈ H \ F .

Lemma 6.3. Let X be a Banach space, ∅ 6= G ⊂ X an open set, and let f be
a locally Lipschitz function on G. Let 0 6= v ∈ X, and let W be a topological
complement of span{v}. Let D be the set of all w ∈ W for which there exists a
Lebesgue null set Nw ⊂ R, such that f is strictly differentiable in the direction v at
all points of G ∩ {w + tv : t ∈ R \Nw}. Suppose that D is dense in W . Then D is
residual in W . Consequently, f is essentially smooth on a generic line parallel to
v.
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Proof. Suppose, on the contrary, that S := W \ D is of the second category in
W . For each w ∈ W and n ∈ N, denote by A(w, n) the set of all t ∈ R, for which
w+ tv ∈ G and ω(f, w+ tv, v) ≥ 1/n (see (13) for the definition of ω). Using (13),
we easily obtain that all A(w, n) are Borel. So, for each w ∈ S, there exists n ∈ N

such that λA(w, n) > 0. Set I := {[r, s] : r < s are rational}. Further, for k ∈ N

and I ∈ I, let

S(k, I) := {w ∈ S : w + Iv ⊂ G and λ(A(w, k) ∩ I) ≥ 1/k}.

It is easy to see that S =
⋃

{S(k, I) : k ∈ N, I ∈ I}, and so we can choose k ∈ N

and I ∈ I such that S(k, I) is of the second category in W . Thus there exists a
nonempty U ⊂ W open in W such that S(k, I) is dense in U . Choosing an arbitrary
w0 ∈ S(k, I)∩U , we can clearly find an open subset V of W such that w0 ∈ V ⊂ U
and

w + Iv ⊂ G for each w ∈ V. (36)

Obviously, we can choose d ∈ D ∩ V and a sequence (si) in S(k, I) which converge
to d. Set

A := lim sup
i→∞

A(si, k) =
∞
⋂

j=1

∞
⋃

i=j

A(si, k).

Obviously, λ(A ∩ I) ≥ 1/k. Using (36) and (13), we obtain A ∩ I ⊂ A(d, k). So
A ∩ I ⊂ Nd, which is a contradiction.

Obviously, if w ∈ D, then f is essentially smooth on the line w + Rv (cf. Remark
1.2). So, using Lemma 2.1, we obtain that f is essentially smooth on a generic line
parallel to v.

Proposition 6.4. Let X be a Banach space with dimX > 1 and let ∅ 6= G ⊂ X be
an open set. Then Se(G) ⊂ Sg

e (G) and the inclusion is strict.

Proof. Let f ∈ Se(G), 0 6= v ∈ X, and let W be a topological complement of
span{v}. Applying Lemma 2.4 to the Borel Haar null set B := {x ∈ G : f 0(x, v) 6=
−f 0(x,−v)}, we obtain that the assumptions of Lemma 6.3 are satisfied. So f is
essentially smooth on a generic line parallel to v. Thus f ∈ Sg

e (G) and the inclusion
is proved.

To prove that it is strict, choose a linear space V ⊂ X with dimV = 2, choose a
topological complementW to V and denote by π the projection of X on V alongW .
Set H := π(G) and choose nonempty open sets A ⊂ V , B ⊂ W with A × B ⊂ G.
Since H ⊃ A is open and the classes Se(A) and Sg

e (H) clearly do not depend on the
choice of an equivalent norm on V , by Lemma 6.2 there exists a function ϕ ∈ Sg

e (H)
such that ϕ|A /∈ Se(A). Set f(x) := ϕ(π(x)), x ∈ G.

To prove f ∈ Sg
e (G), consider an arbitrary 0 6= v ∈ SX . If v ∈ W , then f is constant

(and so essentially smooth) on each line parallel to v. If v /∈ W , then u := π(v) 6= 0.
Let S be a topological complement of span{u} in V and T := S +W . Then T is a
topological complement of span{v} in X. Since ϕ ∈ Sg

e (H), there exists (cf. Lemma
2.1) a set P ⊂ S residual in S such that ϕ is essentially smooth on each line p+Ru,
p ∈ P . It is easy to see that the set P +W is residual in the space T . Now consider
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an arbitrary line L = a + Rv, where a = p + w with p ∈ P and w ∈ W . Then
g(t) := f(a+ tv) = ϕ(p+ tu) for each t from the domain of g, and so f is essentially
smooth on L. By Lemma 2.1, we obtain f ∈ Sg

e (G).

