On Linear Isometries on Non-Archimedean Power Series Spaces*

Wiesław Śliwa
Faculty of Mathematics and Computer Science, A. Mickiewicz University, ul. Umultowska 87, 61-614 Poznań, Poland
sliwa@amu.edu.pl
\section*{Agnieszka Ziemkowska}
Faculty of Mathematics and Computer Science, A. Mickiewicz University, ul. Umultowska 87, 61-614 Poznań, Poland aziemk@amu.edu.pl

Received: December 8, 2010

The non-archimedean power series spaces $A_{p}(a, t)$ are the most known and important examples of non-archimedean nuclear Fréchet spaces. We study when the spaces $A_{p}(a, t)$ and $A_{q}(b, s)$ are isometrically isomorphic. Next we determine all linear isometries on the space $A_{p}(a, t)$ and show that all these maps are surjective.

Keywords: Non-archimedean power series space, linear isometry, Schauder basis

2010 Mathematics Subject Classification: 46S10, 47S10, 46A45

1. Introduction

In this paper all linear spaces are over a non-archimedean non-trivially valued field \mathbb{K} which is complete under the metric induced by the valuation $|\cdot|: \mathbb{K} \rightarrow[0, \infty)$. For fundamentals of locally convex Hausdorff spaces (lcs) and normed spaces we refer to [2], [4] and [6].
Let Γ be the family of all non-decreasing unbounded sequences of positive real numbers. Let $a=\left(a_{n}\right), b=\left(b_{n}\right) \in \Gamma$. The power series spaces of finite type $A_{1}(a)$ and infinite type $A_{\infty}(b)$ were studied in [1] and [7]-[9]. In [7] it has been proved that $A_{p}(a)$ has the quasi-equivalence property i.e. any two Schauder bases in $A_{p}(a)$ are quasi-equivalent ([7], Corollary 6).

The problem when $A_{p}(a)$ has a subspace (or quotient) isomorphic to $A_{q}(b)$ was studied in [8]. In particular, the spaces $A_{p}(a)$ and $A_{q}(b)$ are isomorphic if and only if $p=q$ and the sequences a, b are equivalent i.e. $0<\inf _{n}\left(a_{n} / b_{n}\right) \leq \sup _{n}\left(a_{n} / b_{n}\right)<\infty$ ([8], Corollary 6).
For $p \in(0, \infty]$ we denote by Λ_{p} the family of all strictly increasing sequences $t=\left(t_{k}\right)$
*The authors are supported by the National Centre of Science, Poland (grants no. N N201 605340, no. N N201 610040).
of real numbers such that $\lim _{k} t_{k}=\ln p$ (if $p=\infty$, then $\left.\ln p:=\infty\right)$.
Let $p \in(0, \infty], a=\left(a_{n}\right) \in \Gamma$ and $t=\left(t_{k}\right) \in \Lambda_{p}$. Then the following linear space $A_{p}(a, t)=\left\{\left(x_{n}\right) \subset \mathbb{K}: \lim _{n}\left|x_{n}\right| e^{t_{k} a_{n}}=0\right.$ for all $\left.k \in \mathbb{N}\right\}$ with the base $\left(\|\cdot\|_{k}\right)$ of the norms $\left\|\left(x_{n}\right)\right\|_{k}=\max _{n}\left|x_{n}\right| e^{t_{k} a_{n}}, k \in \mathbb{N}$, is a Fréchet space with a Schauder basis. Clearly, $A_{1}(a)=A_{1}(a, t)$ for $a=\left(a_{n}\right) \in \Gamma, t=\left(t_{k}\right)=\left(\ln \frac{k}{k+1}\right)$, and $A_{\infty}(b)=A_{\infty}(b, s)$ for $b=\left(b_{n}\right) \in \Gamma, s=\left(s_{k}\right)=(\ln k)$. Let $q(p)=1$ for $p \in(0, \infty)$ and $q(\infty)=\infty$. It is not hard to show that for every $p \in(0, \infty], a=\left(a_{n}\right) \in \Gamma$ and $t=\left(t_{k}\right) \in \Lambda_{p}$ the space $A_{p}(a, t)$ is isomorphic to $A_{q(p)}(b)$ for some $b \in \Gamma$.
Thus we can consider the spaces $A_{p}(a, t)$ as power series spaces.
In this paper we study linear isometries on power series spaces.
First we show that the spaces $A_{p}(a, t)$ and $A_{q}(b, s)$, for $p, q \in(0, \infty], t=\left(t_{k}\right) \in \Lambda_{p}$, $s=\left(s_{k}\right) \in \Lambda_{q}$ and $a=\left(a_{n}\right), b=\left(b_{n}\right) \in \Gamma$, are isometrically isomorphic if and only if there exist $C, D \in \mathbb{R}$ such that $s_{k}=C t_{k}+D$ and $a_{k}=C b_{k}$ for all $k \in \mathbb{N}$, and for every $k \in \mathbb{N}$ there is $\psi_{k} \in \mathbb{K}$ with $\left|\psi_{k}\right|=e^{-(D / C) a_{k}}$ (Theorem 3.1).
Let $p \in(0, \infty], t=\left(t_{k}\right) \in \Lambda_{p}$ and $a=\left(a_{n}\right) \in \Gamma$.
Let $\left(N_{s}\right)$ be a partition of \mathbb{N} into non-empty finite subsets such that (1) $a_{i}=a_{j}$ for all $i, j \in N_{s}, s \in \mathbb{N}$; (2) $a_{i}<a_{j}$ for all $i \in N_{s}, j \in N_{s+1}, s \in \mathbb{N}$.
We prove that a linear map $T: A_{p}(a, t) \rightarrow A_{p}(a, t)$ with $T e_{j}=\sum_{i=1}^{\infty} t_{i, j} e_{i}, j \in \mathbb{N}$, is an isometry if and only if (1) $\left|t_{i, j}\right| \leq e^{\left(a_{j}-a_{i}\right) t_{1}}$ when $a_{i}<a_{j} ;(2)\left|t_{i, j}\right| \leq e^{\left(a_{j}-a_{i}\right) \ln p}$ when $a_{i}>a_{j}\left(e^{-\infty}:=0\right) ;(3) \max _{(i, j) \in N_{s} \times N_{s}}\left|t_{i, j}\right|=1$ and $\left|\operatorname{det}\left[t_{i, j}\right]_{(i, j) \in N_{s} \times N_{s}}\right|=1$ for $s \in \mathbb{N}$; (Theorem 3.5 and Proposition 3.7).
In particular, if the sequence $\left(a_{n}\right)$ is strictly increasing, then a linear map T : $A_{p}(a, t) \rightarrow A_{p}(a, t)$ with $T e_{j}=\sum_{i=1}^{\infty} t_{i, j} e_{i}, j \in \mathbb{N}$, is an isometry if and only if (1) $\left|t_{i, j}\right| \leq e^{\left(a_{j}-a_{i}\right) t_{1}}$ when $i<j ;(2)\left|t_{i, j}\right| \leq e^{\left(a_{j}-a_{i}\right) \ln p}$ when $i>j ;(3)\left|t_{i, i}\right|=1$ for $i \in \mathbb{N}$.
Finally we show that every linear isometry on $A_{p}(a, t)$ is surjective (Corollary 3.10 and Theorem 3.12). Thus the family $\mathcal{I}_{p}(a, t)$ of all linear isometries on $A_{p}(a, t)$ forms a group by composition of maps.

2. Preliminaries

The linear span of a subset A of a linear space E is denoted by $\operatorname{lin} A$.
By a seminorm on a linear space E we mean a function $p: E \rightarrow[0, \infty)$ such that $p(\alpha x)=|\alpha| p(x)$ for all $\alpha \in \mathbb{K}, x \in E$ and $p(x+y) \leq \max \{p(x), p(y)\}$ for all $x, y \in E$. A seminorm p on E is a norm if $\{x \in E: p(x)=0\}=\{0\}$.
If p is a seminorm on a linear space E and $x, y \in E$ with $p(x) \neq p(y)$, then $p(x+y)=\max \{p(x), p(y)\}$.
The set of all continuous seminorms on a lcs E is denoted by $\mathcal{P}(E)$. A nondecreasing sequence $\left(p_{k}\right)$ of continuous seminorms on a metrizable lcs E is a base in $\mathcal{P}(E)$ if for any $p \in \mathcal{P}(E)$ there are $C>0$ and $k \in \mathbb{N}$ such that $p \leq C p_{k}$. A complete metrizable lcs is called a Fréchet space.

