On Linear Isometries on Non-Archimedean Power Series Spaces^{*}

Wiesław Śliwa

Faculty of Mathematics and Computer Science, A. Mickiewicz University, ul. Umultowska 87, 61-614 Poznań, Poland sliwa@amu.edu.pl

Agnieszka Ziemkowska

Faculty of Mathematics and Computer Science, A. Mickiewicz University, ul. Umultowska 87, 61-614 Poznań, Poland aziemk@amu.edu.pl

Received: December 8, 2010

The non-archimedean power series spaces $A_p(a,t)$ are the most known and important examples of non-archimedean nuclear Fréchet spaces. We study when the spaces $A_p(a,t)$ and $A_q(b,s)$ are isometrically isomorphic. Next we determine all linear isometries on the space $A_p(a,t)$ and show that all these maps are surjective.

Keywords: Non-archimedean power series space, linear isometry, Schauder basis

2010 Mathematics Subject Classification: 46S10, 47S10, 46A45

1. Introduction

In this paper all linear spaces are over a non-archimedean non-trivially valued field \mathbb{K} which is complete under the metric induced by the valuation $|\cdot| : \mathbb{K} \to [0, \infty)$. For fundamentals of locally convex Hausdorff spaces (lcs) and normed spaces we refer to [2], [4] and [6].

Let Γ be the family of all non-decreasing unbounded sequences of positive real numbers. Let $a = (a_n), b = (b_n) \in \Gamma$. The power series spaces of finite type $A_1(a)$ and infinite type $A_{\infty}(b)$ were studied in [1] and [7]–[9]. In [7] it has been proved that $A_p(a)$ has the quasi-equivalence property i.e. any two Schauder bases in $A_p(a)$ are quasi-equivalent ([7], Corollary 6).

The problem when $A_p(a)$ has a subspace (or quotient) isomorphic to $A_q(b)$ was studied in [8]. In particular, the spaces $A_p(a)$ and $A_q(b)$ are isomorphic if and only if p = q and the sequences a, b are equivalent i.e. $0 < \inf_n(a_n/b_n) \le \sup_n(a_n/b_n) < \infty$ ([8], Corollary 6).

For $p \in (0, \infty]$ we denote by Λ_p the family of all strictly increasing sequences $t = (t_k)$

*The authors are supported by the National Centre of Science, Poland (grants no. N N201 605340, no. N N201 610040).

ISSN 0944-6532 / \$ 2.50 © Heldermann Verlag

of real numbers such that $\lim_k t_k = \ln p$ (if $p = \infty$, then $\ln p := \infty$).

Let $p \in (0, \infty]$, $a = (a_n) \in \Gamma$ and $t = (t_k) \in \Lambda_p$. Then the following linear space $A_p(a,t) = \{(x_n) \subset \mathbb{K} : \lim_n |x_n| e^{t_k a_n} = 0 \text{ for all } k \in \mathbb{N}\}$ with the base $(\|\cdot\|_k)$ of the norms $\|(x_n)\|_k = \max_n |x_n| e^{t_k a_n}, k \in \mathbb{N}$, is a Fréchet space with a Schauder basis. Clearly, $A_1(a) = A_1(a,t)$ for $a = (a_n) \in \Gamma$, $t = (t_k) = (\ln \frac{k}{k+1})$, and $A_\infty(b) = A_\infty(b,s)$ for $b = (b_n) \in \Gamma$, $s = (s_k) = (\ln k)$. Let q(p) = 1 for $p \in (0,\infty)$ and $q(\infty) = \infty$. It is not hard to show that for every $p \in (0,\infty]$, $a = (a_n) \in \Gamma$ and $t = (t_k) \in \Lambda_p$ the space $A_p(a,t)$ is isomorphic to $A_{q(p)}(b)$ for some $b \in \Gamma$.

Thus we can consider the spaces $A_p(a,t)$ as power series spaces.

In this paper we study linear isometries on power series spaces.

First we show that the spaces $A_p(a, t)$ and $A_q(b, s)$, for $p, q \in (0, \infty]$, $t = (t_k) \in \Lambda_p$, $s = (s_k) \in \Lambda_q$ and $a = (a_n)$, $b = (b_n) \in \Gamma$, are isometrically isomorphic if and only if there exist $C, D \in \mathbb{R}$ such that $s_k = Ct_k + D$ and $a_k = Cb_k$ for all $k \in \mathbb{N}$, and for every $k \in \mathbb{N}$ there is $\psi_k \in \mathbb{K}$ with $|\psi_k| = e^{-(D/C)a_k}$ (Theorem 3.1).

Let $p \in (0, \infty]$, $t = (t_k) \in \Lambda_p$ and $a = (a_n) \in \Gamma$.

Let (N_s) be a partition of \mathbb{N} into non-empty finite subsets such that (1) $a_i = a_j$ for all $i, j \in N_s, s \in \mathbb{N}$; (2) $a_i < a_j$ for all $i \in N_s, j \in N_{s+1}, s \in \mathbb{N}$.

We prove that a linear map $T: A_p(a,t) \to A_p(a,t)$ with $Te_j = \sum_{i=1}^{\infty} t_{i,j}e_i, j \in \mathbb{N}$, is an isometry if and only if (1) $|t_{i,j}| \leq e^{(a_j-a_i)t_1}$ when $a_i < a_j$; (2) $|t_{i,j}| \leq e^{(a_j-a_i)\ln p}$ when $a_i > a_j$ ($e^{-\infty} := 0$); (3) $\max_{(i,j)\in N_s\times N_s} |t_{i,j}| = 1$ and $|\det[t_{i,j}]_{(i,j)\in N_s\times N_s}| = 1$ for $s \in \mathbb{N}$; (Theorem 3.5 and Proposition 3.7).

In particular, if the sequence (a_n) is strictly increasing, then a linear map T: $A_p(a,t) \to A_p(a,t)$ with $Te_j = \sum_{i=1}^{\infty} t_{i,j}e_i, j \in \mathbb{N}$, is an isometry if and only if (1) $|t_{i,j}| \leq e^{(a_j - a_i)t_1}$ when i < j; (2) $|t_{i,j}| \leq e^{(a_j - a_i)\ln p}$ when i > j; (3) $|t_{i,i}| = 1$ for $i \in \mathbb{N}$.

Finally we show that every linear isometry on $A_p(a,t)$ is surjective (Corollary 3.10 and Theorem 3.12). Thus the family $\mathcal{I}_p(a,t)$ of all linear isometries on $A_p(a,t)$ forms a group by composition of maps.

2. Preliminaries

The linear span of a subset A of a linear space E is denoted by $\ln A$.

By a seminorm on a linear space E we mean a function $p: E \to [0, \infty)$ such that $p(\alpha x) = |\alpha|p(x)$ for all $\alpha \in \mathbb{K}$, $x \in E$ and $p(x + y) \leq \max\{p(x), p(y)\}$ for all $x, y \in E$. A seminorm p on E is a norm if $\{x \in E : p(x) = 0\} = \{0\}$.

If p is a seminorm on a linear space E and $x, y \in E$ with $p(x) \neq p(y)$, then $p(x+y) = \max\{p(x), p(y)\}.$

The set of all continuous seminorms on a lcs E is denoted by $\mathcal{P}(E)$. A nondecreasing sequence (p_k) of continuous seminorms on a metrizable lcs E is a *base* in $\mathcal{P}(E)$ if for any $p \in \mathcal{P}(E)$ there are C > 0 and $k \in \mathbb{N}$ such that $p \leq Cp_k$. A complete metrizable lcs is called a *Fréchet space*.

