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The non-archimedean power series spaces Ap(a,t) are the most known and important examples
of non-archimedean nuclear Fréchet spaces. We study when the spaces A,(a,t) and A,(b, s) are
isometrically isomorphic. Next we determine all linear isometries on the space Ap(a,t) and show
that all these maps are surjective.
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1. Introduction

In this paper all linear spaces are over a non-archimedean non-trivially valued field
K which is complete under the metric induced by the valuation | - | : K — [0, 00).
For fundamentals of locally convex Hausdorff spaces (Ics) and normed spaces we
refer to [2], [4] and [6].

Let I' be the family of all non-decreasing unbounded sequences of positive real
numbers. Let a = (a,), b = (b,) € I'. The power series spaces of finite type A;(a)
and infinite type A (b) were studied in [1] and [7]-[9]. In [7] it has been proved
that A,(a) has the quasi-equivalence property i.e. any two Schauder bases in A,(a)
are quasi-equivalent ([7], Corollary 6).

The problem when A,(a) has a subspace (or quotient) isomorphic to A,(b) was
studied in [8]. In particular, the spaces A,(a) and A,(b) are isomorphic if and only if
p = q and the sequences a, b are equivalent i.e. 0 < inf,(a,/b,) < sup,(a,/b,) < c©
(8], Corollary 6).

For p € (0, oo] we denote by A, the family of all strictly increasing sequences ¢t = ()
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of real numbers such that lim ty = Inp (if p = oo, then Inp := o).

Let p € (0,00], a = (a,) € I"and t = (t;) € A,. Then the following linear
space A,(a,t) = {(z,) C K : lim, |z,|e** = 0 for all k& € N} with the base

(Il - l|) of the norms ||(z,)|lx = max, |x,|e** k € N, is a Fréchet space with a
Schauder basis. Clearly, A;(a) = Ai(a,t) for a = (a,) € ', t = (tx) = (In k—_’il), and

A (b) = Ax(b,s) for b = (b,) € I', s = (sg) = (Ink). Let ¢(p) =1 for p € (0, 00)
and ¢(oco) = oo. It is not hard to show that for every p € (0,00], a = (a,) € I' and
t = (tx) € A, the space Ap(a,t) is isomorphic to Ay (b) for some b € I

Thus we can consider the spaces A,(a,t) as power series spaces.
In this paper we study linear isometries on power series spaces.

First we show that the spaces A,(a,t) and A,(b, s), for p,q € (0,00], t = (tx) € A,
s = (sy) € A, and a = (a,), b = (b,) € I, are isometrically isomorphic if and only
if there exist C, D € R such that s, = Ct, + D and ap = Cb;, for all £ € N, and for
every k € N there is ¢, € K with || = e=(P/9% (Theorem 3.1).

Let p € (0,00], t = (tx) € A, and a = (a,) € I.

Let (N,) be a partition of N into non-empty finite subsets such that (1) a; = a; for
alli,j € Ny, s € N; (2) a; < a; foralli € Ny, j € Nyyq, s € N.

We prove that a linear map T : A,(a,t) — Ay(a,t) with Te; = > 7 t;e;, j € N,
is an isometry if and only if (1) |¢; ;| < €@~ when a; < a;; (2) |t; ;] < el@—@)np
When a; > Clj (6_00 = O), (3) maX(i,j)eNsts ti,j‘ =1 and \det[ti,j](i,j)eNsts =1
for s € N; (Theorem 3.5 and Proposition 3.7).

In particular, if the sequence (a,) is strictly increasing, then a linear map T :
Ay(a,t) — Ap(a,t) with Te; = > 7 t;;e;, j € N, is an isometry if and only if (1)
Iti ;| < et when i < j; (2) [t;;] < e@~9)MP when i > j; (3) |t;;| = 1 for i € N.
Finally we show that every linear isometry on A,(a,t) is surjective (Corollary 3.10
and Theorem 3.12). Thus the family Z,(a,t) of all linear isometries on Ay(a,t)
forms a group by composition of maps.

2. Preliminaries
The linear span of a subset A of a linear space F is denoted by lin A.

By a seminorm on a linear space E we mean a function p : E — [0,00) such that
plaz) = |alp(z) for all @ € K, z € E and p(xr + y) < max{p(x),p(y)} for all
z,y € E. A seminorm p on E is a norm if {x € E : p(z) = 0} = {0}.