Let E and F be locally convex spaces. A map $T: E \rightarrow F$ is called an isomorphism
if it is linear, injective, surjective and the maps T, T^{-1} are continuous. If there exists an isomorphism $T: E \rightarrow F$, then we say that E is isomorphic to F. The family of all continuous linear maps from E to F we denote by $L(E, F)$.
Let E and F be Fréchet spaces with fixed bases $\left(\|\cdot\|_{k}\right)$ and $\left(\|\|\cdot\|\|_{k}\right)$ in $\mathcal{P}(E)$ and $\mathcal{P}(F)$, respectively. A map $T: E \rightarrow F$ is an isometry if $\|\mid T x-T y\|\left\|_{k}=\right\| x-y \|_{k}$ for all $x, y \in E$ and $k \in \mathbb{N}$; clearly, a linear map $T: E \rightarrow F$ is an isometry if and only if $\|\mid T x\|_{k}=\|x\|_{k}$ for all $x \in E$ and $k \in \mathbb{N}$. A linear map $T: E \rightarrow F$ is a contraction if $\|\mid T x\|_{k} \leq\|x\|_{k}$ for all $x \in E$ and $k \in \mathbb{N}$. A rotation on E is a surjective isometry $T: E \rightarrow E$ with $T(0)=0$.
By [3], Corollary 1.7, we have the following
Proposition A. Let $m \in \mathbb{N}$. Equip the linear space \mathbb{K}^{m} with the maximum norm. Let $T: \mathbb{K}^{m} \rightarrow \mathbb{K}^{m}$ be a linear map with $T e_{j}=\sum_{i=1}^{m} t_{i, j} e_{i}$ for $1 \leq j \leq m$. Then T is an isometry if and only if $\max _{i, j}\left|t_{i, j}\right|=1$ and $\left|\operatorname{det}\left[t_{i, j}\right]\right|=1$.

A sequence $\left(x_{n}\right)$ in a lcs E is a Schauder basis in E if each $x \in E$ can be written uniquely as $x=\sum_{n=1}^{\infty} \alpha_{n} x_{n}$ with $\left(\alpha_{n}\right) \subset \mathbb{K}$, and the coefficient functionals $f_{n}: E \rightarrow$ $\mathbb{K}, x \rightarrow \alpha_{n}(n \in \mathbb{N})$ are continuous.
The coordinate sequence $\left(e_{n}\right)$ is an unconditional Schauder basis in $A_{p}(a, t)$.

3. Results

First we show when the power series spaces $A_{p}(a, t)$ and $A_{q}(b, s)$ are isometrically isomorphic.

Theorem 3.1. Let $p, q \in(0, \infty], t=\left(t_{k}\right) \in \Lambda_{p}, s=\left(s_{k}\right) \in \Lambda_{q}$ and $a=\left(a_{n}\right)$, $b=\left(b_{n}\right) \in \Gamma$. Then the spaces $A_{p}(a, t)$ and $A_{q}(b, s)$ are isometrically isomorphic if and only if
(1) there exist $C, D \in \mathbb{R}$ such that $s_{k}=C t_{k}+D$ and $a_{k}=C b_{k}$ for all $k \in \mathbb{N}$;
(2) for every $k \in \mathbb{N}$ there is $\psi_{k} \in \mathbb{K}$ with $\left|\psi_{k}\right|=e^{-(D / C) a_{k}}$.

In this case the linear map $P: A_{p}(a, t) \rightarrow A_{q}(b, s),\left(x_{n}\right) \rightarrow\left(\psi_{n} x_{n}\right)$ is an isometric isomorphism.

Proof. Let $T: A_{p}(a, t) \rightarrow A_{q}(b, s)$ be an isometric isomorphism and let $T e_{j}=$ $\sum_{i=1}^{\infty} t_{i, j} e_{i}$ for $j \in \mathbb{N}$. Then $\max _{i}\left|t_{i, j}\right| e^{s_{k} b_{i}}=e^{t_{k} a_{j}}$ for all $j, k \in \mathbb{N}$; so $\max _{i}\left|t_{i, j}\right| e^{s_{k} b_{i}-t_{k} a_{j}}$ $=1$ for $j, k \in \mathbb{N}$. Let $j, k \in \mathbb{N}$ with $k>1$. Then for some $i \in \mathbb{N}$ we have $\left|t_{i, j}\right|=e^{t_{k} a_{j}-s_{k} b_{i}},\left|t_{i, j}\right| \leq e^{t_{k+1} a_{j}-s_{k+1} b_{i}}$ and $\left|t_{i, j}\right| \leq e^{t_{k-1} a_{j}-s_{k-1} b_{i}}$.
Hence we get $\left(s_{k+1}-s_{k}\right) b_{i} \leq\left(t_{k+1}-t_{k}\right) a_{j}$ and $\left(t_{k}-t_{k-1}\right) a_{j} \leq\left(s_{k}-s_{k-1}\right) b_{i}$; so

$$
\frac{s_{k+1}-s_{k}}{t_{k+1}-t_{k}} \leq \frac{a_{j}}{b_{i}} \leq \frac{s_{k}-s_{k-1}}{t_{k}-t_{k-1}}
$$

Thus the sequence $\left(\frac{s_{k+1}-s_{k}}{t_{k+1}-t_{k}}\right)$ is non-increasing. Similarly we infer that the sequence $\left(\frac{t_{k+1}-t_{k}}{s_{k+1}-s_{k}}\right)$ is non-increasing, since the map $T^{-1}: A_{q}(b, s) \rightarrow A_{p}(a, t)$ is an isometric
isomorphism, too. It follows that the sequence $\left(\frac{s_{k+1}-s_{k}}{t_{k+1}-t_{k}}\right)$ is constant, so there is $C>0$ such that $\frac{s_{k+1}-s_{k}}{t_{k+1}-t_{k}}=C$ for all $k \in \mathbb{N}$.

Moreover, for every $j \in \mathbb{N}$ there is $i \in \mathbb{N}$ with $a_{j} / b_{i}=C$ and for every $i \in \mathbb{N}$ there is $j \in \mathbb{N}$ with $b_{i} / a_{j}=1 / C$. Thus $\left\{a_{j}: j \in \mathbb{N}\right\}=\left\{C b_{i}: i \in \mathbb{N}\right\}$.
For $l>1$ we have $s_{l}-C t_{l}=s_{1}-C t_{1}$, since

$$
s_{l}-s_{1}=\sum_{k=1}^{l-1}\left(s_{k+1}-s_{k}\right)=C \sum_{k=1}^{l-1}\left(t_{k+1}-t_{k}\right)=C\left(t_{l}-t_{1}\right) .
$$

Put $D=s_{1}-C t_{1}$, then $s_{k}=C t_{k}+D$ for $k \in \mathbb{N}$.
Let $\left(j_{k}\right) \subset \mathbb{N},\left(i_{k}\right) \subset \mathbb{N}$ be strictly increasing sequences such that $\left\{a_{j_{k}}: k \in \mathbb{N}\right\}=$ $\left\{a_{j}: j \in \mathbb{N}\right\},\left\{b_{i_{k}}: k \in \mathbb{N}\right\}=\left\{b_{i}: i \in \mathbb{N}\right\}$ and $a_{j_{k}}<a_{j_{k}+1}, b_{i_{k}}<b_{i_{k}+1}$ for $k \in \mathbb{N}$.
Hence we get $a_{j_{k}}=C b_{i_{k}}$ for $k \in \mathbb{N}$, since $\left\{a_{j}: j \in \mathbb{N}\right\}=\left\{C b_{i}: i \in \mathbb{N}\right\}$.
Put $j_{0}=i_{0}=0$ and $M_{r}=\left\{j \in \mathbb{N}: j_{r-1}<j \leq j_{r}\right\}, W_{r}=\left\{i \in \mathbb{N}: i_{r-1}<i \leq i_{r}\right\}$ for $r \in \mathbb{N}$; clearly $W_{r}=\left\{i \in \mathbb{N}: C b_{i}=a_{j_{r}}\right\}$.
Let $r \in \mathbb{N}$ and $\left(\phi_{j}\right)_{j \in M_{r}} \subset \mathbb{K}$ with $\max _{j \in M_{r}}\left|\phi_{j}\right|>0$. Then we have

$$
\begin{aligned}
\max _{j \in M_{r}}\left|\phi_{j}\right| e^{t_{k} a_{j_{r}}} & =\max _{j \in M_{r}}\left|\phi_{j}\right| e^{t_{k} a_{j}}=\left\|\sum_{j \in M_{r}} \phi_{j} e_{j}\right\|_{k} \\
& =\left\|T\left(\sum_{j \in M_{r}} \phi_{j} e_{j}\right)\right\|_{k}=\left\|\sum_{j \in M_{r}} \phi_{j} \sum_{i=1}^{\infty} t_{i, j} e_{i}\right\|_{k} \\
& =\left\|\sum_{i=1}^{\infty}\left(\sum_{j \in M_{r}} t_{i, j} \phi_{j}\right) e_{i}\right\|_{k}=\max _{i}\left|\sum_{j \in M_{r}} t_{i, j} \phi_{j}\right| e^{s_{k} b_{i}} .
\end{aligned}
$$

Thus

$$
\max _{i}\left|\sum_{j \in M_{r}} t_{i, j} \phi_{j}\right| e^{s_{k} b_{i}-t_{k} a_{j_{r}}}=\max _{j \in M_{r}}\left|\phi_{j}\right| .
$$

Let $k>1$. For some $i \in \mathbb{N}$ we have

$$
\left|\sum_{j \in M_{r}} t_{i, j} \phi_{j}\right|=\max _{j \in M_{r}}\left|\phi_{j}\right| e^{t_{k} a_{j_{r}}-s_{k} b_{i}}, \quad\left|\sum_{j \in M_{r}} t_{i, j} \phi_{j}\right| \leq \max _{j \in M_{r}}\left|\phi_{j}\right| e^{t_{k+1} a_{j_{r}}-s_{k+1} b_{i}}
$$

and

$$
\left|\sum_{j \in M_{r}} t_{i, j} \phi_{j}\right| \leq \max _{j \in M_{r}}\left|\phi_{j}\right| e^{t_{k-1} a_{j_{r}}-s_{k-1} b_{i}} .
$$

Hence we get $\left(s_{k+1}-s_{k}\right) b_{i} \leq\left(t_{k+1}-t_{k}\right) a_{j_{r}}$ and $\left(t_{k}-t_{k-1}\right) a_{j_{r}} \leq\left(s_{k}-s_{k-1}\right) b_{i}$; so $C b_{i} \leq a_{j_{r}}$ and $a_{j_{r}} \leq C b_{i}$. Thus $a_{j_{r}}=C b_{i}$, so $i \in W_{r}$.