Let E and F be locally convex spaces. A map $T: E \to F$ is called an *isomorphism*

if it is linear, injective, surjective and the maps T, T^{-1} are continuous. If there exists an isomorphism $T: E \to F$, then we say that E is isomorphic to F. The family of all continuous linear maps from E to F we denote by L(E, F).

Let E and F be Fréchet spaces with fixed bases $(\|\cdot\|_k)$ and $(\||\cdot\||_k)$ in $\mathcal{P}(E)$ and $\mathcal{P}(F)$, respectively. A map $T: E \to F$ is an *isometry* if $\||Tx - Ty\||_k = \|x - y\|_k$ for all $x, y \in E$ and $k \in \mathbb{N}$; clearly, a linear map $T: E \to F$ is an isometry if and only if $\||Tx\||_k = \|x\|_k$ for all $x \in E$ and $k \in \mathbb{N}$. A linear map $T: E \to F$ is a contraction if $\||Tx\||_k \leq \|x\|_k$ for all $x \in E$ and $k \in \mathbb{N}$. A rotation on E is a surjective isometry $T: E \to E$ with T(0) = 0.

By [3], Corollary 1.7, we have the following

Proposition A. Let $m \in \mathbb{N}$. Equip the linear space \mathbb{K}^m with the maximum norm. Let $T : \mathbb{K}^m \to \mathbb{K}^m$ be a linear map with $Te_j = \sum_{i=1}^m t_{i,j}e_i$ for $1 \le j \le m$. Then T is an isometry if and only if $\max_{i,j} |t_{i,j}| = 1$ and $|\det[t_{i,j}]| = 1$.

A sequence (x_n) in a lcs E is a *Schauder basis* in E if each $x \in E$ can be written uniquely as $x = \sum_{n=1}^{\infty} \alpha_n x_n$ with $(\alpha_n) \subset \mathbb{K}$, and the coefficient functionals $f_n : E \to \mathbb{K}, x \to \alpha_n (n \in \mathbb{N})$ are continuous.

The coordinate sequence (e_n) is an unconditional Schauder basis in $A_p(a, t)$.

3. Results

First we show when the power series spaces $A_p(a, t)$ and $A_q(b, s)$ are isometrically isomorphic.

Theorem 3.1. Let $p, q \in (0, \infty]$, $t = (t_k) \in \Lambda_p$, $s = (s_k) \in \Lambda_q$ and $a = (a_n)$, $b = (b_n) \in \Gamma$. Then the spaces $A_p(a, t)$ and $A_q(b, s)$ are isometrically isomorphic if and only if

(1) there exist $C, D \in \mathbb{R}$ such that $s_k = Ct_k + D$ and $a_k = Cb_k$ for all $k \in \mathbb{N}$;

(2) for every $k \in \mathbb{N}$ there is $\psi_k \in \mathbb{K}$ with $|\psi_k| = e^{-(D/C)a_k}$.

In this case the linear map $P: A_p(a,t) \to A_q(b,s), (x_n) \to (\psi_n x_n)$ is an isometric isomorphism.

Proof. Let $T : A_p(a,t) \to A_q(b,s)$ be an isometric isomorphism and let $Te_j = \sum_{i=1}^{\infty} t_{i,j}e_i$ for $j \in \mathbb{N}$. Then $\max_i |t_{i,j}|e^{s_kb_i} = e^{t_ka_j}$ for all $j, k \in \mathbb{N}$; so $\max_i |t_{i,j}|e^{s_kb_i-t_ka_j} = 1$ for $j, k \in \mathbb{N}$. Let $j, k \in \mathbb{N}$ with k > 1. Then for some $i \in \mathbb{N}$ we have $|t_{i,j}| = e^{t_ka_j-s_kb_i}, |t_{i,j}| \le e^{t_{k+1}a_j-s_{k+1}b_i}$ and $|t_{i,j}| \le e^{t_{k-1}a_j-s_{k-1}b_i}$.

Hence we get $(s_{k+1} - s_k)b_i \le (t_{k+1} - t_k)a_j$ and $(t_k - t_{k-1})a_j \le (s_k - s_{k-1})b_i$; so

$$\frac{s_{k+1} - s_k}{t_{k+1} - t_k} \le \frac{a_j}{b_i} \le \frac{s_k - s_{k-1}}{t_k - t_{k-1}}.$$

Thus the sequence $\left(\frac{s_{k+1}-s_k}{t_{k+1}-t_k}\right)$ is non-increasing. Similarly we infer that the sequence $\left(\frac{t_{k+1}-t_k}{s_{k+1}-s_k}\right)$ is non-increasing, since the map $T^{-1}: A_q(b,s) \to A_p(a,t)$ is an isometric

isomorphism, too. It follows that the sequence $\left(\frac{s_{k+1}-s_k}{t_{k+1}-t_k}\right)$ is constant, so there is C > 0 such that $\frac{s_{k+1}-s_k}{t_{k+1}-t_k} = C$ for all $k \in \mathbb{N}$.

Moreover, for every $j \in \mathbb{N}$ there is $i \in \mathbb{N}$ with $a_j/b_i = C$ and for every $i \in \mathbb{N}$ there is $j \in \mathbb{N}$ with $b_i/a_j = 1/C$. Thus $\{a_j : j \in \mathbb{N}\} = \{Cb_i : i \in \mathbb{N}\}$.

For l > 1 we have $s_l - Ct_l = s_1 - Ct_1$, since

$$s_l - s_1 = \sum_{k=1}^{l-1} (s_{k+1} - s_k) = C \sum_{k=1}^{l-1} (t_{k+1} - t_k) = C(t_l - t_1).$$

Put $D = s_1 - Ct_1$, then $s_k = Ct_k + D$ for $k \in \mathbb{N}$.

Let $(j_k) \subset \mathbb{N}, (i_k) \subset \mathbb{N}$ be strictly increasing sequences such that $\{a_{j_k} : k \in \mathbb{N}\} = \{a_j : j \in \mathbb{N}\}, \{b_{i_k} : k \in \mathbb{N}\} = \{b_i : i \in \mathbb{N}\}$ and $a_{j_k} < a_{j_{k+1}}, b_{i_k} < b_{i_{k+1}}$ for $k \in \mathbb{N}$.

Hence we get $a_{j_k} = Cb_{i_k}$ for $k \in \mathbb{N}$, since $\{a_j : j \in \mathbb{N}\} = \{Cb_i : i \in \mathbb{N}\}$.

Put $j_0 = i_0 = 0$ and $M_r = \{j \in \mathbb{N} : j_{r-1} < j \le j_r\}, W_r = \{i \in \mathbb{N} : i_{r-1} < i \le i_r\}$ for $r \in \mathbb{N}$; clearly $W_r = \{i \in \mathbb{N} : Cb_i = a_{j_r}\}.$

Let $r \in \mathbb{N}$ and $(\phi_j)_{j \in M_r} \subset \mathbb{K}$ with $\max_{j \in M_r} |\phi_j| > 0$. Then we have

$$\begin{aligned} \max_{j \in M_r} |\phi_j| e^{t_k a_{j_r}} &= \max_{j \in M_r} |\phi_j| e^{t_k a_j} = \left\| \sum_{j \in M_r} \phi_j e_j \right\|_k \\ &= \left\| T\left(\sum_{j \in M_r} \phi_j e_j\right) \right\|_k = \left\| \sum_{j \in M_r} \phi_j \sum_{i=1}^\infty t_{i,j} e_i \right\|_k \\ &= \left\| \sum_{i=1}^\infty \left(\sum_{j \in M_r} t_{i,j} \phi_j\right) e_i \right\|_k = \max_i \left| \sum_{j \in M_r} t_{i,j} \phi_j \right| e^{s_k b_i}. \end{aligned}$$