Since ϕ|A /∈ Se(A), there exists c ∈ V , such that N := {x ∈ A : ϕ0(x,−c) 6=
−ϕ0(x, c)} has positive Lebesgue (Haar) measure in V . Since clearly f 0(z,−c) 6=
−f 0(z, c) for each z ∈ N +B and N +B is not Haar null in X by [8, Theorem 2.3],
we obtain f /∈ Se(G).

As an immediate corollary we obtain the inclusion Re(G) ⊂ Rg
e(G). We finish this

section with the following result.

Proposition 6.5. Let X be a Banach space and let ∅ 6= G ⊂ X be an open set.
Then Se(G) ⊂ Re(G).

Proof. Let f ∈ Se(G). To prove f ∈ Re(G), we define the family F of all closed
separable spaces Y ⊂ X with the following property:

(∗) There exists a dense set DY ⊂ Y such that, for each v ∈ DY and each closed
separable space Z with Y ⊂ Z ⊂ X, the set

Av,Z := {z ∈ G ∩ Z : f 0(z,−v) 6= −f 0(z, v)}

is Haar null in Z.

First observe that, applying (∗) to Z := Y , we obtain (see [8, Theorem 3.7]) that
f |Y ∈ Se(G ∩ Y ) for each Y ∈ F with G ∩ Y 6= ∅.

So, to prove f ∈ Re(G), it is sufficient to show that F is a rich family.

To prove (R1), suppose that Yn ∈ F , n ∈ N, and Y1 ⊂ Y2 ⊂ · · · . For each
n ∈ N, choose a dense subset DYn

of Yn by (∗). Obviously, D :=
⋃∞

n=1 DYn
is dense

in Y :=
⋃∞

n=1 Yn. Since Av,Z is Haar null in Z for each v ∈ D and each closed
separable space Z with Y ⊂ Z ⊂ X by the choice of DYn

, we have Y ∈ F .

To prove (R2), let Y0 ⊂ X be a closed separable space. We will define inductively
a sequence Y0 ⊂ Y1 ⊂ Y2 ⊂ · · · of closed separable subspaces of X. The space Y0 is
already defined.

If Yn−1, n ∈ N, is defined, we choose a countable dense subset Dn−1 of Yn−1. Since
f ∈ Se(G), we know that

Av := {x ∈ G : f 0(x,−v) 6= −f 0(x, v)}

is Haar null in X for each v ∈ X. So, by Lemma 4.9, there exists a closed separable
space Zv such that

Av ∩ Z is Haar null in Z for each closed separable space Z ⊃ Zv. (37)

Now define

Yn := span(Yn−1 ∪
⋃

v∈Dn−1

Zv).

Denote Y :=
⋃∞

n=1 Yn. Then clearly DY :=
⋃∞

n=0 Dn is dense in Y and, for each
v ∈ DY and each closed separable space Z with Y ⊂ Z ⊂ X, we have that Av ∩ Z
is Haar null in Z by (37), since Zv ⊂ Y ⊂ Z. So Y ∈ F .
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7. Properties of classes defined via linear essential smoothness

The Borwein-Moors class Se(G) is a linear lattice closed under multiplication and
division (when it is defined); see [6, Corollary 4.4.] and [8, Theorem 3.9]. Since
our classes are defined by essential smoothness on lines, and the intersection of two
residual sets is a residual set, using the stability of Se(H) for suitable open sets
H ⊂ R and functions of the form ϕ(t) = f(a + tv), t ∈ H, (cf. Remark 1.2), we
easily obtain the following proposition.

Proposition 7.1. Let X be a Banach space (resp. a Banach space written as X =
X1 ⊕ · · · ⊕ Xn) and G ⊂ X an open set. Then the classes S l

e(G), Sg
e (G), Sgg

e (G)
(resp. Sp

e (G)) are linear lattices closed under multiplication and division (when it
is defined).

The stability of Se(G) was inferred from the fact that g ◦ f ∈ Se(G) whenever
f ∈ Se(G,Rn) and g is regular [2], or, more generally, g is arc-wise essentially
smooth [6], [8], on a neigbourhood of f(G).