It follows that

$$
\max _{i \in W_{r}}\left|\sum_{j \in M_{r}} t_{i, j} \phi_{j}\right| e^{s_{k} b_{i}-t_{k} a_{j_{r}}}=\max _{j \in M_{r}}\left|\phi_{j}\right| .
$$

We have $s_{k} b_{i}-t_{k} a_{j_{r}}=\left(C t_{k}+D\right) a_{j_{r}} / C-t_{k} a_{j_{r}}=(D / C) a_{j_{r}}$ for $i \in W_{r}$; so

$$
\max _{i \in W_{r}}\left|\sum_{j \in M_{r}} t_{i, j} \phi_{j}\right| e^{(D / C) a_{j_{r}}}=\max _{j \in M_{r}}\left|\phi_{j}\right| .
$$

Thus $e^{-(D / C) a_{j_{r}}}=\left|\gamma_{r}\right|$ for some $\gamma_{r} \in \mathbb{K}$. Put $\psi_{j}=\gamma_{r}$ for every $j \in M_{r}$. Then $\left|\psi_{j}\right|=e^{-(D / C) a_{j}}$ for $j \in M_{r}$. Since $\max _{i \in W_{r}}\left|\sum_{j \in M_{r}} t_{i, j} \phi_{j}\right|\left|\psi_{j}^{-1}\right|=\max _{j \in M_{r}}\left|\phi_{j}\right|$, the linear map

$$
U: \mathbb{K}^{M_{r}} \rightarrow \mathbb{K}^{W_{r}}, \quad\left(\phi_{j}\right)_{j \in M_{r}} \rightarrow\left(\sum_{j \in M_{r}} t_{i, j} \psi_{j}^{-1} \phi_{j}\right)_{i \in W_{r}}
$$

is an isometry, so $\left|M_{r}\right| \leq\left|W_{r}\right|$. We have shown that $j_{r}-j_{r-1} \leq i_{r}-i_{r-1}$ for every $r \in \mathbb{N}$. Similarly we get $i_{r}-i_{r-1} \leq j_{r}-j_{r-1}$ for every $r \in \mathbb{N}$, since T^{-1} is an isometric isomorphism. Thus $j_{r}-j_{r-1}=i_{r}-i_{r-1}$ for every $r \in \mathbb{N}$; so $j_{r}=i_{r}$ for $r \in \mathbb{N}$. It follows that $a_{j}=C b_{j}$ for $j \in \mathbb{N}$.
Now we assume that (1) and (2) hold. Then the linear map

$$
P: A_{p}(a, t) \rightarrow A_{q}(b, s), \quad\left(x_{j}\right) \rightarrow\left(\psi_{j} x_{j}\right)
$$

is an isometric isomorphism. Indeed, P is surjective since for any $y=\left(y_{j}\right) \in A_{q}(b, s)$ we have $x=\left(\psi_{j}^{-1} y_{j}\right) \in A_{p}(a, t)$ and $P x=y$. For $x \in A_{p}(a, t)$ and $k \in \mathbb{N}$ we have

$$
\|P x\|_{k}=\max _{j}\left|\psi_{j}\right|\left|x_{j}\right| e^{s_{k} b_{j}}=\max _{j}\left|x_{j}\right| e^{-(D / C) a_{j}+s_{k} b_{j}}=\max _{j}\left|x_{j}\right| e^{t_{k} a_{j}}=\|x\|_{k}
$$

By obvious modifications of the proof of Theorem 3.1 we get the following two propositions.
Proposition 3.2. Let $p \in(0, \infty], t \in \Lambda_{p}$ and $a=\left(a_{n}\right), b=\left(b_{n}\right) \in \Gamma$. Then $A_{p}(b, t)$ contains a linear isometric copy of $A_{p}(a, t)$ if and only if a is a subsequence of b.
If $\left(n_{j}\right) \subset \mathbb{N}$ is a strictly increasing sequence with $a_{j}=b_{n_{j}}, j \in \mathbb{N}$, then the map $T: A_{p}(a, t) \rightarrow A_{p}(b, t),\left(x_{j}\right) \rightarrow\left(y_{j}\right)$, where $y_{j}=x_{k}$ if $j=n_{k}$ for some $k \in \mathbb{N}$, and $y_{j}=0$ for all other $j \in \mathbb{N}$, is a linear isometry.

Proposition 3.3. Let $p, q \in(0, \infty], t \in \Lambda_{p}, s \in \Lambda_{q}$ and $a, b \in \Gamma$. If there exist linear isometries $T: A_{p}(a, t) \rightarrow A_{q}(b, s)$ and $S: A_{q}(b, s) \rightarrow A_{p}(a, t)$, then $A_{p}(a, t)$ and $A_{q}(b, s)$ are isometrically isomorphic.

Remark 3.4. Let $p, q \in(0, \infty], t \in \Lambda_{p}, s \in \Lambda_{q}$ and $a, b \in \Gamma$. If $P: A_{p}(a, t) \rightarrow$ $A_{q}(b, s)$ is an isometric isomorphism, then every isometric isomorphism $T: A_{p}(a, t) \rightarrow$ $A_{q}(b, s)$ is of the form $P \circ S$ where S is an isometric automorphism of $A_{p}(a, t)$.

Now we determine all linear isometries on the space $A_{p}(a, t)$. Recall that $\left(N_{s}\right)$ is a partition of \mathbb{N} into non-empty finite subsets such that (1) $a_{i}=a_{j}$ for all $i, j \in N_{s}$, $s \in \mathbb{N}$; (2) $a_{i}<a_{j}$ for all $i \in N_{s}, j \in N_{s+1}, s \in \mathbb{N}$.
Theorem 3.5. Let $p \in(0, \infty], t=\left(t_{k}\right) \in \Lambda_{p}$ and $a=\left(a_{n}\right) \in \Gamma$. Let $T: A_{p}(a, t) \rightarrow$ $A_{p}(a, t)$ be a continuous linear map and let $T e_{j}=\sum_{i=1}^{\infty} t_{i, j} e_{i}$ for $j \in \mathbb{N}$.
Then T is an isometry if and only if
(1) $\left|t_{i, j}\right| \leq e^{\left(a_{j}-a_{i}\right) t_{1}}$ when $a_{i}<a_{j}$, and $\left|t_{i, j}\right| \leq e^{\left(a_{j}-a_{i}\right) \ln p}$ when $a_{i}>a_{j}$;
(2) $\max _{(i, j) \in N_{s} \times N_{s}}\left|t_{i, j}\right|=1$ and $\left|\operatorname{det}\left[t_{i, j}\right]_{(i, j) \in N_{s} \times N_{s}}\right|=1$ for all $s \in \mathbb{N}$.