Thus

$$\max_{i} \left| \sum_{j \in M_r} t_{i,j} \phi_j \right| e^{s_k b_i - t_k a_{j_r}} = \max_{j \in M_r} |\phi_j|.$$

Let k > 1. For some $i \in \mathbb{N}$ we have

$$\left| \sum_{j \in M_r} t_{i,j} \phi_j \right| = \max_{j \in M_r} |\phi_j| e^{t_k a_{j_r} - s_k b_i}, \qquad \left| \sum_{j \in M_r} t_{i,j} \phi_j \right| \le \max_{j \in M_r} |\phi_j| e^{t_{k+1} a_{j_r} - s_{k+1} b_i}$$

and

$$\left|\sum_{j\in M_r} t_{i,j}\phi_j\right| \le \max_{j\in M_r} |\phi_j| e^{t_{k-1}a_{j_r}-s_{k-1}b_i}.$$

Hence we get $(s_{k+1} - s_k)b_i \leq (t_{k+1} - t_k)a_{j_r}$ and $(t_k - t_{k-1})a_{j_r} \leq (s_k - s_{k-1})b_i$; so $Cb_i \leq a_{j_r}$ and $a_{j_r} \leq Cb_i$. Thus $a_{j_r} = Cb_i$, so $i \in W_r$.

It follows that

$$\max_{i \in W_r} \left| \sum_{j \in M_r} t_{i,j} \phi_j \right| e^{s_k b_i - t_k a_{j_r}} = \max_{j \in M_r} |\phi_j|.$$

We have $s_k b_i - t_k a_{j_r} = (Ct_k + D)a_{j_r}/C - t_k a_{j_r} = (D/C)a_{j_r}$ for $i \in W_r$; so

$$\max_{i \in W_r} \left| \sum_{j \in M_r} t_{i,j} \phi_j \right| e^{(D/C)a_{jr}} = \max_{j \in M_r} |\phi_j|.$$

Thus $e^{-(D/C)a_{j_r}} = |\gamma_r|$ for some $\gamma_r \in \mathbb{K}$. Put $\psi_j = \gamma_r$ for every $j \in M_r$. Then $|\psi_j| = e^{-(D/C)a_j}$ for $j \in M_r$. Since $\max_{i \in W_r} |\sum_{j \in M_r} t_{i,j}\phi_j| |\psi_j^{-1}| = \max_{j \in M_r} |\phi_j|$, the linear map

$$U: \mathbb{K}^{M_r} \to \mathbb{K}^{W_r}, \ (\phi_j)_{j \in M_r} \to \left(\sum_{j \in M_r} t_{i,j} \psi_j^{-1} \phi_j\right)_{i \in W_r}$$

is an isometry, so $|M_r| \leq |W_r|$. We have shown that $j_r - j_{r-1} \leq i_r - i_{r-1}$ for every $r \in \mathbb{N}$. Similarly we get $i_r - i_{r-1} \leq j_r - j_{r-1}$ for every $r \in \mathbb{N}$, since T^{-1} is an isometric isomorphism. Thus $j_r - j_{r-1} = i_r - i_{r-1}$ for every $r \in \mathbb{N}$; so $j_r = i_r$ for $r \in \mathbb{N}$. It follows that $a_j = Cb_j$ for $j \in \mathbb{N}$.

Now we assume that (1) and (2) hold. Then the linear map

$$P: A_p(a,t) \to A_q(b,s), \ (x_j) \to (\psi_j x_j)$$

is an isometric isomorphism. Indeed, P is surjective since for any $y = (y_j) \in A_q(b, s)$ we have $x = (\psi_j^{-1}y_j) \in A_p(a, t)$ and Px = y. For $x \in A_p(a, t)$ and $k \in \mathbb{N}$ we have

$$||Px||_k = \max_j |\psi_j| |x_j| e^{s_k b_j} = \max_j |x_j| e^{-(D/C)a_j + s_k b_j} = \max_j |x_j| e^{t_k a_j} = ||x||_k.$$

By obvious modifications of the proof of Theorem 3.1 we get the following two propositions.

Proposition 3.2. Let $p \in (0, \infty]$, $t \in \Lambda_p$ and $a = (a_n)$, $b = (b_n) \in \Gamma$. Then $A_p(b, t)$ contains a linear isometric copy of $A_p(a, t)$ if and only if a is a subsequence of b.

If $(n_j) \subset \mathbb{N}$ is a strictly increasing sequence with $a_j = b_{n_j}$, $j \in \mathbb{N}$, then the map $T : A_p(a,t) \to A_p(b,t), (x_j) \to (y_j)$, where $y_j = x_k$ if $j = n_k$ for some $k \in \mathbb{N}$, and $y_j = 0$ for all other $j \in \mathbb{N}$, is a linear isometry.

Proposition 3.3. Let $p, q \in (0, \infty]$, $t \in \Lambda_p$, $s \in \Lambda_q$ and $a, b \in \Gamma$. If there exist linear isometries $T : A_p(a,t) \to A_q(b,s)$ and $S : A_q(b,s) \to A_p(a,t)$, then $A_p(a,t)$ and $A_q(b,s)$ are isometrically isomorphic.

Remark 3.4. Let $p, q \in (0, \infty]$, $t \in \Lambda_p$, $s \in \Lambda_q$ and $a, b \in \Gamma$. If $P : A_p(a, t) \to A_q(b,s)$ is an isometric isomorphism, then every isometric isomorphism $T: A_p(a, t) \to A_q(b,s)$ is of the form $P \circ S$ where S is an isometric automorphism of $A_p(a, t)$.

Now we determine all linear isometries on the space $A_p(a, t)$. Recall that (N_s) is a partition of \mathbb{N} into non-empty finite subsets such that (1) $a_i = a_j$ for all $i, j \in N_s$, $s \in \mathbb{N}$; (2) $a_i < a_j$ for all $i \in N_s$, $j \in N_{s+1}$, $s \in \mathbb{N}$.

Theorem 3.5. Let $p \in (0, \infty]$, $t = (t_k) \in \Lambda_p$ and $a = (a_n) \in \Gamma$. Let $T : A_p(a, t) \to A_p(a, t)$ be a continuous linear map and let $Te_j = \sum_{i=1}^{\infty} t_{i,j}e_i$ for $j \in \mathbb{N}$. Then T is an isometry if and only if

- (1) $|t_{i,j}| \le e^{(a_j a_i)t_1}$ when $a_i < a_j$, and $|t_{i,j}| \le e^{(a_j a_i)\ln p}$ when $a_i > a_j$;
- (2) $\max_{(i,j)\in N_s\times N_s} |t_{i,j}| = 1 \text{ and } |\det[t_{i,j}]_{(i,j)\in N_s\times N_s}| = 1 \text{ for all } s \in \mathbb{N}.$

Proof. (\Rightarrow) For $k, j \in \mathbb{N}$ we have $||Te_j||_k = \max_i |t_{i,j}|e^{t_k a_i}$ and $||e_j||_k = e^{t_k a_j}$. Thus $\max_i |t_{i,j}|e^{t_k(a_i-a_j)} = 1$ for all $j, k \in \mathbb{N}$. Hence $|t_{i,j}| \leq e^{t_k(a_j-a_i)}$ for all $i, j, k \in \mathbb{N}$; so $|t_{i,j}| \leq \inf_k e^{t_k(a_j-a_i)}$ for all $i, j \in \mathbb{N}$. It follows (1); moreover $|t_{i,j}| \leq 1$ when $a_i = a_j$.