The arc-wise essentially smooth functions in R
n were defined (under the name “saine

fonctions�) and used by Valadier [30], [31]. They were studied and applied in [7]
(using another, but equivalent definition; see Remark 7.3 below). We present here
the more general definition of [3].

Definition 7.2. Let X, Y be Banach spaces, ∅ 6= G ⊂ X an open set, and f :
G → Y a mapping. We will say that f is arc-wise essentially smooth and write f ∈
Ae(G, Y ) if f is locally Lipschitz and, for each x ∈ Se((0, 1), X) with x((0, 1)) ⊂ G,
the set {t ∈ (0, 1) : x′(t) exists and f is not strictly differentiable in the direction
x′(t)} is Lebesgue null. We set Ae(G) := Ae(G,R).

Remark 7.3. The above definition coincides, in the case X = R
n, Y = R, with

the definition of [7]. Valadier’s definition (in the same case) is the same, but works
with absolutely continuous x. It is not difficult to show, that, in Definition 7.2, we
can equivalently work with C1 smooth x or with continuous x which are almost
everywhere differentiable. This easily follows from the fact that if x is continuous
and almost everywhere differentiable then for each ε > 0 there exists a C1 smooth
x̃ : (0, 1) → X such that λ({t ∈ (0, 1) : x(t) 6= x̃(t)}) < ε. This fact immediately
follows from [16, Theorem 3.1.16] in the case X = R

n, and in the general case it can
be proved using the vector-valued Whitney C1 extension theorem (see [16]), Lusin
theorem, and Egoroff theorem, as in the proof of [16, Theorem 3.1.16].

Note that

Ae(G) is a linear space containing all regular (resp. pseudoregular) functions on G.
(38)

(See [30] and [7] for the case X = R
n; the case of a general space X is similar.)

Theorem 3.3 of [3] asserts that if X, Y , Z are Banach spaces, G ⊂ X, H ⊂ Y are
open, f ∈ Se(G, Y ), f(G) ⊂ H and g ∈ Ae(H,Z), then g ◦ f ∈ Se(G,Z).

This result clearly implies (cf. Remark 1.2) the following proposition.
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Proposition 7.4. Let X, Y , Z be Banach spaces, G ⊂ X, H ⊂ Y be open, f :
G → H, and g ∈ Ae(H,Z).

(i) If f ∈ S l
e(G, Y ) (resp. f ∈ Sg

e (G, Y ), f ∈ Sgg
e (G, Y ), f ∈ Sgd

e (G, Y )), then
g◦f ∈ S l

e(G,Z) (resp. g◦f ∈ Sg
e (G,Z), g◦f ∈ Sgg

e (G,Z), g◦f ∈ Sgd
e (G,Z)).

(ii) If X is written as X = X1⊕· · ·⊕Xn and f ∈ Sp
e (G, Y ), then g◦f ∈ Sp

e (G,Z).

Proposition 7.5. Let X be an Asplund space, G ⊂ X a connected open set, and
let f1, f2 be functions on G such that either

(i) f1, f2 ∈ Sgg
e (G) or

(ii) f1, f2 ∈ Sp
e (G).

Suppose that ∂f1 = ∂f2 generically on G. Then g := f1 − f2 is a constant function.

Proof. First observe that, by Theorem 5.2, Theorem 5.1 and (5), both f1 and f2
are generically strictly differentiable on G, and therefore (see (14)) there exists a
first category set M ⊂ G such that ∂f1(x) = ∂f2(x) = {f ′

1(x)} = {f ′
2(x)} for each

x ∈ G \M . Consequently,

g′(x, u) = 0, whenever x ∈ G \M and u ∈ X. (39)

Choose c ∈ G and set A := {a ∈ G : g(c) = g(a)}. To prove A = G, it is sufficient
to show that A is both closed an open in G. The continuity of g implies that A
is closed in G. To prove that A is open, choose an arbitrary a ∈ A. Now we will
distinguish the cases (i) and (ii).

Ad (i): Choose r > 0 such that B(a, r) ⊂ G and consider an arbitrary b ∈ B(a, r).
Write b = a+su, where s ≥ 0 and u ∈ SX . Since g ∈ Sgg

e (G) by Proposition 7.1, we
can find vectors un ∈ SX , such that un → u, bn := a + sun ∈ B(a, r), n ∈ N, and
g is essentially smooth on a generic line parallel to un. Using (39) and Lemma 3.1
for g and g̃ := −g (with α = 0), we obtain g(bn)− g(a) ≥ 0 and −g(bn) + g(a) ≥ 0.
Since bn → b, we obtain g(b) = g(a) and B(a, r) ⊂ A.