Proof. (\Rightarrow) For $k, j \in \mathbb{N}$ we have $\left\|T e_{j}\right\|_{k}=\max _{i}\left|t_{i, j}\right| e^{t_{k} a_{i}}$ and $\left\|e_{j}\right\|_{k}=e^{t_{k} a_{j}}$. Thus $\max _{i}\left|t_{i, j}\right| e^{t_{k}\left(a_{i}-a_{j}\right)}=1$ for all $j, k \in \mathbb{N}$. Hence $\left|t_{i, j}\right| \leq e^{t_{k}\left(a_{j}-a_{i}\right)}$ for all $i, j, k \in \mathbb{N}$; so $\left|t_{i, j}\right| \leq \inf _{k} e^{t_{k}\left(a_{j}-a_{i}\right)}$ for all $i, j \in \mathbb{N}$. It follows (1); moreover $\left|t_{i, j}\right| \leq 1$ when $a_{i}=a_{j}$. Let $s \in \mathbb{N}, j_{s}=\min N_{s}$ and $\left(\beta_{j}\right)_{j \in N_{s}} \subset \mathbb{K}$ with $\max _{j \in N_{s}}\left|\beta_{j}\right|>0$. Then we have

$$
\begin{aligned}
\left\|T\left(\sum_{j \in N_{s}} \beta_{j} e_{j}\right)\right\|_{k} & =\left\|\sum_{j \in N_{s}} \beta_{j} \sum_{i=1}^{\infty} t_{i, j} e_{i}\right\|_{k} \\
& =\left\|\sum_{i=1}^{\infty}\left(\sum_{j \in N_{s}} \beta_{j} t_{i, j}\right) e_{i}\right\|_{k}=\max _{i}\left|\sum_{j \in N_{s}} \beta_{j} t_{i, j}\right| e^{t_{k} a_{i}}
\end{aligned}
$$

and $\left\|\sum_{j \in N_{s}} \beta_{j} e_{j}\right\|_{k}=\max _{j \in N_{s}}\left|\beta_{j}\right| e^{t_{k} a_{j}}=\left(\max _{j \in N_{s}}\left|\beta_{j}\right|\right) e^{t_{k} a_{j_{s}}}$ for all $k \in \mathbb{N}$. Thus

$$
\max _{i}\left|\sum_{j \in N_{s}} \beta_{j} t_{i, j}\right| e^{t_{k}\left(a_{i}-a_{j_{s}}\right)}=\max _{j \in N_{s}}\left|\beta_{j}\right|, \quad k \in \mathbb{N}
$$

hence $\max _{i \in N_{s}}\left|\sum_{j \in N_{s}} \beta_{j} t_{i, j}\right| \leq \max _{j \in N_{s}}\left|\beta_{j}\right|$.
Let $k>1$. For some $i_{k} \in \mathbb{N}$ we have

$$
\left|\sum_{j \in N_{s}} \beta_{j} t_{i_{k}, j}\right| e^{t_{k}\left(a_{i_{k}}-a_{j_{s}}\right)}=\max _{j \in N_{s}}\left|\beta_{j}\right| .
$$

If $a_{i_{k}}<a_{j_{s}}$, then

$$
\max _{j \in N_{s}}\left|\beta_{j}\right| \geq\left|\sum_{j \in N_{s}} \beta_{j} t_{i_{k}, j}\right| e^{t_{k-1}\left(a_{i_{k}}-a_{j_{s}}\right)}>\left|\sum_{j \in N_{s}} \beta_{j} t_{i_{k}, j}\right| e^{t_{k}\left(a_{i_{k}}-a_{j_{s}}\right)}=\max _{j \in N_{s}}\left|\beta_{j}\right| ;
$$

if $a_{i_{k}}>a_{j_{s}}$, then

$$
\max _{j \in N_{s}}\left|\beta_{j}\right| \geq\left|\sum_{j \in N_{s}} \beta_{j} t_{i_{k}, j}\right| e^{t_{k+1}\left(a_{i_{k}}-a_{j_{s}}\right)}>\left|\sum_{j \in N_{s}} \beta_{j} t_{i_{k}, j}\right| e^{t_{k}\left(a_{i_{k}}-a_{j_{s}}\right)}=\max _{j \in N_{s}}\left|\beta_{j}\right| .
$$

It follows that $a_{i_{k}}=a_{j_{s}}$, so $i_{k} \in N_{s}$ and $\left|\sum_{j \in N_{s}} \beta_{j} t_{i_{k}, j}\right|=\max _{j \in N_{s}}\left|\beta_{j}\right|$.

Thus the following linear map is an isometry

$$
S: \mathbb{K}^{N_{s}} \rightarrow \mathbb{K}^{N_{s}}, \quad\left(\beta_{j}\right)_{j \in N_{s}} \rightarrow\left(\sum_{j \in N_{s}} \beta_{j} t_{i, j}\right)_{i \in N_{s}}
$$

By Proposition A we get $\max _{(i, j) \in N_{s} \times N_{s}}\left|t_{i, j}\right|=1$ and $\left|\operatorname{det}\left[t_{i, j}\right]_{(i, j) \in N_{s} \times N_{s}}\right|=1$.
(\Leftarrow) Let $x=\left(\beta_{j}\right) \in A_{p}(a, t)$ and $k \in \mathbb{N}$. Clearly, $\|T x\|_{k}=\lim _{m}\left\|T\left(\sum_{j=1}^{m} \beta_{j} e_{j}\right)\right\|_{k}$ and $\|x\|_{k}=\lim _{m}\left\|\sum_{j=1}^{m} \beta_{j} e_{j}\right\|_{k}$. Thus to prove that $\|T x\|_{k}=\|x\|_{k}$ it is enough to show that $\left\|T\left(\sum_{j=1}^{m} \beta_{j} e_{j}\right)\right\|_{k}=\left\|\sum_{j=1}^{m} \beta_{j} e_{j}\right\|_{k}$ for all $m \in \mathbb{N}$. Let $m \in \mathbb{N}$. We have

$$
T\left(\sum_{j=1}^{m} \beta_{j} e_{j}\right)=\sum_{j=1}^{m} \beta_{j} \sum_{i=1}^{\infty} t_{i, j} e_{i}=\sum_{i=1}^{\infty}\left(\sum_{j=1}^{m} \beta_{j} t_{i, j}\right) e_{i}
$$

so $L:=\left\|T\left(\sum_{j=1}^{m} \beta_{j} e_{j}\right)\right\|_{k}=\max _{i}\left|\sum_{j=1}^{m} \beta_{j} t_{i, j}\right| e^{t_{k} a_{i}} ;$ clearly $P:=\left\|\sum_{j=1}^{m} \beta_{j} e_{j}\right\|_{k}=$ $\max _{1 \leq j \leq m}\left|\beta_{j}\right| e^{t_{k} a_{j}}$. We shall prove that $L=P$.
By (1) and (2) we have $\left|t_{i, j}\right| \leq e^{t_{k}\left(a_{j}-a_{i}\right)}$ for all $i, j \in \mathbb{N}$. Hence for $i \in \mathbb{N}$ we get

$$
\left|\sum_{j=1}^{m} \beta_{j} t_{i, j}\right| e^{t_{k} a_{i}} \leq \max _{1 \leq j \leq m}\left|\beta_{j}\right| e^{t_{k} a_{j}}=P
$$

so $L \leq P$. If $P=0$, then $L=P$. Assume that $P>0$.
Put $j_{0}=\max \left\{1 \leq j \leq m:\left|\beta_{j}\right| e^{t_{k} a_{j}}=P\right\}$ and $\beta_{j}=0$ for $j>m$. Let $q, s \in \mathbb{N}$ with $m \in N_{q}, j_{0} \in N_{s}$. Put $W_{s}=\bigcup\left\{N_{l}: 1 \leq l<s\right\}$ and $M_{s}=\bigcup\left\{N_{l}: s<l \leq q\right\}$.
Then $\left|\beta_{j}\right| e^{t_{k} a_{j}} \leq\left|\beta_{j_{0}}\right| e^{t_{k} a_{j 0}}$ for $j \in W_{s},\left|\beta_{j}\right| e^{t_{k} a_{j}}<\left|\beta_{j_{0}}\right| e^{t_{k} a_{j}}$ for $j \in M_{s}$ and $\max _{j \in N_{s}}\left|\beta_{j}\right|=\left|\beta_{j_{0}}\right|>0$. By (2) and Proposition A, the linear map

$$
S: \mathbb{K}^{N_{s}} \rightarrow \mathbb{K}^{N_{s}}, \quad\left(x_{j}\right)_{j \in N_{s}} \rightarrow\left(\sum_{j \in N_{s}} t_{i, j} x_{j}\right)_{i \in N_{s}}
$$

is an isometry, so $\max _{i \in N_{s}}\left|\sum_{j \in N_{s}} t_{i, j} \beta_{j}\right|=\max _{j \in N_{s}}\left|\beta_{j}\right|=\left|\beta_{j_{0}}\right|$. Thus for some $i_{0} \in N_{s}$, we have $\left|\sum_{j \in N_{s}} t_{i_{0}, j} \beta_{j}\right|=\left|\beta_{j_{0}}\right|$; clearly $a_{i_{0}}=a_{j_{0}}$. If $j \in W_{s}$, then

$$
\left|\beta_{j}\right|\left|t_{i_{0}, j}\right| \leq\left|\beta_{j_{0}}\right| e^{t_{k}\left(a_{j_{0}}-a_{j}\right)} e^{\left(a_{j}-a_{j_{0}}\right) \ln p}=\left|\beta_{j_{0}}\right| e^{\left(a_{j}-a_{j_{0}}\right)\left(\ln p-t_{k}\right)}<\left|\beta_{j_{0}}\right|
$$

so $\left|\sum_{j \in W_{s}} \beta_{j} t_{i_{0}, j}\right|<\left|\beta_{j_{0}}\right|$. If $j \in M_{s}$, then

$$
\left|\beta_{j}\right|\left|t_{i_{0}, j}\right|<\left|\beta_{j_{0}}\right| e^{t_{k}\left(a_{j_{0}}-a_{j}\right)} e^{t_{1}\left(a_{j}-a_{j_{0}}\right)}=\left|\beta_{j_{0}}\right| e^{\left(a_{j}-a_{j_{0}}\right)\left(t_{1}-t_{k}\right)} \leq\left|\beta_{j_{0}}\right|,
$$

so $\left|\sum_{j \in M_{s}} \beta_{j} t_{i_{0}, j}\right|<\left|\beta_{j_{0}}\right|$.
Thus

$$
\left|\sum_{j=1}^{m} \beta_{j} t_{i_{0}, j}\right|=\left|\sum_{j \in W_{s}} \beta_{j} t_{i_{0}, j}+\sum_{j \in N_{s}} \beta_{j} t_{i_{0}, j}+\sum_{j \in M_{s}} \beta_{j} t_{i_{0}, j}\right|=\left|\beta_{j_{0}}\right|,
$$

so $\left|\sum_{j=1}^{m} \beta_{j} t_{i_{0}, j}\right| e^{t_{k} a_{i_{0}}}=\left|\beta_{j_{0}}\right| e^{t_{k} a_{j 0}}=P$. Hence $P \leq L$. Thus $L=P$.