Let $s \in \mathbb{N}$, $j_s = \min N_s$ and $(\beta_j)_{j \in N_s} \subset \mathbb{K}$ with $\max_{j \in N_s} |\beta_j| > 0$. Then we have

$$\left\| T\left(\sum_{j\in N_s} \beta_j e_j\right) \right\|_k = \left\| \sum_{j\in N_s} \beta_j \sum_{i=1}^\infty t_{i,j} e_i \right\|_k$$
$$= \left\| \sum_{i=1}^\infty \left(\sum_{j\in N_s} \beta_j t_{i,j}\right) e_i \right\|_k = \max_i \left| \sum_{j\in N_s} \beta_j t_{i,j} \right| e^{t_k a_i}$$

and $\|\sum_{j\in N_s} \beta_j e_j\|_k = \max_{j\in N_s} |\beta_j| e^{t_k a_j} = (\max_{j\in N_s} |\beta_j|) e^{t_k a_{j_s}}$ for all $k \in \mathbb{N}$. Thus

$$\max_{i} \left| \sum_{j \in N_s} \beta_j t_{i,j} \right| e^{t_k (a_i - a_{j_s})} = \max_{j \in N_s} |\beta_j|, \quad k \in \mathbb{N};$$

hence $\max_{i \in N_s} |\sum_{j \in N_s} \beta_j t_{i,j}| \le \max_{j \in N_s} |\beta_j|$. Let k > 1. For some $i_k \in \mathbb{N}$ we have

1

$$\left|\sum_{j\in N_s}\beta_j t_{i_k,j}\right|e^{t_k(a_{i_k}-a_{j_s})} = \max_{j\in N_s}|\beta_j|.$$

If $a_{i_k} < a_{j_s}$, then

$$\max_{j \in N_s} |\beta_j| \ge \left| \sum_{j \in N_s} \beta_j t_{i_k, j} \right| e^{t_{k-1}(a_{i_k} - a_{j_s})} > \left| \sum_{j \in N_s} \beta_j t_{i_k, j} \right| e^{t_k(a_{i_k} - a_{j_s})} = \max_{j \in N_s} |\beta_j|;$$

if $a_{i_k} > a_{j_s}$, then

$$\max_{j \in N_s} |\beta_j| \ge \left| \sum_{j \in N_s} \beta_j t_{i_{k,j}} \right| e^{t_{k+1}(a_{i_k} - a_{j_s})} > \left| \sum_{j \in N_s} \beta_j t_{i_{k,j}} \right| e^{t_k(a_{i_k} - a_{j_s})} = \max_{j \in N_s} |\beta_j|.$$

It follows that $a_{i_k} = a_{j_s}$, so $i_k \in N_s$ and $\left|\sum_{j \in N_s} \beta_j t_{i_k,j}\right| = \max_{j \in N_s} |\beta_j|$.

Thus the following linear map is an isometry

$$S: \mathbb{K}^{N_s} \to \mathbb{K}^{N_s}, \ (\beta_j)_{j \in N_s} \to \left(\sum_{j \in N_s} \beta_j t_{i,j}\right)_{i \in N_s}$$

By Proposition A we get $\max_{(i,j)\in N_s\times N_s} |t_{i,j}| = 1$ and $|\det[t_{i,j}]_{(i,j)\in N_s\times N_s}| = 1$.

(\Leftarrow) Let $x = (\beta_j) \in A_p(a, t)$ and $k \in \mathbb{N}$. Clearly, $||Tx||_k = \lim_m ||T(\sum_{j=1}^m \beta_j e_j)||_k$ and $||x||_k = \lim_m ||\sum_{j=1}^m \beta_j e_j||_k$. Thus to prove that $||Tx||_k = ||x||_k$ it is enough to show that $||T(\sum_{j=1}^m \beta_j e_j)||_k = ||\sum_{j=1}^m \beta_j e_j||_k$ for all $m \in \mathbb{N}$. Let $m \in \mathbb{N}$. We have

$$T\left(\sum_{j=1}^{m}\beta_{j}e_{j}\right) = \sum_{j=1}^{m}\beta_{j}\sum_{i=1}^{\infty}t_{i,j}e_{i} = \sum_{i=1}^{\infty}\left(\sum_{j=1}^{m}\beta_{j}t_{i,j}\right)e_{i},$$

so $L := \|T(\sum_{j=1}^{m} \beta_j e_j)\|_k = \max_i |\sum_{j=1}^{m} \beta_j t_{i,j}| e^{t_k a_i}$; clearly $P := \|\sum_{j=1}^{m} \beta_j e_j\|_k = \max_{1 \le j \le m} |\beta_j| e^{t_k a_j}$. We shall prove that L = P.

By (1) and (2) we have $|t_{i,j}| \leq e^{t_k(a_j-a_i)}$ for all $i,j \in \mathbb{N}$. Hence for $i \in \mathbb{N}$ we get

$$\left|\sum_{j=1}^{m} \beta_j t_{i,j}\right| e^{t_k a_i} \le \max_{1 \le j \le m} |\beta_j| e^{t_k a_j} = P;$$

so $L \leq P$. If P = 0, then L = P. Assume that P > 0.

Put $j_0 = \max\{1 \le j \le m : |\beta_j|e^{t_k a_j} = P\}$ and $\beta_j = 0$ for j > m. Let $q, s \in \mathbb{N}$ with $m \in N_q, j_0 \in N_s$. Put $W_s = \bigcup\{N_l : 1 \le l < s\}$ and $M_s = \bigcup\{N_l : s < l \le q\}$. Then $|\beta_j|e^{t_k a_j} \le |\beta_{j_0}|e^{t_k a_{j_0}}$ for $j \in W_s$, $|\beta_j|e^{t_k a_j} < |\beta_{j_0}|e^{t_k a_{j_0}}$ for $j \in M_s$ and $\max_{j \in N_s} |\beta_j| = |\beta_{j_0}| > 0$. By (2) and Proposition A, the linear map

$$S: \mathbb{K}^{N_s} \to \mathbb{K}^{N_s}, \ (x_j)_{j \in N_s} \to \left(\sum_{j \in N_s} t_{i,j} x_j\right)_{i \in N_s}$$

is an isometry, so $\max_{i \in N_s} |\sum_{j \in N_s} t_{i,j}\beta_j| = \max_{j \in N_s} |\beta_j| = |\beta_{j_0}|$. Thus for some $i_0 \in N_s$, we have $|\sum_{j \in N_s} t_{i_0,j}\beta_j| = |\beta_{j_0}|$; clearly $a_{i_0} = a_{j_0}$. If $j \in W_s$, then

$$|\beta_j||t_{i_0,j}| \le |\beta_{j_0}|e^{t_k(a_{j_0}-a_j)}e^{(a_j-a_{j_0})\ln p} = |\beta_{j_0}|e^{(a_j-a_{j_0})(\ln p-t_k)} < |\beta_{j_0}|$$

so $\left|\sum_{j\in W_s} \beta_j t_{i_0,j}\right| < |\beta_{j_0}|$. If $j \in M_s$, then

$$|\beta_j||t_{i_0,j}| < |\beta_{j_0}|e^{t_k(a_{j_0}-a_j)}e^{t_1(a_j-a_{j_0})} = |\beta_{j_0}|e^{(a_j-a_{j_0})(t_1-t_k)} \le |\beta_{j_0}|,$$

so $\left|\sum_{j\in M_s} \beta_j t_{i_0,j}\right| < \left|\beta_{j_0}\right|.$ Thus $\left|\sum_{j\in M_s} \beta_j t_{i_0,j}\right| = \left|\sum_{j=1}^{m} \beta_j t_{j_0,j}\right|$

$$\sum_{j=1}^{m} \beta_j t_{i_0,j} \bigg| = \left| \sum_{j \in W_s} \beta_j t_{i_0,j} + \sum_{j \in N_s} \beta_j t_{i_0,j} + \sum_{j \in M_s} \beta_j t_{i_0,j} \right| = |\beta_{j_0}|,$$

so $|\sum_{j=1}^{m} \beta_j t_{i_0,j}| e^{t_k a_{i_0}} = |\beta_{j_0}| e^{t_k a_{j_0}} = P$. Hence $P \leq L$. Thus L = P.