If p is a seminorm on a linear space E and z,y € E with p(z) # p(y), then
p(z +y) = max{p(z), p(y)}-

The set of all continuous seminorms on a les F is denoted by P(FE). A non-
decreasing sequence (px) of continuous seminorms on a metrizable lcs E is a base

in P(F) if for any p € P(FE) there are C' > 0 and k € N such that p < Cpg. A
complete metrizable Ics is called a Fréchet space.

Let E and F be locally convex spaces. A map T : £ — F'is called an isomorphism
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if it is linear, injective, surjective and the maps 7,7~! are continuous. If there
exists an isomorphism 7" : E — F', then we say that E is isomorphic to F'. The
family of all continuous linear maps from E to F' we denote by L(E, F).

Let £ and F' be Fréchet spaces with fixed bases (|| - ||,) and (||| - |||,) in P(E) and
P(F), respectively. A map T': E — F is an isometry if |||Tz — Tyl||, = ||z — yllx
for all z,y € F and k € N; clearly, a linear map 7' : £ — F' is an isometry if
and only if |||Tz|||, = ||z|x for all z € E and k € N. A linear map T : £ — F
is a contraction if |||Tz|||, < ||z|x for all z € E and k € N. A rotation on E is a
surjective isometry 7' : E' — E with T(0) = 0.

By [3], Corollary 1.7, we have the following

Proposition A. Let m € N. Equip the linear space K™ with the mazimum norm.
Let T : K™ — K™ be a linear map with Tej; = Y " t;¢; for 1 < j <m. Then T
is an isometry if and only if max; ; |t; ;| =1 and | det[t; ;]| = 1.

A sequence (z,) in a les E is a Schauder basis in E if each © € E can be written
uniquely as x = Y 7| o, x, with (a,,) C K, and the coefficient functionals f,, : E —
K,z — a,(n € N) are continuous.

The coordinate sequence (e,,) is an unconditional Schauder basis in A,(a, ).

3. Results

First we show when the power series spaces A,(a,t) and A,(b, s) are isometrically
isomorphic.

Theorem 3.1. Let p,q € (0,00, t = (tx) € Ay, s = (s) € Ay and a = (a,),
b= (by,) € I'. Then the spaces A,(a,t) and A,(b,s) are isometrically isomorphic if
and only if

(1)  there exist C, D € R such that s, = Ct, + D and aj, = Cby, for all k € N;
(2)  for every k € N there is ¢y, € K with [1y,| = e~ P/

In this case the linear map P : Ay(a,t) — Ay(b,s), (z,,) = (¥nwy) is an isometric
1somorphism.

Proof. Let T : A,(a,t) — A,(b,s) be an isometric isomorphism and let Te; =
S0 tijei for j € N. Then max; [t; ;| = e for all j, k € N; so max; |¢; ;|e*+0—tr4
=1 for j,k € N. Let j,k € N with & > 1. Then for some ¢ € N we have
|ti,j| — etkaj_skbi’ ‘ti,j| < etk+1a=sk+1bi g1 |ti,j‘ < eltk—1a;—sk—1b;

Hence we get (Sg+1 — Sk)bi < (tip1 — tr)aj and (tp — tp—1)a; < (sk — sk—1)bi; SO

Sk+1 — Sk < Q; < Sk — Sk—1

teyr —te — b T oty —to

Sk+1—Sk
tetr1—lk

Thus the sequence ( ) is non-increasing. Similarly we infer that the sequence

t —t
( k+1 k)

is non-increasing, since the map 7' : A,(b,s) — A,(a,t) is an isometric
Sk+1— 5k
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Sk+1—Sk

isomorphism, too. It follows that the sequence (3::=%) is constant, so there is
tht1—tk

C' > 0 such that S’““ S’“ = (C for all k € N.

Moreover, for every j € N there is ¢ € N with a;/b; = C and for every i € N there

For [ > 1 we have s; — C't; = s; — C'ty, since

-1 -1
S — 81 = Z(Sk+1 — Sk) =C (tk+1 — tk> = C(tl — tl).
k=1 k=1

Put D = s — Cty, then s, = Cty + D for kK € N.