By the proof of Theorem 3.5 we get the following.
Corollary 3.6. Let $p \in(0, \infty], t=\left(t_{k}\right) \in \Lambda_{p}$ and $a=\left(a_{n}\right) \in \Gamma$. Let $T \in$ $L\left(A_{p}(a, t)\right)$ and $T e_{j}=\sum_{i=1}^{\infty} t_{i, j} e_{i}$ for $j \in \mathbb{N}$. Then T is a contraction if and only if $\left|t_{i, j}\right| \leq e^{\left(a_{j}-a_{i}\right) t_{1}}$ when $a_{i} \leq a_{j}$ and $\left|t_{i, j}\right| \leq e^{\left(a_{j}-a_{i}\right) \ln p}$ when $a_{i}>a_{j}$.

Proposition 3.7. Let $p \in(0, \infty], t=\left(t_{k}\right) \in \Lambda_{p}$ and $a=\left(a_{n}\right) \in \Gamma$. Let $\left(t_{i, j}\right) \subset \mathbb{K}$ with
(1) $\left|t_{i, j}\right| \leq e^{\left(a_{j}-a_{i}\right) t_{1}}$ when $a_{i}<a_{j}$, and $\left|t_{i, j}\right| \leq e^{\left(a_{j}-a_{i}\right) \ln p}$ when $a_{i}>a_{j}$;
(2) $\max _{(i, j) \in N_{s} \times N_{s}}\left|t_{i, j}\right|=1$ and $\left|\operatorname{det}\left[t_{i, j}\right]_{(i, j) \in N_{s} \times N_{s}}\right|=1$ for all $s \in \mathbb{N}$.

Then there exists a linear isometry T on $A_{p}(a, t)$ such that $T e_{j}=\sum_{i=1}^{\infty} t_{i, j} e_{i}, j \in \mathbb{N}$.
Proof. Let $j \in \mathbb{N}$ and $k \in \mathbb{N}$. For $i \in \mathbb{N}$ with $a_{i}>a_{j}$ we have $\left|t_{i, j}\right| e^{t_{k} a_{i}} \leq$ $e^{\left(a_{j}-a_{i}\right) \ln p+t_{k} a_{i}}=e^{a_{j} \ln p+a_{i}\left(t_{k}-\ln p\right)}$ if $p \in(0, \infty)$, and $\left|t_{i, j}\right| e^{t_{k} a_{i}}=0$, if $p=\infty$. Thus $\lim _{i}\left\|t_{i, j} e_{i}\right\|_{k}=0$ for $k \in \mathbb{N}$; so $\lim _{i} t_{i, j} e_{i}=0$. Therefore the series $\sum_{i=1}^{\infty} t_{i, j} e_{i}$ is convergent in $A_{p}(a, t)$ to some element $T e_{j}$. Let $x=\left(x_{j}\right) \in A_{p}(a, t)$.
We shall prove that $\lim _{j} x_{j} T e_{j}=0$ in $A_{p}(a, t)$. By (1) and (2) we have $\left|t_{i, j}\right| \leq$ $e^{t_{k}\left(a_{j}-a_{i}\right)}$ for all $i, j, k \in \mathbb{N}$. Let $k \in \mathbb{N}$ and $j \in \mathbb{N}$. Then $\left|x_{j}\right| \leq e^{-t_{k+1} a_{j}}\|x\|_{k+1}$; moreover $\left\|T e_{j}\right\|_{k}=\max _{i}\left|t_{i, j}\right| e^{t_{k} a_{i}} \leq e^{t_{k} a_{j}}$. Hence $\left\|x_{j} T e_{j}\right\|_{k} \leq e^{\left(t_{k}-t_{k+1}\right) a_{j}}\|x\|_{k+1}$ for $j, k \in \mathbb{N} ;$ so $\lim _{j} x_{j} T e_{j}=0$.
Thus the series $\sum_{j=1}^{\infty} x_{j} T e_{j}$ is convergent in $A_{p}(a, t)$ to some $T x$ for every $x \in$ $A_{p}(a, t)$. Clearly $T x=\lim _{n} T_{n} x$, where $T_{n}: A_{p}(a, t) \rightarrow A_{p}(a, t), T_{n} x=\sum_{j=1}^{n} x_{j} T e_{j}$. The linear operators $T_{n}, n \in \mathbb{N}$, are continuous, so using the Banach-Steinhaus theorem we infer that the operator $T: A_{p}(a, t) \rightarrow A_{p}(a, t), x \rightarrow T x$ is linear and continuous. By Theorem 3.5, T is an isometry.

By Proposition 3.7 and the proof of Theorem 3.5 we get the following.
Corollary 3.8. Let $p \in(0, \infty], t \in \Lambda_{p}$ and $a \in \Gamma$. Then a linear map T : $A_{p}(a, t) \rightarrow A_{p}(a, t)$ is an isometry if and only if $\left\|T e_{j}\right\|_{k}=\left\|e_{j}\right\|_{k}$ for all $j, k \in \mathbb{N}$.

Finally we shall show that every linear isometry on the space $A_{p}(a, t)$ is a surjection. For $p=\infty$ it follows from Theorem 3.5 and our next proposition. For $p \in(0, \infty)$ the proof is much more complicated.

Let $p \in(0, \infty], t=\left(t_{k}\right) \in \Lambda_{p}$ and $a=\left(a_{n}\right) \in \Gamma$. Put $W_{k}=\bigcup_{i=1}^{k} N_{i}, M_{k}=\bigcup_{i=k}^{\infty} N_{i}$ for $k \in \mathbb{N}$ and $N_{k, m}=N_{k} \times N_{m}$ for all $k, m \in \mathbb{N}$. For every $m \in \mathbb{N}$ there is $v(m) \in \mathbb{N}$ with $m \in N_{v(m)}$.
Proposition 3.9. Let $p \in(0, \infty], t=\left(t_{k}\right) \in \Lambda_{p}$ and $a=\left(a_{n}\right) \in \Gamma$. Let $D \in$ $L\left(A_{p}(a, t)\right)$ with $D e_{j}=\sum_{i=1}^{\infty} d_{i, j} e_{i}$ for $j \in \mathbb{N}$. Assume that
(1) $\left|d_{i, j}\right| \leq e^{t_{1}\left(a_{j}-a_{i}\right)}$ when $a_{i}<a_{j}$, and $d_{i, j}=0$ when $a_{i}>a_{j}$;
(2) $\max _{(i, j) \in N_{s, s}}\left|d_{i, j}\right|=1$ and $\left|\operatorname{det}\left[d_{i, j}\right]_{(i, j) \in N_{s, s}}\right|=1$ for all $s \in \mathbb{N}$.

Then D is surjective.
Proof. We have $\operatorname{lin}\left\{D e_{j}: j \in W_{k}\right\} \subset \operatorname{lin}\left\{e_{i}: i \in W_{k}\right\}$ for $k \in \mathbb{N}$, since $D e_{j}=$ $\sum_{i \in W_{k}} d_{i, j} e_{i}$ for $j \in N_{k}, k \in \mathbb{N}$. By Theorem 3.5 the operator D is a linear isometry,
so $D\left(A_{p}(a, t)\right)$ is a closed subspace of $A_{p}(a, t)$ and the sequence $\left(D e_{j}\right)_{j \in W_{k}}$ is linearly independent for every $k \in \mathbb{N}$. Thus $\operatorname{lin}\left\{D e_{j}: j \in W_{k}\right\}=\operatorname{lin}\left\{e_{i}: i \in W_{k}\right\}, k \in \mathbb{N}$; so $D\left(A_{p}(a, t)\right) \supset \operatorname{lin}\left\{e_{i}: i \in \mathbb{N}\right\}$. It follows that D is surjective.
Corollary 3.10. Let $t=\left(t_{k}\right) \in \Lambda_{\infty}$ and $a=\left(a_{n}\right) \in \Gamma$. Every linear isometry on $A_{\infty}(a, t)$ is surjective.