By the proof of Theorem 3.5 we get the following.

Corollary 3.6. Let $p \in (0, \infty]$, $t = (t_k) \in \Lambda_p$ and $a = (a_n) \in \Gamma$. Let $T \in L(A_p(a,t))$ and $Te_j = \sum_{i=1}^{\infty} t_{i,j}e_i$ for $j \in \mathbb{N}$. Then T is a contraction if and only if $|t_{i,j}| \leq e^{(a_j - a_i)t_1}$ when $a_i \leq a_j$ and $|t_{i,j}| \leq e^{(a_j - a_i)\ln p}$ when $a_i > a_j$.

Proposition 3.7. Let $p \in (0, \infty]$, $t = (t_k) \in \Lambda_p$ and $a = (a_n) \in \Gamma$. Let $(t_{i,j}) \subset \mathbb{K}$ with

(1) $|t_{i,j}| \le e^{(a_j - a_i)t_1}$ when $a_i < a_j$, and $|t_{i,j}| \le e^{(a_j - a_i)\ln p}$ when $a_i > a_j$;

(2) $\max_{(i,j)\in N_s\times N_s} |t_{i,j}| = 1 \text{ and } |\det[t_{i,j}]_{(i,j)\in N_s\times N_s}| = 1 \text{ for all } s \in \mathbb{N}.$

Then there exists a linear isometry T on $A_p(a,t)$ such that $Te_j = \sum_{i=1}^{\infty} t_{i,j}e_i, j \in \mathbb{N}$.

Proof. Let $j \in \mathbb{N}$ and $k \in \mathbb{N}$. For $i \in \mathbb{N}$ with $a_i > a_j$ we have $|t_{i,j}|e^{t_k a_i} \le e^{(a_j - a_i)\ln p + t_k a_i} = e^{a_j \ln p + a_i(t_k - \ln p)}$ if $p \in (0, \infty)$, and $|t_{i,j}|e^{t_k a_i} = 0$, if $p = \infty$. Thus $\lim_i ||t_{i,j}e_i||_k = 0$ for $k \in \mathbb{N}$; so $\lim_i t_{i,j}e_i = 0$. Therefore the series $\sum_{i=1}^{\infty} t_{i,j}e_i$ is convergent in $A_p(a, t)$ to some element Te_j . Let $x = (x_j) \in A_p(a, t)$.

We shall prove that $\lim_j x_j Te_j = 0$ in $A_p(a,t)$. By (1) and (2) we have $|t_{i,j}| \leq e^{t_k(a_j-a_i)}$ for all $i, j, k \in \mathbb{N}$. Let $k \in \mathbb{N}$ and $j \in \mathbb{N}$. Then $|x_j| \leq e^{-t_{k+1}a_j} ||x||_{k+1}$; moreover $||Te_j||_k = \max_i |t_{i,j}| e^{t_k a_i} \leq e^{t_k a_j}$. Hence $||x_j Te_j||_k \leq e^{(t_k - t_{k+1})a_j} ||x||_{k+1}$ for $j, k \in \mathbb{N}$; so $\lim_j x_j Te_j = 0$.

Thus the series $\sum_{j=1}^{\infty} x_j T e_j$ is convergent in $A_p(a,t)$ to some Tx for every $x \in A_p(a,t)$. Clearly $Tx = \lim_n T_n x$, where $T_n : A_p(a,t) \to A_p(a,t), T_n x = \sum_{j=1}^n x_j T e_j$. The linear operators $T_n, n \in \mathbb{N}$, are continuous, so using the Banach-Steinhaus theorem we infer that the operator $T : A_p(a,t) \to A_p(a,t), x \to Tx$ is linear and continuous. By Theorem 3.5, T is an isometry. \Box

By Proposition 3.7 and the proof of Theorem 3.5 we get the following.

Corollary 3.8. Let $p \in (0, \infty]$, $t \in \Lambda_p$ and $a \in \Gamma$. Then a linear map $T : A_p(a,t) \to A_p(a,t)$ is an isometry if and only if $||Te_j||_k = ||e_j||_k$ for all $j, k \in \mathbb{N}$.

Finally we shall show that every linear isometry on the space $A_p(a, t)$ is a surjection. For $p = \infty$ it follows from Theorem 3.5 and our next proposition. For $p \in (0, \infty)$ the proof is much more complicated.

Let $p \in (0, \infty]$, $t = (t_k) \in \Lambda_p$ and $a = (a_n) \in \Gamma$. Put $W_k = \bigcup_{i=1}^k N_i$, $M_k = \bigcup_{i=k}^\infty N_i$ for $k \in \mathbb{N}$ and $N_{k,m} = N_k \times N_m$ for all $k, m \in \mathbb{N}$. For every $m \in \mathbb{N}$ there is $v(m) \in \mathbb{N}$ with $m \in N_{v(m)}$.

Proposition 3.9. Let $p \in (0, \infty]$, $t = (t_k) \in \Lambda_p$ and $a = (a_n) \in \Gamma$. Let $D \in L(A_p(a,t))$ with $De_j = \sum_{i=1}^{\infty} d_{i,j}e_i$ for $j \in \mathbb{N}$. Assume that

(1) $|d_{i,j}| \le e^{t_1(a_j - a_i)}$ when $a_i < a_j$, and $d_{i,j} = 0$ when $a_i > a_j$;

(2) $\max_{(i,j)\in N_{s,s}} |d_{i,j}| = 1 \text{ and } |\det[d_{i,j}]_{(i,j)\in N_{s,s}}| = 1 \text{ for all } s \in \mathbb{N}.$

Then D is surjective.

Proof. We have $\lim\{De_j : j \in W_k\} \subset \lim\{e_i : i \in W_k\}$ for $k \in \mathbb{N}$, since $De_j = \sum_{i \in W_k} d_{i,j}e_i$ for $j \in N_k$, $k \in \mathbb{N}$. By Theorem 3.5 the operator D is a linear isometry,

so $D(A_p(a,t))$ is a closed subspace of $A_p(a,t)$ and the sequence $(De_j)_{j \in W_k}$ is linearly independent for every $k \in \mathbb{N}$. Thus $\lim\{De_j : j \in W_k\} = \lim\{e_i : i \in W_k\}, k \in \mathbb{N}$; so $D(A_p(a,t)) \supset \lim\{e_i : i \in \mathbb{N}\}$. It follows that D is surjective. \Box

Corollary 3.10. Let $t = (t_k) \in \Lambda_{\infty}$ and $a = (a_n) \in \Gamma$. Every linear isometry on $A_{\infty}(a,t)$ is surjective.

Proposition 3.11. Let $p \in (0, \infty]$, $t = (t_k) \in \Lambda_p$ and $a = (a_n) \in \Gamma$. Let $S \in L(A_p(a,t))$ with $Se_j = \sum_{i=1}^{\infty} s_{i,j}e_i$ for $j \in \mathbb{N}$. Assume that

(1) $s_{i,j} = 0$ when $a_i < a_j$, and $|s_{i,j}| \le e^{(a_j - a_i) \ln p}$ when $a_i > a_j$;

(2) $\max_{(i,j)\in N_{k,k}} |s_{i,j}| = 1 \text{ and } |\det[s_{i,j}]_{(i,j)\in N_{k,k}}| = 1 \text{ for } k \in \mathbb{N}.$

Then S is surjective.