Let (jx) C N, (ix) C N be strictly increasing sequences such that {a;, : k¥ € N} =
{aj j € N}, {bzk ke N} = {bl 11 E N} and aj, < ajk+1,bik < bik+1 for k € N.

Hence we get a;, = Cb;, for k € N, since {a; : j € N} = {Cb; : i € N}

Put jo =dg=0and M, = {j € N:j,, <j<j}, W ={i € N: i,y <i <4} for
r €N; clearly W, = {i e N: Cb; = a;, }.

Let r € N and (¢;)jem, C K with maxeyy, |¢;] > 0. Then we have

Z je;

JEM,

| pth@ir — tra; _
a = a
?elf\ff‘(me je )f|¢ &

k
o0
= ||T E pje; E ®; E i€
JEM, % jeEM,  i=1 )
o0
_ A | oSkb
= E :t7J¢J —m?X E :tw(bj e
i=1 JEM, JjEM,
Thus
max g t; j;| P = max |;].
i - ’ JEM,
JEM,

Let £ > 1. For some 7 € N we have

> tigo;

JEM;

kbi

= max](b | ki 5k < max\qﬁ |eth+19ar —Sk41bs

> tiio;

JEM,

and

< max|gz§ | fe—1%n = Sk—1bi

>t

JEM,

Hence we get (sg11 — Si)bi < (tht1 — tg)ay, and (6, — tp_1)a;, < (sp — Sg—1)bs; so
Cb; < aj, and a;, < Cb;. Thus a;, = Cb;, so ¢ € W,.
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It follows that

eSRhiT e — max
max o]

> tid

JjEM;

iceW,

We have sib; — tia;, = (Cty + D)a;, /C — tya;, = (D/C)aj, for i € W,; so

>t

JEM;

max

(D/Caj, _
e — Inax
€W, JEM, 51

Thus e~ P/ = |v,| for some v, € K. Put ¢; = 4, for every j € M,. Then
Y| =e —(D/Ca; for j € M,. Since max;eyy. ZjeMT t”gbj||¢]_1| = maXjen, |@;|, the
linear map

U: KM — KW, (&) jem, — (Z li ,ﬂﬁ ¢J>
’iEWr

JEM,

is an isometry, so |M,| < |[W,|. We have shown that j. — j._1 <, —i,_; for every
r € N. Similarly we get i, — i,_; < j, — jr—1 for every r € N, since T~ is an
isometric isomorphism. Thus j, — j,_1 = i, — i, for every r € N; so j, = 1, for
r € N. It follows that a; = Cb; for j € N.

Now we assume that (1) and (2) hold. Then the linear map

P:Ay(a,t) — Ayb,s), (x;)— (Yjx;)

is an isometric isomorphism. Indeed, P is surjective since for any y = (y;) € A,(b, s)
we have © = (wj_lyj) € Ay(a,t) and Pr =y. For x € Ay(a,t) and k € N we have

Skbj D/C)ajJrskb

I Pafy = ma s ;e = ma fa e ) = mavx e = o

]

By obvious modifications of the proof of Theorem 3.1 we get the following two
propositions.

Proposition 3.2. Letp € (0,00],t € A, and a = (a,,), b= (b,) € I'. Then A,(b,t)
contains a linear isometric copy of A,(a,t) if and only if a is a subsequence of b.
If (n;) C N is a strictly increasing sequence with a; = by,,, j € N, then the map
T:Ay(a,t) — Ay(b,t), (x;) — (y;), where y; = xy if j = ny, for some k € N, and
y; = 0 for all other j € N, is a linear isometry.

Proposition 3.3. Let p,q € (0,00], t € Ay, s € Ay and a,b € I'. If there exist
linear isometries T : Ap(a,t) — Ay(b,s) and S : A (b, s) — Ap(a,t), then A,(a,t)
and A,(b, s) are isometrically isomorphic.

Remark 3.4. Let p,q € (0,00}, t € Ay, s € Ay and a,b € T'. If P: Ay(a,t) —
A,(b,s) is an isometric isomorphism, then every isometric isomorphism 7": A,(a, t) —
A,(b,s) is of the form P o S where S is an isometric automorphism of A,(a,t).
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Now we determine all linear isometries on the space A,(a,t). Recall that (Ny) is a
partition of N into non-empty finite subsets such that (1) a; = a; for all 4,5 € Nj,
seN; (2) a; <ajforallie N, je Ngyq, s €N

Theorem 3.5. Let p € (0,00], t = (t) € A, and a = (a,) € . Let T : Ay(a,t) —
Apy(a,t) be a continuous linear map and let Te; = Y2 t; je; for j € N.