Proposition 3.11. Let $p \in(0, \infty], t=\left(t_{k}\right) \in \Lambda_{p}$ and $a=\left(a_{n}\right) \in \Gamma$. Let $S \in$ $L\left(A_{p}(a, t)\right)$ with $S e_{j}=\sum_{i=1}^{\infty} s_{i, j} e_{i}$ for $j \in \mathbb{N}$. Assume that
(1) $s_{i, j}=0$ when $a_{i}<a_{j}$, and $\left|s_{i, j}\right| \leq e^{\left(a_{j}-a_{i}\right) \ln p}$ when $a_{i}>a_{j}$;
(2) $\max _{(i, j) \in N_{k, k}}\left|s_{i, j}\right|=1$ and $\left|\operatorname{det}\left[s_{i, j}\right]_{(i, j) \in N_{k, k}}\right|=1$ for $k \in \mathbb{N}$.

Then S is surjective.
Proof. For $x=\left(x_{j}\right) \in A_{p}(a, t)$ we have

$$
S x=\sum_{j=1}^{\infty} x_{j} S e_{j}=\sum_{j=1}^{\infty} x_{j} \sum_{i=1}^{\infty} s_{i, j} e_{i}=\sum_{i=1}^{\infty}\left(\sum_{j=1}^{\infty} s_{i, j} x_{j}\right) e_{i}=\sum_{i=1}^{\infty}\left(\sum_{j \in W_{v(i)}} s_{i, j} x_{j}\right) e_{i} .
$$

Let $y=\left(y_{i}\right) \in A_{p}(a, t)$. By (2) and Proposition A, there exists $\left(x_{i}\right)_{i \in N_{1}} \subset \mathbb{K}$ with $\max _{i \in N_{1}}\left|x_{i}\right|=\max _{i \in N_{1}}\left|y_{i}\right|$ such that $\sum_{j \in N_{1}} s_{i, j} x_{j}=y_{i}$ for $i \in N_{1}$.
Assume that for some $l \in \mathbb{N}$ with $l>1$ we have chosen $\left(x_{j}\right)_{j \in N_{s}} \subset \mathbb{K}$ for $1 \leq s<l$.
By (2) and Proposition A, there exists $\left(x_{j}\right)_{j \in N_{l}} \subset \mathbb{K}$ with

$$
\max _{i \in N_{l}}\left|x_{i}\right|=\max _{i \in N_{l}}\left|y_{i}-\sum_{j \in W_{l-1}} s_{i, j} x_{j}\right|
$$

such that $\sum_{j \in N_{l}} s_{i, j} x_{j}=y_{i}-\sum_{j \in W_{l-1}} s_{i, j} x_{j}$ for $i \in N_{l}$. Thus by induction we get $x=\left(x_{j}\right) \in \mathbb{K}^{\mathbb{N}}$ such that $\sum_{j \in W_{l}} s_{i, j} x_{j}=y_{i}$ for all $i \in N_{l}, l \in \mathbb{N}$ and

$$
\max _{i \in N_{1}}\left|x_{i}\right|=\max _{i \in N_{1}}\left|y_{i}\right|, \quad \text { and } \quad \max _{i \in N_{l}}\left|x_{i}\right|=\max _{i \in N_{l}}\left|y_{i}-\sum_{j \in W_{l-1}} s_{i, j} x_{j}\right| \text { for } l>1 .
$$

Let $k \in \mathbb{N}$. Clearly, $\max _{i \in W_{1}}\left|x_{i}\right| e^{t_{k} a_{i}}=\max _{i \in W_{1}}\left|y_{i}\right| e^{t_{k} a_{i}}$. For $l>1, i \in N_{l}, j \in W_{l-1}$ we have

$$
\left|s_{i, j}\right|\left|x_{j}\right| e^{t_{k} a_{i}} \leq e^{\left(a_{j}-a_{i}\right) \ln p+t_{k} a_{i}}\left|x_{j}\right|=e^{\left(a_{j}-a_{i}\right)\left(\ln p-t_{k}\right)}\left|x_{j}\right| e^{t_{k} a_{j}} \leq\left|x_{j}\right| e^{t_{k} a_{j}} .
$$

Thus by induction we get $\max _{i \in W_{l}}\left|x_{i}\right| e^{t_{k} a_{i}} \leq \max _{i \in W_{l}}\left|y_{i}\right| e^{t_{k} a_{i}}$ for all $l \in \mathbb{N}$.
It follows that $x \in A_{p}(a, t)$. We have

$$
S x=\sum_{l=1}^{\infty} \sum_{i \in N_{l}}\left(\sum_{j \in W_{l}} s_{i, j} x_{j}\right) e_{i}=\sum_{l=1}^{\infty} \sum_{i \in N_{l}} y_{i} e_{i}=\sum_{i=1}^{\infty} y_{i} e_{i}=y .
$$

Thus S is a surjection.

Theorem 3.12. Let $p \in(0, \infty), t=\left(t_{k}\right) \in \Lambda_{p}$ and $a=\left(a_{n}\right) \in \Gamma$. Every linear isometry T on $A_{p}(a, t)$ is surjective.

Proof. Let $k, m \in \mathbb{N}$. Denote by $\mathcal{M}_{k, m}$ the family of all matrixes $B=\left[\beta_{i, j}\right]_{(i, j) \in N_{k, m}}$ with $\left(\beta_{i, j}\right) \subset \mathbb{K}$ such that
a) $\left|\beta_{i, j}\right| \leq e^{\left(a_{j}-a_{i}\right) \ln p}$ for $(i, j) \in N_{k, m}$, if $k>m$;
b) $\left|\beta_{i, j}\right| \leq e^{t_{1}\left(a_{j}-a_{i}\right)}$ for $(i, j) \in N_{k, m}$, if $k<m$;
c) $\quad\left|\beta_{i, j}\right| \leq 1$ for $(i, j) \in N_{k, m}$ and $\left|\operatorname{det}\left[\beta_{i, j}\right]_{(i, j) \in N_{k, m}}\right|=1$, if $k=m$.

By Proposition A, for every $k \in \mathbb{N}$ and $B \in \mathcal{M}_{k, k}$ we have $B^{-1} \in \mathcal{M}_{k, k}$. Let $T e_{j}=\sum_{i=1}^{\infty} t_{i, j} e_{i}$ for $j \in \mathbb{N}$. Put $T_{k, m}=\left[t_{i, j}\right]_{(i, j) \in N_{k, m}}$ and $I_{k, m}=\left[\delta_{i, j}\right]_{(i, j) \in N_{k, m}}$ for all $k, m \in \mathbb{N}$. We define matrixes $D_{k, m}, S_{k, m} \in \mathcal{M}_{k, m}$ for $k \in \mathbb{N}$ and $m=1,2,3, \ldots$.

Put $D_{k, 1}=I_{k, 1}$ and $S_{k, 1}=T_{k, 1}$ for $k \in \mathbb{N}$; clearly $D_{k, 1}, S_{k, 1} \in \mathcal{M}_{k, 1}$ for $k \in \mathbb{N}$. Assume that for some $m \in \mathbb{N}$ with $m>1$ we have $D_{k, j}, S_{k, j} \in \mathcal{M}_{k, j}$ for $k \in \mathbb{N}$ and $1 \leq j<m$. Let $D_{1, m}=S_{1,1}^{-1} T_{1, m}$. It is easy to see that $D_{1, m} \in \mathcal{M}_{1, m}$, since $S_{1,1}^{-1} \in \mathcal{M}_{1,1}$ and $T_{1, m} \in \mathcal{M}_{1, m}$.

Let $C_{k, m}=\sum_{v=1}^{k-1} S_{k, v} D_{v, m}$ and $D_{k, m}=S_{k, k}^{-1}\left[T_{k, m}-C_{k, m}\right]$ for $k=2,3, \ldots, m-1$. Let $1<k<m$. Let $\left[s_{i, n}\right]_{(i, n) \in N_{k, v}}=S_{k, v}$ and $\left[d_{n, j}\right]_{(n, j) \in N_{v, m}}=D_{v, m}$ for $1 \leq v<k$. Put $\left[c_{i, j}\right]_{(i, j) \in N_{k, m}}=C_{k, m}$. Then

$$
\left|c_{i, j}\right|=\left|\sum_{v=1}^{k-1} \sum_{n \in N_{v}} s_{i, n} d_{n, j}\right| \leq \max _{n \in W_{k-1}}\left|s_{i, n} d_{n, j}\right|
$$

for $(i, j) \in N_{k, m}$. For $i \in N_{k}, j \in N_{m}$ and $n \in W_{k-1}$ we have

$$
\left|s_{i, n} d_{n, j}\right| \leq e^{\left(a_{n}-a_{i}\right) \ln p+t_{1}\left(a_{j}-a_{n}\right)}=e^{\left(a_{n}-a_{i}\right)\left(\ln p-t_{1}\right)+t_{1}\left(a_{j}-a_{i}\right)} \leq e^{t_{1}\left(a_{j}-a_{i}\right)}
$$

hence $C_{k, m} \in \mathcal{M}_{k, m}$. Since $S_{k, k}^{-1} \in \mathcal{M}_{k, k}$ and $T_{k, m} \in \mathcal{M}_{k, m}$, we infer that $D_{k, m} \in$ $\mathcal{M}_{k, m}$ for $k=2, \ldots, m-1$.