Proof. For $x = (x_j) \in A_p(a, t)$ we have

$$Sx = \sum_{j=1}^{\infty} x_j Se_j = \sum_{j=1}^{\infty} x_j \sum_{i=1}^{\infty} s_{i,j} e_i = \sum_{i=1}^{\infty} \left(\sum_{j=1}^{\infty} s_{i,j} x_j \right) e_i = \sum_{i=1}^{\infty} \left(\sum_{j \in W_{v(i)}} s_{i,j} x_j \right) e_i.$$

Let $y = (y_i) \in A_p(a, t)$. By (2) and Proposition A, there exists $(x_i)_{i \in N_1} \subset \mathbb{K}$ with $\max_{i \in N_1} |x_i| = \max_{i \in N_1} |y_i|$ such that $\sum_{j \in N_1} s_{i,j} x_j = y_i$ for $i \in N_1$. Assume that for some $l \in \mathbb{N}$ with l > 1 we have chosen $(x_j)_{j \in N_s} \subset \mathbb{K}$ for $1 \leq s < l$. By (2) and Proposition A, there exists $(x_j)_{j \in N_l} \subset \mathbb{K}$ with

 $\max |x| = \max |u| \sum |x|^2$

$$\max_{i \in N_l} |x_i| = \max_{i \in N_l} \left| y_i - \sum_{j \in W_{l-1}} s_{i,j} x_j \right|$$

such that $\sum_{j \in N_l} s_{i,j} x_j = y_i - \sum_{j \in W_{l-1}} s_{i,j} x_j$ for $i \in N_l$. Thus by induction we get $x = (x_j) \in \mathbb{K}^{\mathbb{N}}$ such that $\sum_{j \in W_l} s_{i,j} x_j = y_i$ for all $i \in N_l, l \in \mathbb{N}$ and

$$\max_{i \in N_1} |x_i| = \max_{i \in N_1} |y_i|, \quad \text{and} \quad \max_{i \in N_l} |x_i| = \max_{i \in N_l} \left| y_i - \sum_{j \in W_{l-1}} s_{i,j} x_j \right| \text{ for } l > 1.$$

Let $k \in \mathbb{N}$. Clearly, $\max_{i \in W_1} |x_i| e^{t_k a_i} = \max_{i \in W_1} |y_i| e^{t_k a_i}$. For $l > 1, i \in N_l, j \in W_{l-1}$ we have

$$|s_{i,j}||x_j|e^{t_ka_i} \le e^{(a_j-a_i)\ln p + t_ka_i}|x_j| = e^{(a_j-a_i)(\ln p - t_k)}|x_j|e^{t_ka_j} \le |x_j|e^{t_ka_j}.$$

Thus by induction we get $\max_{i \in W_l} |x_i| e^{t_k a_i} \leq \max_{i \in W_l} |y_i| e^{t_k a_i}$ for all $l \in \mathbb{N}$. It follows that $x \in A_p(a, t)$. We have

$$Sx = \sum_{l=1}^{\infty} \sum_{i \in N_l} \left(\sum_{j \in W_l} s_{i,j} x_j \right) e_i = \sum_{l=1}^{\infty} \sum_{i \in N_l} y_i e_i = \sum_{i=1}^{\infty} y_i e_i = y.$$

Thus S is a surjection.

Theorem 3.12. Let $p \in (0, \infty)$, $t = (t_k) \in \Lambda_p$ and $a = (a_n) \in \Gamma$. Every linear isometry T on $A_p(a,t)$ is surjective.

Proof. Let $k, m \in \mathbb{N}$. Denote by $\mathcal{M}_{k,m}$ the family of all matrices $B = [\beta_{i,j}]_{(i,j) \in N_{k,m}}$ with $(\beta_{i,j}) \subset \mathbb{K}$ such that

a) $|\beta_{i,j}| \le e^{(a_j - a_i) \ln p}$ for $(i, j) \in N_{k,m}$, if k > m;

b) $|\beta_{i,j}| \le e^{t_1(a_j - a_i)}$ for $(i, j) \in N_{k,m}$, if k < m;

c) $|\beta_{i,j}| \le 1$ for $(i,j) \in N_{k,m}$ and $|\det[\beta_{i,j}]_{(i,j)\in N_{k,m}}| = 1$, if k = m.

By Proposition A, for every $k \in \mathbb{N}$ and $B \in \mathcal{M}_{k,k}$ we have $B^{-1} \in \mathcal{M}_{k,k}$. Let $Te_j = \sum_{i=1}^{\infty} t_{i,j}e_i$ for $j \in \mathbb{N}$. Put $T_{k,m} = [t_{i,j}]_{(i,j)\in N_{k,m}}$ and $I_{k,m} = [\delta_{i,j}]_{(i,j)\in N_{k,m}}$ for all $k, m \in \mathbb{N}$. We define matrices $D_{k,m}, S_{k,m} \in \mathcal{M}_{k,m}$ for $k \in \mathbb{N}$ and m = 1, 2, 3, ...

Put $D_{k,1} = I_{k,1}$ and $S_{k,1} = T_{k,1}$ for $k \in \mathbb{N}$; clearly $D_{k,1}, S_{k,1} \in \mathcal{M}_{k,1}$ for $k \in \mathbb{N}$. Assume that for some $m \in \mathbb{N}$ with m > 1 we have $D_{k,j}, S_{k,j} \in \mathcal{M}_{k,j}$ for $k \in \mathbb{N}$ and $1 \leq j < m$. Let $D_{1,m} = S_{1,1}^{-1}T_{1,m}$. It is easy to see that $D_{1,m} \in \mathcal{M}_{1,m}$, since $S_{1,1}^{-1} \in \mathcal{M}_{1,1}$ and $T_{1,m} \in \mathcal{M}_{1,m}$.

Let $C_{k,m} = \sum_{v=1}^{k-1} S_{k,v} D_{v,m}$ and $D_{k,m} = S_{k,k}^{-1} [T_{k,m} - C_{k,m}]$ for k = 2, 3, ..., m - 1. Let 1 < k < m. Let $[s_{i,n}]_{(i,n) \in N_{k,v}} = S_{k,v}$ and $[d_{n,j}]_{(n,j) \in N_{v,m}} = D_{v,m}$ for $1 \le v < k$. Put $[c_{i,j}]_{(i,j) \in N_{k,m}} = C_{k,m}$. Then

$$|c_{i,j}| = \left|\sum_{v=1}^{k-1} \sum_{n \in N_v} s_{i,n} d_{n,j}\right| \le \max_{n \in W_{k-1}} |s_{i,n} d_{n,j}|$$

for $(i, j) \in N_{k,m}$. For $i \in N_k$, $j \in N_m$ and $n \in W_{k-1}$ we have

$$|s_{i,n}d_{n,j}| \le e^{(a_n - a_i)\ln p + t_1(a_j - a_n)} = e^{(a_n - a_i)(\ln p - t_1) + t_1(a_j - a_i)} \le e^{t_1(a_j - a_i)};$$

hence $C_{k,m} \in \mathcal{M}_{k,m}$. Since $S_{k,k}^{-1} \in \mathcal{M}_{k,k}$ and $T_{k,m} \in \mathcal{M}_{k,m}$, we infer that $D_{k,m} \in \mathcal{M}_{k,m}$ for k = 2, ..., m - 1.