Then T is an isometry if and only if

(1) |tiy] < el%=ah when a; < aj, and |t; ;] < %9 DWP when a; > aj;

(2) max(m)eNsts tz’,j| =1 and |det[ti7j](i,j)eNsts| =1 fOT’ all s € N.

Proof. (=) For k,j € N we have ||Te;||;, = max; |t; ;| and ||e;||x = e**%. Thus
max; |t; ;]et*(®~%) =1 for all j,k € N. Hence |t ;| < (=% for all 4,5, k € N; so
|t: ;| < infy et(@5=%) for all i, j € N. Tt follows (1); moreover |t; ;| < 1 when a; = a;.

Let s € N, j, = min N, and (f;)jen, C K with max;en, |3;] > 0. Then we have

[o.¢]
T (Z ﬁjtﬁj) = Z B; Zt%}jei
JENs k JENs =1 A
o
- Z (Z ﬁjti,j) €|l = max Z Biti ; etkai
=1ENS k ' JENS

and || 3=y, Biejllx = maxjen, |B;le*% = (maxjen, |8;])e'%= for all k € N. Thus

> Biti

JENS

max et (4=5s) — max 1851, keN;
i JEN,

Bil.

hence maxX;e N, | Z]ENS ﬁjti,ﬂ < maxjen,

Let k > 1. For some i, € N we have

> Biti

JENs

etk (@i =) — max 18]
JEN;
If a;, < aj,, then

etk—l(aik_ajs) > etk(aik _a’js) = max |ﬁ]"
JENs

> Biti

JEN;

> Biti

max |3;| >
jEN}:’ ]‘ a jJEN,
S

if Q. > G g, then

eter1(ai,—azs) < etk (@i, =a55) — ax |ﬂ]|
JENs

> Biti

JENS

> Bitiy;

jel\f}§|ﬂj| - e
S

It follows that a;, = a;,, so i, € Ny and |ZjeNs Bjti, ;| = max;en,

Bil.
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Thus the following linear map is an isometry

S KM - KM, (8))en, — (Z Bt ,J> .
iENg

]eNs

=1.

By Proposition A we get max(; jyen,xn, [tij| = 1 and | det[t; ;] j)en, xn,

(<) Let © = (B;) € Ay(a,t) and k € N. Clearly, ||Tz|x = lim,, HT(ZJ 1 Biei) ||k
and ||zl = lim,, | >°7%, Bje;lls. Thus to prove that || Tx||s = [|z||) it is enough to
show that [|T'(3 72, Bje)|lk = [ 2252, Biejllx for all m € N. Let m € N. We have

T (Z ﬂjGj) = Zﬂj Ztmei = Z (Z Bj ,_]> €is
=1 j=1 =1 =

i=1
so L= |T(300, Biej)llw = max; | D771, Bjti jle'®; clearly P = || X202, Biejllr =
maxi <<, |5;|e**. We shall prove that L = P.
By (1) and (2) we have |t; ;| < e'*(®%~%) for all 4,7 € N. Hence for i € N we get

< max |f;le = P;
SIS

so L < P.If P=0, then L = P. Assume that P > 0.

Put jo = max{1 < j <m: |B;|e"*% = P} and ; = 0 for j > m. Let ¢,s € N with
m € Ny, jo € Ng. Put Wy =J{NV;: 1 <l <s}and M, =J{N,:s <l <q}.

Then |B;le*% < |B;|e"* %o for j € Wi, |B;le* % < |B,|e" %o for j € M, and
B;] = 18j,| > 0. By (2) and Proposition A, the linear map

S:KY = K%, (z))jen, — (Z h 7]x]>
1E€ENg

maneNs

]ENS

is an isometry, so maxien, | >_jcy, ti;0i] = maxjen, |8;] = |Bj,]. Thus for some
ig € Ns, we have | Y.y ti,.i0;] = |Bjol; clearly a;, = aj,. If j € W, then

JEN;
Nt | < 18, |etrlaio—as) plas=ajo) np — | 5. |o(aj=ajo)(Inp—ty) ~|3.