Let $D_{k, m}=I_{k, m}$ for $k \geq m$; clearly $D_{k, m} \in \mathcal{M}_{k, m}$. Let $S_{k, m}=I_{k, m}$ for $1 \leq k<m$; then $S_{k, m} \in \mathcal{M}_{k, m}$. Let $C_{k, m}=\sum_{v=1}^{m-1} S_{k, v} D_{v, m}$ and $S_{k, m}=T_{k, m}-C_{k, m}$ for $k \geq m$.
Let $k \geq m$. Let $\left[s_{i, n}\right]_{(i, n) \in N_{k, v}}=S_{k, v}$ and $\left[d_{n, j}\right]_{(n, j) \in N_{v, m}}=D_{v, m}$ for $1 \leq v<m$. Put $\left[c_{i, j}\right]_{(i, j) \in N_{k, m}}=C_{k, m}$. Then

$$
\left|c_{i, j}\right|=\left|\sum_{v=1}^{m-1} \sum_{n \in N_{v}} s_{i, n} d_{n, j}\right| \leq \max _{n \in W_{m-1}}\left|s_{i, n} d_{n, j}\right|
$$

for $(i, j) \in N_{k, m}$. For $i \in N_{k}, j \in N_{m}$ and $n \in W_{m-1}$ we have

$$
\left|s_{i, n} d_{n, j}\right| \leq e^{\left(a_{n}-a_{i}\right) \ln p+t_{1}\left(a_{j}-a_{n}\right)}=e^{\left(a_{n}-a_{j}\right)\left(\ln p-t_{1}\right)+\ln p\left(a_{j}-a_{i}\right)}<e^{\left(a_{j}-a_{i}\right) \ln p}
$$

hence $C_{k, m} \in \mathcal{M}_{k, m}$. Since $\left|t_{i, j}\right| \leq e^{\left(a_{j}-a_{i}\right) \ln p}$ for $(i, j) \in N_{k, m}$, we get $S_{k, m} \in \mathcal{M}_{k, m}$ for $k>m$ and $\left|c_{i, j}\right|<1$ for all $(i, j) \in N_{m, m}$.

Thus for some $\left(\varphi_{\sigma}\right)_{\sigma \in S\left(N_{m}\right)} \subset\{\alpha \in \mathbb{K}:|\alpha|<1\}$ we have

$$
\begin{aligned}
\left|\operatorname{det} S_{m, m}\right| & =\left|\sum_{\sigma \in S\left(N_{m}\right)} \operatorname{sgn} \sigma \prod_{i \in N_{m}}\left(t_{i, \sigma(i)}-c_{i, \sigma(i)}\right)\right| \\
& =\left|\sum_{\sigma \in S\left(N_{m}\right)} \operatorname{sgn} \sigma\left[\left(\prod_{i \in N_{m}} t_{i, \sigma(i)}\right)-\varphi_{\sigma}\right]\right| \\
& =\left|\operatorname{det}\left(T_{m, m}\right)-\sum_{\sigma \in S\left(N_{m}\right)} \operatorname{sgn} \sigma \varphi_{\sigma}\right|=\left|\operatorname{det}\left(T_{m, m}\right)\right|=1
\end{aligned}
$$

It follows that $S_{m, m} \in \mathcal{M}_{m, m}$.
By definition of $D_{k, m}$ and $S_{k, m}$ we get
a) $\quad T_{k, 1}=S_{k, 1}=\sum_{v=1}^{k} S_{k, v} D_{v, 1}$ for $k \in \mathbb{N}$;
b) $\quad S_{1,1} D_{1, m}=T_{1, m}$ for $m \geq 2$ and $S_{k, k} D_{k, m}=T_{k, m}-\sum_{v=1}^{k-1} S_{k, v} D_{v, m}$ for $2 \leq k<$ m,
so $T_{k, m}=\sum_{v=1}^{k} S_{k, v} D_{v, m}$ for $1 \leq k<m$;
c) $\quad S_{k, m} D_{m, m}=S_{k, m}=T_{k, m}-\sum_{v=1}^{m-1} S_{k, v} D_{v, m}$ for $k \geq m>1$,
so $T_{k, m}=\sum_{v=1}^{m} S_{k, v} D_{v, m}=\sum_{v=1}^{k} S_{k, v} D_{v, m}$ for $k \geq m>1$.
Thus $(*) T_{k, m}=\sum_{v=1}^{k} S_{k, v} D_{v, m}=\sum_{v=1}^{\infty} S_{k, v} D_{v, m}$ for all $k, m \in \mathbb{N}$.
Let $\left[s_{i, j}\right]_{(i, j) \in \mathbb{N} \times \mathbb{N}}$ and $\left[d_{i, j}\right]_{(i, j) \in \mathbb{N} \times \mathbb{N}}$ be matrixes such that $\left[s_{i, j}\right]_{(i, j) \in N_{k, m}}=S_{k, m}$ and $\left[d_{i, j}\right]_{(i, j) \in N_{k, m}}=D_{k, m}$ for all $k, m \in \mathbb{N}$.
By Theorem 3.5 and Proposition 3.7, there exist linear isometries S and D on $A_{p}(a, t)$ such that $S e_{j}=\sum_{i=1}^{\infty} s_{i, j} e_{i}$ and $D e_{j}=\sum_{i=1}^{\infty} d_{i, j} e_{i}$ for all $j \in \mathbb{N}$; by Propositions 3.9 and 3.11, these isometries are surjective. Using (*) we get

$$
t_{i, j}=\sum_{v=1}^{k} \sum_{n \in N_{v}} s_{i, n} d_{n, j}=\sum_{v=1}^{\infty} \sum_{n \in N_{v}} s_{i, n} d_{n, j}=\sum_{n=1}^{\infty} s_{i, n} d_{n, j}
$$

for $(i, j) \in N_{k, m}$ and $k, m \in \mathbb{N}$. Hence for $j \in \mathbb{N}$ we get

$$
\begin{aligned}
S D e_{j} & =S\left(\sum_{n=1}^{\infty} d_{n, j} e_{n}\right)=\sum_{n=1}^{\infty} d_{n, j}\left(\sum_{i=1}^{\infty} s_{i, n} e_{i}\right) \\
& =\sum_{i=1}^{\infty}\left(\sum_{n=1}^{\infty} s_{i, n} d_{n, j}\right) e_{i}=\sum_{i=1}^{\infty} t_{i, j} e_{i}=T e_{j}
\end{aligned}
$$

so $T=S D$. Thus T is surjective.

Let $p \in(0, \infty], t=\left(t_{k}\right) \in \Lambda_{p}$ and $a=\left(a_{n}\right) \in \Gamma$.
For every $m \in \mathbb{N}$ there is $v(m)$ with $m \in N_{v(m)}$.

Denote by $\mathcal{D}_{p}(a, t), \mathcal{K}_{p}(a, t)$ and $\mathcal{S}_{p}(a, t)$ the families of all linear isometries on $A_{p}(a, t)$ such that $T e_{j}=\sum_{i \in W_{v(j)}} t_{i, j} e_{i}, T e_{j}=\sum_{i \in N_{v(j)}} t_{i, j} e_{i}$ and $T e_{j}=\sum_{i \in M_{v(j)}} t_{i, j} e_{i}$ for $j \in \mathbb{N}$, respectively.

We have the following two propositions.
Proposition 3.13. $\mathcal{D}_{p}(a, t), \mathcal{K}_{p}(a, t)$ and $\mathcal{S}_{p}(a, t)$ are subgroups of the group $\mathcal{I}_{p}(a, t)$ of all linear isometries on $A_{p}(a, t)$. Moreover $\mathcal{D}_{\infty}(a, t)=\mathcal{I}_{\infty}(a, t)$ and $\mathcal{S}_{\infty}(a, t)=$ $\mathcal{K}_{\infty}(a, t)$. For every $T \in \mathcal{I}_{p}(a, t)$ there exist $D \in \mathcal{D}_{p}(a, t)$ and $S \in \mathcal{S}_{p}(a, t)$ such that $T=S \circ D$.