Let $D_{k,m} = I_{k,m}$ for $k \ge m$; clearly $D_{k,m} \in \mathcal{M}_{k,m}$. Let $S_{k,m} = I_{k,m}$ for $1 \le k < m$; then $S_{k,m} \in \mathcal{M}_{k,m}$. Let $C_{k,m} = \sum_{v=1}^{m-1} S_{k,v} D_{v,m}$ and $S_{k,m} = T_{k,m} - C_{k,m}$ for $k \ge m$. Let $k \ge m$. Let $[s_{i,n}]_{(i,n)\in N_{k,v}} = S_{k,v}$ and $[d_{n,j}]_{(n,j)\in N_{v,m}} = D_{v,m}$ for $1 \le v < m$. Put $[c_{i,j}]_{(i,j)\in N_{k,m}} = C_{k,m}$. Then

$$|c_{i,j}| = \left|\sum_{v=1}^{m-1} \sum_{n \in N_v} s_{i,n} d_{n,j}\right| \le \max_{n \in W_{m-1}} |s_{i,n} d_{n,j}|$$

for $(i, j) \in N_{k,m}$. For $i \in N_k$, $j \in N_m$ and $n \in W_{m-1}$ we have

$$|s_{i,n}d_{n,j}| \le e^{(a_n - a_i)\ln p + t_1(a_j - a_n)} = e^{(a_n - a_j)(\ln p - t_1) + \ln p(a_j - a_i)} < e^{(a_j - a_i)\ln p};$$

hence $C_{k,m} \in \mathcal{M}_{k,m}$. Since $|t_{i,j}| \leq e^{(a_j - a_i) \ln p}$ for $(i, j) \in N_{k,m}$, we get $S_{k,m} \in \mathcal{M}_{k,m}$ for k > m and $|c_{i,j}| < 1$ for all $(i, j) \in N_{m,m}$. Thus for some $(\varphi_{\sigma})_{\sigma \in S(N_m)} \subset \{\alpha \in \mathbb{K} : |\alpha| < 1\}$ we have

$$|\det S_{m,m}| = \left| \sum_{\sigma \in S(N_m)} \operatorname{sgn} \sigma \prod_{i \in N_m} (t_{i,\sigma(i)} - c_{i,\sigma(i)}) \right|$$
$$= \left| \sum_{\sigma \in S(N_m)} \operatorname{sgn} \sigma \left[\left(\prod_{i \in N_m} t_{i,\sigma(i)} \right) - \varphi_{\sigma} \right] \right|$$
$$= \left| \det(T_{m,m}) - \sum_{\sigma \in S(N_m)} \operatorname{sgn} \sigma \varphi_{\sigma} \right| = |\det(T_{m,m})| = 1.$$

It follows that $S_{m,m} \in \mathcal{M}_{m,m}$.

By definition of $D_{k,m}$ and $S_{k,m}$ we get

- a) $T_{k,1} = S_{k,1} = \sum_{v=1}^{k} S_{k,v} D_{v,1}$ for $k \in \mathbb{N}$;
- b) $S_{1,1}D_{1,m} = T_{1,m}$ for $m \ge 2$ and $S_{k,k}D_{k,m} = T_{k,m} \sum_{v=1}^{k-1} S_{k,v}D_{v,m}$ for $2 \le k < m$,

so
$$T_{k,m} = \sum_{v=1}^{k} S_{k,v} D_{v,m}$$
 for $1 \le k < m$;
c) $S_{k,m} D_{m,m} = S_{k,m} = T_{k,m} - \sum_{v=1}^{m-1} S_{k,v} D_{v,m}$ for $k \ge m > 1$,

so
$$T_{k,m} = \sum_{v=1}^{m} S_{k,v} D_{v,m} = \sum_{v=1}^{k} S_{k,v} D_{v,m}$$
 for $k \ge m > 1$.
Thus (*) $T_{k,m} = \sum_{v=1}^{k} S_{k,v} D_{v,m} = \sum_{v=1}^{\infty} S_{k,v} D_{v,m}$ for all $k, m \in \mathbb{N}$.

Let $[s_{i,j}]_{(i,j)\in\mathbb{N}\times\mathbb{N}}$ and $[d_{i,j}]_{(i,j)\in\mathbb{N}\times\mathbb{N}}$ be matrixes such that $[s_{i,j}]_{(i,j)\in N_{k,m}} = S_{k,m}$ and $[d_{i,j}]_{(i,j)\in\mathbb{N}_{k,m}} = D_{k,m}$ for all $k, m \in \mathbb{N}$.

By Theorem 3.5 and Proposition 3.7, there exist linear isometries S and D on $A_p(a,t)$ such that $Se_j = \sum_{i=1}^{\infty} s_{i,j}e_i$ and $De_j = \sum_{i=1}^{\infty} d_{i,j}e_i$ for all $j \in \mathbb{N}$; by Propositions 3.9 and 3.11, these isometries are surjective. Using (*) we get

$$t_{i,j} = \sum_{v=1}^{k} \sum_{n \in N_v} s_{i,n} d_{n,j} = \sum_{v=1}^{\infty} \sum_{n \in N_v} s_{i,n} d_{n,j} = \sum_{n=1}^{\infty} s_{i,n} d_{n,j}$$

for $(i, j) \in N_{k,m}$ and $k, m \in \mathbb{N}$. Hence for $j \in \mathbb{N}$ we get

$$SDe_j = S\left(\sum_{n=1}^{\infty} d_{n,j}e_n\right) = \sum_{n=1}^{\infty} d_{n,j}\left(\sum_{i=1}^{\infty} s_{i,n}e_i\right)$$
$$= \sum_{i=1}^{\infty} \left(\sum_{n=1}^{\infty} s_{i,n}d_{n,j}\right)e_i = \sum_{i=1}^{\infty} t_{i,j}e_i = Te_j;$$

so T = SD. Thus T is surjective.

Let $p \in (0, \infty], t = (t_k) \in \Lambda_p$ and $a = (a_n) \in \Gamma$. For every $m \in \mathbb{N}$ there is v(m) with $m \in N_{v(m)}$. Denote by $\mathcal{D}_p(a,t)$, $\mathcal{K}_p(a,t)$ and $\mathcal{S}_p(a,t)$ the families of all linear isometries on $A_p(a,t)$ such that $Te_j = \sum_{i \in W_{v(j)}} t_{i,j}e_i$, $Te_j = \sum_{i \in N_{v(j)}} t_{i,j}e_i$ and $Te_j = \sum_{i \in M_{v(j)}} t_{i,j}e_i$ for $j \in \mathbb{N}$, respectively.

We have the following two propositions.

Proposition 3.13. $\mathcal{D}_p(a,t)$, $\mathcal{K}_p(a,t)$ and $\mathcal{S}_p(a,t)$ are subgroups of the group $\mathcal{I}_p(a,t)$ of all linear isometries on $A_p(a,t)$. Moreover $\mathcal{D}_{\infty}(a,t) = \mathcal{I}_{\infty}(a,t)$ and $\mathcal{S}_{\infty}(a,t) = \mathcal{K}_{\infty}(a,t)$. For every $T \in \mathcal{I}_p(a,t)$ there exist $D \in \mathcal{D}_p(a,t)$ and $S \in \mathcal{S}_p(a,t)$ such that $T = S \circ D$.

Proof. The last part of the proposition follows by the proof of Theorem 3.12. Clearly, $\mathcal{I}_p(a,t)$ is a subgroup of the group of all automorphisms of $A_p(a,t)$; moreover $\mathcal{D}_{\infty}(a,t) = \mathcal{I}_{\infty}(a,t)$ and $\mathcal{S}_{\infty}(a,t) = \mathcal{K}_{\infty}(a,t)$.

Let $S, T \in \mathcal{S}_p(a, t)$. Let $j \in \mathbb{N}$. We have

$$STe_j = S\left(\sum_{i=1}^{\infty} t_{i,j}e_i\right) = \sum_{i=1}^{\infty} t_{i,j}\left(\sum_{k=1}^{\infty} s_{k,i}e_k\right) = \sum_{k=1}^{\infty} \left(\sum_{i=1}^{\infty} s_{k,i}t_{i,j}\right)e_k.$$

If $a_k < a_j$, then for every $i \in \mathbb{N}$ we have $a_k < a_i$ or $a_i < a_j$; so $s_{k,i} = 0$ or $t_{i,j} = 0$ for $i \in \mathbb{N}$. Thus $\sum_{i=1}^{\infty} s_{k,i} t_{i,j} = 0$ for $k \in \mathbb{N}$ with $a_k < a_j$; so $ST \in \mathcal{S}_p(a, t)$.