1BilItio.5] < 1o B0l 1Bsol,

50 ’ ZjeWs 6J'tio,j

|ﬁj||tio,j| < |Bj0|€tk(aj0_aj)etl(aj_aj0) - |ﬁjo|e(aj_aj0)(t1_tk) < |ﬁj0|’

50 | X jen, Bitiog| < 1Bl.
Thus

<|Bjol- If 5 € Mj, then

D Bitiog + > Bitiog + Y Bitio| = 18l

JEWS JEN; JEMs

so | D71 Bitig il %o = |Bj |0 = P. Hence P < L. Thus L = P. O

ilio,g| =
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By the proof of Theorem 3.5 we get the following.

Corollary 3.6. Let p € (0,00], t = (tx) € A, and a = (a,) € I'. Let T €
L(Ay(a,t)) and Te; = > 2 tije; for j € N. Then T is a contraction if and only if
Itij| < et when a; < a; and [t; ;] < e %~9WWMP when a; > a;.

Proposition 3.7. Let p € (0,00], t = (ty) € Ay and a = (a,) € T'. Let (t;;) C K
with
(1) [|tiy| < e@=9h when a; < aj, and |t; ;| < e~ DMP when a; > a;;

(2) max( jjen.xn, |tij| =1 and |det[t; ;] jyen,xn,| =1 for all s € N.

Then there exists a linear isometry T on A,(a,t) such that Te; = > . t;je;, 7 € N.

Proof. Let j € N and £k € N. For i € N with a; > a; we have [t; j|e"% <
elas—a)nptiea; — gajmptailts—lnp) if p € (0, 00), and |t;jle% =0, if p = co. Thus
lim; ||¢; jeillx = O for k € N; so lim;¢; je; = 0. Therefore the series Y .2, ; je; is
convergent in A,(a,t) to some element Te;. Let x = (z;) € A,(a,t).

We shall prove that lim; x;Te; = 0 in A,(a,t). By (1) and (2) we have |, ;| <
etv(@i=a) for all 4,j,k € N. Let k € N and j € N. Then |z;| < e 1% ||2||q;
moreover ||Te;l|, = max; [t; ;|et*% < e'*%. Hence ||x;Te;||x < e+ |||, for
J,k € N; so lim; x;Te; = 0.

Thus the series )2, x;Te; is convergent in Ay(a,t) to some Tz for every x €
Ap(a,t). Clearly Tx = lim, T,,x, where T,, : Ay(a,t) — Ay(a,t), T,x =>"  x;Te;.

j=1
The linear operators T,,,n € N, are continuous, so using the Banach-Steinhaus
theorem we infer that the operator T': A,(a,t) — A,(a,t), v — Tz is linear and

continuous. By Theorem 3.5, T" is an isometry. [

By Proposition 3.7 and the proof of Theorem 3.5 we get the following.

Corollary 3.8. Let p € (0,00], t € A, and a € I'. Then a linear map T :
A,(a,t) — Ap(a,t) is an isometry if and only if ||Te;|lx = |le;jllx for all j,k € N.

Finally we shall show that every linear isometry on the space A,(a,t) is a surjection.
For p = oo it follows from Theorem 3.5 and our next proposition. For p € (0, 00)
the proof is much more complicated.

Let p € (0,00], t = (ty) € Ap and a = (a,) € I'. Put W, = Ule N, My, = U2, N;
for k € N and Ny, = Ni x N, for all k,m € N. For every m € N there is v(m) € N
with m € Nv(m).

Proposition 3.9. Let p € (0,00],t = (tx) € A, and a = (a,) € I'. Let D €
L(Ay(a,t)) with De; = "2 d; je; for j € N. Assume that

(1) |dij| < ef(9=%) when a; < a;, and d;; = 0 when a; > a;;

(2) max(m)eNsys di,j| =1 and |det[di,j](i,j)€N5,5 =1 fOT all S € N

Then D 1s surjective.