Proof. The last part of the proposition follows by the proof of Theorem 3.12. Clearly, $\mathcal{I}_{p}(a, t)$ is a subgroup of the group of all automorphisms of $A_{p}(a, t)$; moreover $\mathcal{D}_{\infty}(a, t)=\mathcal{I}_{\infty}(a, t)$ and $\mathcal{S}_{\infty}(a, t)=\mathcal{K}_{\infty}(a, t)$.
Let $S, T \in \mathcal{S}_{p}(a, t)$. Let $j \in \mathbb{N}$. We have

$$
S T e_{j}=S\left(\sum_{i=1}^{\infty} t_{i, j} e_{i}\right)=\sum_{i=1}^{\infty} t_{i, j}\left(\sum_{k=1}^{\infty} s_{k, i} e_{k}\right)=\sum_{k=1}^{\infty}\left(\sum_{i=1}^{\infty} s_{k, i} t_{i, j}\right) e_{k} .
$$

If $a_{k}<a_{j}$, then for every $i \in \mathbb{N}$ we have $a_{k}<a_{i}$ or $a_{i}<a_{j}$; so $s_{k, i}=0$ or $t_{i, j}=0$ for $i \in \mathbb{N}$. Thus $\sum_{i=1}^{\infty} s_{k, i} t_{i, j}=0$ for $k \in \mathbb{N}$ with $a_{k}<a_{j}$; so $S T \in \mathcal{S}_{p}(a, t)$.
Let $k \in \mathbb{N}$. For some $x_{k}=\left(x_{j, k}\right) \in A_{p}(a, t)$ we have $S x_{k}=e_{k}$. By the proof of Proposition 3.11 we have $\max \left\{\left|x_{j, k}\right| e^{t_{1} a_{j}}: a_{j}<a_{k}\right\}=0$, so $x_{j, k}=0$ for $j \in \mathbb{N}$ with $a_{j}<a_{k}$. Hence $S^{-1}\left(e_{k}\right)=\sum_{j \in M_{v(k)}} x_{j, k} e_{j}$, so $S^{-1} \in \mathcal{S}_{p}(a, t)$. We have shown that $\mathcal{S}_{p}(a, t)$ is a subgroup of $\mathcal{I}_{p}(a, t)$.
Let $D, T \in \mathcal{D}_{p}(a, t)$. Let $j \in \mathbb{N}$. We have $D T e_{j}=\sum_{k=1}^{\infty}\left(\sum_{i=1}^{\infty} d_{k, i} t_{i, j}\right) e_{k}$. If $a_{k}>a_{j}$, then for every $i \in \mathbb{N}$ we have $a_{k}>a_{i}$ or $a_{i}>a_{j}$; so $d_{k, i}=0$ or $t_{i, j}=0$ for $i \in \mathbb{N}$. Thus $\sum_{i=1}^{\infty} d_{k, i} t_{i, j}=0$ for every $k \in \mathbb{N}$ with $a_{k}>a_{j}$, so $D T \in \mathcal{D}_{p}(a, t)$.
Let $k \in \mathbb{N}$. Put $F_{k}=\operatorname{lin}\left\{e_{i}: a_{i} \leq a_{k}\right\}$. We know that $D\left(F_{k}\right)=F_{k}$. Thus there exists $x_{k}=\left(x_{j, k}\right) \in F_{k}$ such that $D x_{k}=e_{k}$. Then $x_{j, k}=0$ for $j \in \mathbb{N}$ with $a_{j}>a_{k}$ and $D^{-1}\left(e_{k}\right)=x_{k}=\sum_{j \in W_{v(k)}} x_{j, k} e_{j}$, so $D^{-1} \in \mathcal{D}_{p}(a, t)$. Thus $\mathcal{D}_{p}(a, t)$ is a subgroup of $\mathcal{I}_{p}(a, t)$. Clearly, $\mathcal{K}_{p}(a, t)=\mathcal{S}_{p}(a, t) \cap \mathcal{D}_{p}(a, t)$, so $\mathcal{K}_{p}(a, t)$ is subgroup of $\mathcal{I}_{p}(a, t)$.
Proposition 3.14. $\mathcal{I}_{p}(a, t) \subset \mathcal{I}_{p}(a, s)$ if and only if $t_{1} \leq s_{1}$. In particular, $\mathcal{I}_{p}(a, t)$ $=\mathcal{I}_{p}(a, s)$ if and only if $t_{1}=s_{1}$.

Proof. If $t_{1} \leq s_{1}$, then using Theorem 3.5 we get $\mathcal{I}_{p}(a, t) \subset \mathcal{I}_{p}(a, s)$. Assume that $t_{1}>s_{1}$. Then $\lim _{j} e^{\left(t_{1}-s_{1}\right)\left(a_{j}-a_{1}\right)}=\infty$, so there exists $j_{0}>1$ and $\beta_{0} \in \mathbb{K}$ such that $e^{s_{1}\left(a_{j_{0}}-a_{1}\right)}<\left|\beta_{0}\right| \leq e^{t_{1}\left(a_{j_{0}}-a_{1}\right)}$. Let $T \in L\left(A_{p}(a, t)\right)$ with $T e_{j}=e_{j}+\beta_{0} \delta_{j_{0}, j} e_{1}$ for $j \in \mathbb{N}$. By Theorem 3.5, we have $T \in \mathcal{I}_{p}(a, t)$ and $T \notin \mathcal{I}_{p}(a, s)$.

In relation with Corollary 3.10 and Theorem 3.12 we give the following two examples and state one open problem.

Let $p \in(0, \infty], t=\left(t_{k}\right) \in \Lambda_{p}$ and $a=\left(a_{n}\right) \in \Gamma$.

For every isometry F on \mathbb{K} the map $T_{F}: A_{p}(a, t) \rightarrow A_{p}(a, t),\left(x_{n}\right) \rightarrow\left(F x_{n}\right)$ is an isometry on $A_{p}(a, t)$.
Example 3.15. Assume that the field \mathbb{K} is not spherically complete or the residue class field of \mathbb{K} is infinite. Then there exists an isometry on $A_{p}(a, t)$ which is not a surjection.

Indeed, by [5], Theorem 2, there is an isometry F on \mathbb{K} which is not surjective. Then the map T_{F} is an isometry on $A_{p}(a, t)$ which is not a surjection.
Problem. Assume that \mathbb{K} is spherically complete with finite residue class. Does every isometry on $A_{p}(a, t)$ is surjective?

Example 3.16. On $A_{p}(a, t)$ there exists a non-linear rotation.
Indeed, put $S_{\mathbb{K}}=\{\beta \in \mathbb{K}:|\beta|=1\}$ and let $f:[0, \infty) \rightarrow S_{\mathbb{K}}$ be a function which is not constant on the set $\{|\alpha|: \alpha \in \mathbb{K}$ with $|\alpha|>0\}$. Then the map $F: \mathbb{K} \rightarrow \mathbb{K}$, $F(x)=f(|x|) x$ is a non-linear surjective isometry with $F(0)=0$.
In fact, let $x, y \in \mathbb{K}$. If $|x|=|y|$, then

$$
|F(x)-F(y)|=|f(|x|) x-f(|y|) y|=|f(|x|)||x-y|=|x-y| .
$$

If $|x| \neq|y|$, then $|F(x)|=|x| \neq|y|=|F(y)|$, so

$$
|F(x)-F(y)|=\max \{|F(x)|,|F(y)|\}=\max \{|x|,|y|\}=|x-y| .
$$

If $\alpha \in S_{\mathbb{K}}$, then $F(\alpha x)=\alpha F(x)$, so $F(x / f(|x|))=(1 / f(|x|)) f(|x|) x=x$ for every $x \in \mathbb{K}$. Let $\alpha \in(\mathbb{K} \backslash\{0\})$ with $f(|\alpha|) \neq f(1)$, then $F(\alpha 1) \neq \alpha F(1)$.
Then T_{F} is an nonlinear surjective isometry on $A_{p}(a, t)$ with $T_{F}(0)=0$.

References

[1] N. De Grande-De Kimpe: Non-archimedean Fréchet spaces generalizing spaces of analytic functions, Indag. Math. 44 (1982) 423-439.
[2] C. Perez-Garcia, W. H. Schikhof: Locally Convex Spaces over Non-Archimedean Valued Fields, Cambridge Studies in Advanced Mathematics 119, Cambridge University Press (2010).
[3] A. C. M. van Rooij: Notes on p-adic Banach spaces, Report 7633, Department of Mathematics, University of Nijmegen (1976).
[4] A. C. M. van Rooij: Non-Archimedean Functional Analysis, Marcel Dekker, New York (1978).
[5] W. H. Schikhof: Isometrical embeddings of ultrametric spaces into non-archimedean valued fields, Indag. Math. 87 (1984) 51-53.
[6] W. H. Schikhof: Locally convex spaces over non-spherically complete valued fields, Bull. Belg. Math. Soc. 38 (1986) 187-224.
[7] W. Śliwa: On the quasi equivalence of orthogonal bases in non-archimedean metrizable locally convex spaces, Bull. Belg. Math. Soc. 9 (2002) 465-472.

466 W. Śliwa, A. Ziemkowska / On Linear Isometries on Non-Archimedean ...
[8] W. Śliwa: On relations between non-archimedean power series spaces, Indag. Math., New Ser. 17 (2006) 627-639.
[9] W. Śliwa, A. Ziemkowska: On complemented subspaces of non-archimedean power series spaces, Can. J. Math. 63 (2011) 1188-1200.