Let $k \in \mathbb{N}$. For some $x_k = (x_{j,k}) \in A_p(a,t)$ we have $Sx_k = e_k$. By the proof of Proposition 3.11 we have $\max\{|x_{j,k}|e^{t_1a_j}: a_j < a_k\} = 0$, so $x_{j,k} = 0$ for $j \in \mathbb{N}$ with $a_j < a_k$. Hence $S^{-1}(e_k) = \sum_{j \in M_{v(k)}} x_{j,k}e_j$, so $S^{-1} \in \mathcal{S}_p(a,t)$. We have shown that $\mathcal{S}_p(a,t)$ is a subgroup of $\mathcal{I}_p(a,t)$.

Let $D, T \in \mathcal{D}_p(a, t)$. Let $j \in \mathbb{N}$. We have $DTe_j = \sum_{k=1}^{\infty} (\sum_{i=1}^{\infty} d_{k,i}t_{i,j})e_k$. If $a_k > a_j$, then for every $i \in \mathbb{N}$ we have $a_k > a_i$ or $a_i > a_j$; so $d_{k,i} = 0$ or $t_{i,j} = 0$ for $i \in \mathbb{N}$. Thus $\sum_{i=1}^{\infty} d_{k,i}t_{i,j} = 0$ for every $k \in \mathbb{N}$ with $a_k > a_j$, so $DT \in \mathcal{D}_p(a, t)$.

Let $k \in \mathbb{N}$. Put $F_k = \lim\{e_i : a_i \leq a_k\}$. We know that $D(F_k) = F_k$. Thus there exists $x_k = (x_{j,k}) \in F_k$ such that $Dx_k = e_k$. Then $x_{j,k} = 0$ for $j \in \mathbb{N}$ with $a_j > a_k$ and $D^{-1}(e_k) = x_k = \sum_{j \in W_{v(k)}} x_{j,k}e_j$, so $D^{-1} \in \mathcal{D}_p(a,t)$. Thus $\mathcal{D}_p(a,t)$ is a subgroup of $\mathcal{I}_p(a,t)$. Clearly, $\mathcal{K}_p(a,t) = \mathcal{S}_p(a,t) \cap \mathcal{D}_p(a,t)$, so $\mathcal{K}_p(a,t)$ is subgroup of $\mathcal{I}_p(a,t)$.

Proposition 3.14. $\mathcal{I}_p(a,t) \subset \mathcal{I}_p(a,s)$ if and only if $t_1 \leq s_1$. In particular, $\mathcal{I}_p(a,t) = \mathcal{I}_p(a,s)$ if and only if $t_1 = s_1$.

Proof. If $t_1 \leq s_1$, then using Theorem 3.5 we get $\mathcal{I}_p(a,t) \subset \mathcal{I}_p(a,s)$. Assume that $t_1 > s_1$. Then $\lim_j e^{(t_1-s_1)(a_j-a_1)} = \infty$, so there exists $j_0 > 1$ and $\beta_0 \in \mathbb{K}$ such that $e^{s_1(a_{j_0}-a_1)} < |\beta_0| \leq e^{t_1(a_{j_0}-a_1)}$. Let $T \in L(A_p(a,t))$ with $Te_j = e_j + \beta_0 \delta_{j_0,j} e_1$ for $j \in \mathbb{N}$. By Theorem 3.5, we have $T \in \mathcal{I}_p(a,t)$ and $T \notin \mathcal{I}_p(a,s)$.

In relation with Corollary 3.10 and Theorem 3.12 we give the following two examples and state one open problem.

Let $p \in (0, \infty]$, $t = (t_k) \in \Lambda_p$ and $a = (a_n) \in \Gamma$.

For every isometry F on \mathbb{K} the map $T_F : A_p(a,t) \to A_p(a,t), (x_n) \to (Fx_n)$ is an isometry on $A_p(a,t)$.

Example 3.15. Assume that the field \mathbb{K} is not spherically complete or the residue class field of \mathbb{K} is infinite. Then there exists an isometry on $A_p(a, t)$ which is not a surjection.

Indeed, by [5], Theorem 2, there is an isometry F on \mathbb{K} which is not surjective. Then the map T_F is an isometry on $A_p(a,t)$ which is not a surjection.

Problem. Assume that \mathbb{K} is spherically complete with finite residue class. Does every isometry on $A_p(a,t)$ is surjective?

Example 3.16. On $A_p(a, t)$ there exists a non-linear rotation.

Indeed, put $S_{\mathbb{K}} = \{\beta \in \mathbb{K} : |\beta| = 1\}$ and let $f : [0, \infty) \to S_{\mathbb{K}}$ be a function which is not constant on the set $\{|\alpha| : \alpha \in \mathbb{K} \text{ with } |\alpha| > 0\}$. Then the map $F : \mathbb{K} \to \mathbb{K}$, F(x) = f(|x|)x is a non-linear surjective isometry with F(0) = 0.

In fact, let $x, y \in \mathbb{K}$. If |x| = |y|, then

$$|F(x) - F(y)| = |f(|x|)x - f(|y|)y| = |f(|x|)||x - y| = |x - y|.$$

If $|x| \neq |y|$, then $|F(x)| = |x| \neq |y| = |F(y)|$, so

$$|F(x) - F(y)| = \max\{|F(x)|, |F(y)|\} = \max\{|x|, |y|\} = |x - y|.$$

If $\alpha \in S_{\mathbb{K}}$, then $F(\alpha x) = \alpha F(x)$, so F(x/f(|x|)) = (1/f(|x|))f(|x|)x = x for every $x \in \mathbb{K}$. Let $\alpha \in (\mathbb{K} \setminus \{0\})$ with $f(|\alpha|) \neq f(1)$, then $F(\alpha 1) \neq \alpha F(1)$.

Then T_F is an nonlinear surjective isometry on $A_p(a,t)$ with $T_F(0) = 0$. \Box

References

- N. De Grande-De Kimpe: Non-archimedean Fréchet spaces generalizing spaces of analytic functions, Indag. Math. 44 (1982) 423–439.
- [2] C. Perez-Garcia, W. H. Schikhof: Locally Convex Spaces over Non-Archimedean Valued Fields, Cambridge Studies in Advanced Mathematics 119, Cambridge University Press (2010).
- [3] A. C. M. van Rooij: Notes on p-adic Banach spaces, Report 7633, Department of Mathematics, University of Nijmegen (1976).
- [4] A. C. M. van Rooij: Non-Archimedean Functional Analysis, Marcel Dekker, New York (1978).
- [5] W. H. Schikhof: Isometrical embeddings of ultrametric spaces into non-archimedean valued fields, Indag. Math. 87 (1984) 51–53.
- [6] W. H. Schikhof: Locally convex spaces over non-spherically complete valued fields, Bull. Belg. Math. Soc. 38 (1986) 187–224.
- [7] W. Śliwa: On the quasi equivalence of orthogonal bases in non-archimedean metrizable locally convex spaces, Bull. Belg. Math. Soc. 9 (2002) 465–472.

466 W. Śliwa, A. Ziemkowska / On Linear Isometries on Non-Archimedean ...

- [8] W. Śliwa: On relations between non-archimedean power series spaces, Indag. Math., New Ser. 17 (2006) 627–639.
- [9] W. Śliwa, A. Ziemkowska: On complemented subspaces of non-archimedean power series spaces, Can. J. Math. 63 (2011) 1188–1200.