Ad (ii): Choose K > 0 such that K‖v‖ ≥
∑n

i=1 ‖vi‖, whenever v =
∑n

i=1 vi
and vi ∈ Xi for each 1 ≤ i ≤ n. Choose r > 0 such that B(a, 2Kr) ⊂ G and
consider an arbitrary b ∈ B(a, r). Write b − a =

∑n

i=1 siui, where si ≥ 0 and

ui ∈ SXi
, i = 1, . . . , n. Set c0 := a, ck := a +

∑k

i=1 siui for 1 ≤ k ≤ n. Clearly
ck = ck−1+skuk and ck ∈ B(a, 2Kr) for 1 ≤ k ≤ n. Since g ∈ Sp

e (G) by Proposition
7.1, we can use (39) and Lemma 3.1 for g and g̃ := −g on the segment ck−1, ck and
obtain g(ck−1) = g(ck) for 1 ≤ k ≤ n. Therefore g(b) = g(cn) = g(c0) = g(a) and
B(a, r) ⊂ A.

8. Some consequences of main results

First we will present some consequences (which are formulated using standard no-
tions) of Theorem 5.1. For the sake of simplicity, we will formulate these conse-
quences for functions defined on the whole space.

The following consequence covers the cases of biconvex and saddle functions (proved
in [1]), and also the (probably new) case of “partially DC functions�.
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Corollary 8.1. Let X = X1 × · · · ×Xn be an Asplund space and let f be a locally
Lipschitz function on X. Let each partial function of the form

f(x1, . . . , xj−1, ·, xj+1, . . . , xn), 1 ≤ j ≤ n,

be a difference of two approximately convex functions. Then f is generically Fréchet
differentiable on X.

Amore general (see (20)) result (which is a special case of Corollary 8.3 on composite
functions) we obtain, if we suppose that each partial function is a difference of two
regular (or, more generally, two pseudoregular) functions.

The following general result on composite functions immediately follows from
Proposition 7.4, Theorem 5.1 and Theorem 5.2.

Proposition 8.2. Let X be an Asplund space (resp. an Asplund space written as
X = X1⊕· · ·⊕Xn). Let Y be a Banach space and let G ⊂ X, H ⊂ Y be open sets.
Let f ∈ Sgd

e (G, Y ) (resp. f ∈ Sp
e (G, Y )), f(G) ⊂ H, and g ∈ Ae(H). Then g ◦ f is

generically Fréchet differentiable on X.

A more concrete corollary is the following.

Corollary 8.3. Let X = X1 × · · · ×Xn be an Asplund space and let f : X → R
m,

f = (f1, . . . , fm) be a locally Lipschitz function on X. Let each function of the form

fi(x1, . . . , xj−1, ·, xj+1, . . . , xn), 1 ≤ i ≤ m, 1 ≤ j ≤ n,

be a difference of two regular (or, more generally, of two pseudoregular) functions.
Let g : Rm → R be a difference of two regular functions (or, more generally, of two
pseudoregular) functions. Then g ◦ f is generically Fréchet differentiable on X.

Proof. Identifying v ∈ Xi with (0, . . . , 0, v, 0, . . . , 0) ∈ X, we have X = X1 ⊕ · · · ⊕
Xn. By (38) and Proposition 8.2, it is sufficient to show that f ∈ Sp

e (X,Rm). To
this end, consider a ∈ X, 1 ≤ j ≤ n, v ∈ Xj ⊂ X, and the function ϕ(t) :=
f(a + tv) = (f1(a + tv), . . . , fm(a + tv)), t ∈ R. By our assumptions and (10), we
obtain that each function fi(a+ tv), 1 ≤ i ≤ m, is a difference of two pseudoregular
function, and so it belongs to the linear space Se(R) by Proposition BM. Thus
ϕ ∈ Se(R,R

m) by (35), which proves f ∈ Sp
e (X,Rm).

Another corollary works with the notion (see [32]) of DC (= delta-convex) mappings
between Banach spaces.