Proof. We have lin{De; : j € W} C lin{e; : i € Wy} for k € N, since De; =
ZieWk d; je; for j € Nj, k € N. By Theorem 3.5 the operator D is a linear isometry,
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so D(Ap(a,t)) is a closed subspace of A,(a,t) and the sequence (De;) e, is linearly
independent for every k € N. Thus lin{De; : j € Wy} =lin{e; : i € Wy}, k € N; s0
D(A,(a,t)) D lin{e; : ¢ € N}. It follows that D is surjective. O

Corollary 3.10. Let t = (tx) € Ay and a = (a,) € I'. Every linear isometry on

Ao (a,t) is surjective.

Proposition 3.11. Let p € (0,00], t = (tx) € A, and a = (a,) € . Let S €
L(Ay(a,t)) with Se; = > "7 sije; for j € N. Assume that

(1)  si; =0 when a; < a;, and |s; ;| < @~ 0P when a; > a;;
(2) maxgjen,, |5i;| =1 and | det[s; ;] en, | =1 for k € N.

Then S is surjective.

Proof. For z = (z;) € A,(a,t) we have

00 00 00 0 00 0
St = E l’jSGj = E X E Si,j€i = E E Si iy | €5 = E E Sij Ly | €.
j=1 j=1 i=1 i=1 \j=1 =1 \JEW,(

Let y = (y;) € Ay(a,t). By (2) and Proposition A, there exists (z;)ien, C K with
max;en, |T;| = max;en, |y;| such that ZjeNl s;jx; =y; for i € Ny,
Assume that for some [ € N with [ > 1 we have chosen (z;)jen, C K for 1 <s <.

By (2) and Proposition A, there exists (z;);en, C K with

Yi — E Si,jTj

JEW, 1

max |z;| = max
1EN] 1€N;

such that ZjeNl SijTj = Yi — Zjer_l s, jx; for i € N;. Thus by induction we get
v = (z;) € KN such that 3., si 525 = i for all i € N, 1 € N and

Yi — E Si,jj

JEWI1

max |z;| = max|y;|, and max|z;| = max for [ > 1.
€Ny €Ny iE€N,

1EN;

Let k € N. Clearly, max;cw, |z;|e™% = max;ew, |yi|e™%. Forl > 1,i € N, j € W4
we have

|Si7j||$j|etkai < e(aj_ai)lnp+tkai|l»j| — e(aj—ai)(lﬂp—tk)|xj|€tkaj < |l‘j|€tkaj.

Thus by induction we get max;ew, |;le"** < max;ew, |y;|e™** for all [ € N.

It follows that = € A,(a,t). We have

Sz = Z Z (Z Si,jiﬁj> € = Z Zyiez’ = Zyiei =Y.
i=1

=1 ieN;, \jeW, =1 ieN,

Thus S is a surjection. O]
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Theorem 3.12. Let p € (0,00),t = (tx) € Ay and a = (a,) € I'. Every linear
isometry T on A,(a,t) is surjective.

Proof. Let k,m € N. Denote by My, ,,, the family of all matrixes B = [5; j](i,j)eny, ..
with (8; ;) C K such that

a) |G| < elaima)np for (4, 5) € Ny, if k> m;

b) |8l < elum%) for (i,5) € Ny, if k < m;

C) |ﬁi,j| S 1 fOI' (’l,j) & Nk:,m and ]det[ﬁi,j](i,j)@vk’m| = 1, lf k =m.

By Proposition A, for every k € N and B € My we have B™' € M, ;. Let
T@j = Zfil tm-ei fOI'j € N. Put Tk,m = [ti,j](i,j)ENk,m and ]}am = [5i7j](i,j)ENk,m for
all k,m € N. We define matrixes Dy, s, Sk € My for k€ Nand m =1,2,3,....
Put Dy = Iy, and Sy = Ty for k € N; clearly Dy, Sk € My, for k € N.
Assume that for some m € N with m > 1 we have Dy ;, Sy; € My ; for k € N
and 1 < j <m. Let D;,, = SlfllTl,m. It is easy to see that D;,, € Mj,,, since
Sill € Ml,l and Tl,m € Ml,m'

Let Cim = Zﬁ;i SkwDym and Dy, = Sk—i T — Chom] for k =2,3,...,m — 1. Let
1<k <m. Let [sin]inyen,, = Skw and [dnjlnjyeNym = Dom for 1 < v < k. Put
[cijlt.j)eny., = Ckm- Then

k-1
|cij| = Z Z Sinln ;| < Mmax |S5.n ;]
v=1 neN, " kot

for (i,5) € Ngm. Fori € Ny, j € N, and n € Wj,_; we have

|5i,ndn,j‘ < e(anfai)lanrtl(ajfan) — e(anfai)(lnpftl)thl(ajfai) < etl(aj*ai)

hence Cy,, € M. Since Sk_,i € My and T}, € My, we infer that Dy, €
My for k=2,...,m—1.