Corollary 8.4. Let X = X1 × · · · ×Xn be an Asplund space, Y a Banach space,
and let f : X → Y be a locally Lipschitz mapping. Let each partial mapping

f(x1, . . . , xj−1, ·, xj+1, . . . , xn), 1 ≤ j ≤ n,

be a locally DC mapping from Xj to Y . Let g : Y → R be a difference of two
regular functions (or, more generally, of two pseudoregular) functions. Then g ◦ f
is generically Fréchet differentiable on X.
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Proof. Identifying v ∈ Xi with (0, . . . , 0, v, 0, . . . , 0 ∈ X, we have X = X1 ⊕ · · · ⊕
Xn. By (38) and Proposition 8.2, it is sufficient to show that f ∈ Sp

e (X, Y ). To this
end, consider a ∈ X, 1 ≤ j ≤ n, v ∈ Xi ⊂ X, and the mapping ϕ(t) := f(a+tv), t ∈
R. By our assumptions and [32, Lemma 1.5(b)], we obtain that ϕ : R → Y is a
locally DC mapping. So ϕ is a DC mapping by [32, Theorem 1.20] and thus we can
choose a control convex function c : R → R of ϕ. Since c is Fréchet differentiable
except a countable set, we obtain that ϕ is strictly differentiable except a countable
set by [32, Proposition 3.9(i)]. So ϕ ∈ Se(R, Y ), and thus f ∈ Sp

e (X, Y ).

It is possibly a new observation, that generic differentiability of a locally Lipschitz
function f on an Asplund space can be implied by an assumption concerning only
behaviour of restrictions of f to lines. Of course, the verification of such assumption
can be sometimes easier that the verification of directional strict differentiability
(or regularity) with respect to the whole space. As an illustration, we present an
alternative proof of the following well-known result.

Theorem UG. Let X be an Asplund space with UG (uniformly Gateaux smooth)
norm and let ∅ 6= F ⊂ X be a closed set. Then the distance function dF (x) :=
dist(x, F ) is generically Fréchet differentiable on X \ F .

This result follows from the fact that −dF is Lipschitz and regular on G := X \ F
(see [4]), since regularity is a “(GFD) property� (cf. Introduction); see [12] and [17].

Using Corollary 8.1 (for n = 1), we need not regularity of −dF ; to prove Theorem
UG it is sufficient to show that dF is locally semiconcave (cf. (19)) on lines outside
F (which is essentially easier). More precisely:

Lemma 8.5. Let X, F and dF be as in Theorem UG. Let a ∈ G := X \ F and
v ∈ SX . Then the function ϕ(t) := dF (a+ tv) is locally semiconcave (with a general
modulus, cf. [10]) on H := {t ∈ R : a+ tv ∈ G}.

Proof. Denote q(x) := ‖x‖ and recall ([33, Proposition 7(iii)]) that

the function x 7→ q′(x, v) is uniformly continuous

on {x ∈ X : ‖x‖ > r} for each r > 0.
(40)

Consider an arbitrary t0 ∈ H, set x0 := a + t0v and d0 := dist(x0, F ) > 0. Let (cf.
(40)) ω be a modulus of continuity of the function x 7→ q′(x, v) on {x ∈ X : ‖x‖ >
d0/2}. For each y ∈ F , set dy(x) := q(x − y), x ∈ X. Then clearly (dy)

′(x, v) =
q′(x − y, v) for x ∈ G, which easily implies that, for each y ∈ F , the function
(dy)

′(·, v) is uniformly continuous on B(x0, d0/2) with modulus of continuity ω. For
each y ∈ F , set ϕy(t) := dy(a+tv), t ∈ R. Since clearly (ϕy)

′(t) = (dy)
′(a+tv, v) for

t ∈ H, we easily see that, for each y ∈ F , the function (ϕy)
′ is uniformly continuous

with modulus of continuity ω on (t0 − d0/2, t0 + d0/2). Since ϕ = infy∈F ϕy, one
of the basic facts on semiconcave functions ([10, Corollary 2.1.6]) implies that ϕ is
semiconcave (with modulus ω) on (t0 − d0/2, t0 + d0/2).
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locally Lipschitzian functions, J. Math. Anal. Appl. 159 (1991) 147–157.

[19] J. R. Giles, S. Sciffer: Locally Lipschitz functions are generically pseudo-regular on
separable Banach spaces, Bull. Aust. Math. Soc. 47 (1993) 205–212.
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