Let Dy = I for k > m; clearly Dy, € My . Let Sk = Iy for 1 < k < m;
then Sk, € M. Let Crm = 3.7 St Dyn and Sgm = Thn — Crm for k > m.

Let k > m. Let [sin]inen,., = Skw and [dp j](nj)en, ., = Do for 1 <o < m. Put
[¢i i) .j)eNs, = Chm. Then

m—1
el = (D0 D simdny| < max s udy,j|
v=1 neN, " et

for (i,5) € Ngm. Fori € Ny, j € N, and n € W,,,_1 we have

‘Si,nd ,j| < e(anfai)lnp+t1(ajfan) — e(anfaj)(lnpftl)Jrlnp(aj7ai) < e(ajfai)lnp;

hence Cy, € My . Since |t; ;| < elss—a)mp for (7, 5) € Nim, we get Sgm € Mim
for k > m and |¢; ;| < 1 for all (z,7) € Nyym.
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Thus for some (¢5)oes(n,,) C { € K: |a| < 1} we have

| det Sy m| = Z sgn o H (tio() — Cioti))

oc€S(Nm) €N,
= Z sgna[( H ti,a(i)) - <Pa]
o€S(Nm) i€Nm

= | det(Thm) — Z SgN 0 P,
c€S(Nm)

= |det(Tm)| = 1.

It follows that Sy,.m € Mypm.
By definition of Dy, and S, we get

a)  Tha=Sk1 =" SpoDyy for ke N;
b)  S11D1m =T for m > 2 and Sy Dy = Thym — ZIZ: SkwDym for 2 <k <

m’
s0 Thm = 2521 SkovDym for 1 <k <m;
c)  SkmDmm = Skem = Tim — va;ll SkwDym for k>m > 1,

)

50 Thom = S SkoDom = 3¢, SkwDym for k>m > 1.
Thus (%) T = Sy SkwDon = 3200, Skw Dy for all k,m € N.

Let [si](ij)enxn and [d; j] jyenxn be matrixes such that [Si,j](z‘,j)eNk,m = Sk.m and
[di,j](i,j)ENk,m = Dk,m for all k, m € N.

By Theorem 3.5 and Proposition 3.7, there exist linear isometries S and D on
Ap(a,t) such that Se; = >"° s, je; and De; = > "7 d; je; for all j € N; by Propo-
sitions 3.9 and 3.11, these isometries are surjective. Using (x) we get

k 0o 00
ti,j = Z Z Si,ndn,j = Z Z si,ndn,j = Zsi,ndn,j
n=1

v=1 neN, v=1 n€N,

for (i,j) € Nk, and k,m € N. Hence for j € N we get

SDej =5 (i dn,jen> = idmj (i Si,n6i>
n=1 =1

n=1
= Z (Z Si,ndn,j> € = Zti,jei = Tej;
i=1 \n=1 i=1
soT'= SD. Thus T is surjective. O

Let p € (0,00],t = (tx) € Ay and a = (a,) € I'.
For every m € N there is v(m) with m € Nygn).
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Denote by Dy(a,t), K,y(a,t) and S,(a,t) the families of all linear isometries on
AP(CL, t) such that Tej = EiGWU(j) ti,jeia Tej = EiGNu(j) ti,jei and Te] = ziGMv(J’) ti,jei
for 7 € N, respectively.

We have the following two propositions.

Proposition 3.13. D,(a,t), K,(a,t) and S,(a,t) are subgroups of the group I,(a,t)
of all linear isometries on A,(a,t). Moreover Dy(a,t) = I(a,t) and Se(a,t) =
Koo(a,t). For every T € T,(a,t) there exist D € Dy(a,t) and S € Sy(a,t) such that
T=SoD.

Proof. The last part of the proposition follows by the proof of Theorem 3.12.
Clearly, Z,(a,t) is a subgroup of the group of all automorphisms of A,(a,t); more-
over Do(a,t) = Zoo(a,t) and Sy(a,t) = Koo(a,t).

Let S,T € S,(a,t). Let j € N. We have

STej =S <Z ti,j€i> = Ztm' (Z Sk,i€k> = Z (Z Sk,z’tz’,j> L.
=1 i=1

k=1 k=1 =1

If ar, < a;, then for every ¢ € N we have a; < a; or a; < a;j; so sp; =0ort;; =0
for i € N. Thus > ;7 spt;; = 0 for k € N with a;, < a;; so ST € S,(a,t).

Let k € N. For some z;, = (z;;) € A,(a,t) we have Sz = €. By the proof of
Proposition 3.11 we have max{|z;x|e"'% : a; < ax} = 0, so x;; = 0 for j € N with
a; < aj. Hence S™(e;) = ZjEMv<k) z;rej, so ST € Sy(a,t). We have shown that
Sy(a,t) is a subgroup of Z,(a,t).

Let D,T € Dy(a,t). Let j € N. We have DTe; = > "7 (D2, diitij)ex. If ax > aj,
then for every ¢ € N we have a;, > a; or a; > a;; s0 dp; =0 ort;; =0 for i € N.
Thus Y2, dyit;j = 0 for every k € N with a;, > a;, so DT € Dy(a,t).

Let £k € N. Put F, = lin{e; : a; < ai}. We know that D(Fy) = Fj. Thus
there exists zj, = (z;5) € Fy such that Dz, = e;. Then z;;, = 0 for j € N with
a; > a and D~ (ey) = 2k = D .oy w0, Lik€j, SO D! € Dy(a,t). Thus D,(a,t) is a
subgroup of Z,(a,t). Clearly, Ky(a,t) = S,(a,t) N Dy(a,t), so Ky(a,t) is subgroup
of Z,(a,t). O

Proposition 3.14. Z,(a,t) C Z,(a, s) if and only if t1 < s1. In particular, Z,(a,t)
=T,(a,s) if and only if t; = s1.

Proof. If t; < sy, then using Theorem 3.5 we get Z,(a,t) C Z,(a,s). Assume that
t1 > s1. Then lim; eti=s1)(@;-a1) — o5 50 there exists jo > 1 and 3y € K such that
estlaio—a) < || < ehrl@io=a) . Let T € L(Ay(a,t)) with Te; = e; + Bod;, je1 for
j € N. By Theorem 3.5, we have T' € Z,(a,t) and T' ¢ Z,(a, s). O

In relation with Corollary 3.10 and Theorem 3.12 we give the following two examples
and state one open problem.

Let p € (0,00], t = (tx) € Ay and a = (a,) € I'.
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For every isometry F on K the map Tr : A,(a,t) — Ay(a,t), (x,) — (Fx,) is an
isometry on Ay(a,t).

Example 3.15. Assume that the field K is not spherically complete or the residue
class field of K is infinite. Then there exists an isometry on A,(a,t) which is not a
surjection.

Indeed, by [5], Theorem 2, there is an isometry F' on K which is not surjective.
Then the map T is an isometry on A,(a,t) which is not a surjection. ]

Problem. Assume that K is spherically complete with finite residue class. Does
every isometry on Ay(a,t) is surjective?

Example 3.16. On A,(a,t) there exists a non-linear rotation.

Indeed, put Sx = {f € K: || = 1} and let f : [0,00) — Sk be a function which
is not constant on the set {|a| : @ € K with |a] > 0}. Then the map F': K — K,
F(z) = f(|z])x is a non-linear surjective isometry with F'(0) = 0.

In fact, let z,y € K. If |z| = |y|, then
|F(z) = F(y)| = [f(lzDz = f(yDyl = [f(|zDllz — y| = |z —y].
If || # [y, then [F(z)| = [z] # [y| = [F(y)], so
|F(x) = F(y)| = max{|F(z)|, |[F(y)|} = max{|z|, [y[} = |z —y].

If a € Sk, then F(ax) = aF(x), so F(x/f(|z])) = (1/f(lz]))f(lz])z = = for every
x € K. Let a € (K\ {0}) with f(|a|) # f(1), then F(al) # aF(1).

Then T is an nonlinear surjective isometry on A,(a,t) with Tp(0) = 0. O
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