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For systems of relations ϕt(x) ≤ pt, t ∈ T , Ax = y, where T is an arbitrary set, ϕt is a convex
l.s.c. function on a Banach space X for every t and A is a linear bounded operator from X into
another Banach space Y , we discuss the following three problems:

(a) stability of solutions with respect to variations of the right hand side;

(b) effect of linear perturbations of functions ϕt and mapping A;

(c) distance to infeasibility (the minimal norm of linear pertorbations that make the system
infeasible.

1. Introduction

Let T be an arbitrary set. We associate with it the space ℓ∞(T ) of all uniformly
bounded real-valued functions a = (at) on T with the sup-norm:

‖a‖ = sup
t∈T

|at|.

Throughout the paper X and Y are Banach spaces with X∗ and Y ∗ being their
duals. The canonical bilinear forms on X ×X∗ and Y × Y ∗ we denote by 〈·, ·〉 and
use the symbol cl∗ for weak-star closures in dual spaces.

Let for any t ∈ T a function ϕt on X be given. We assume that all these functions
are convex, proper and lower semicontinuous. Let furthermore A : X → Y be
a linear bounded operator. The object of our interest is the following system of
inequalities and equalities on X:

ϕt(x) ≤ pt, ∀t ∈ T, Ax = y (1)

where p = (pt) ∈ ℓ∞. We shall consider ϕ = (ϕt)t∈T and A as data and p and y

as parameters whose nominal value is (0, y) for some y ∈ Y . By 0 we mean the
element of ℓ∞ whose components are zeros for all t ∈ T : 0t = 0, ∀t.

By S(p, y) we denote the set of solutions of (1). This is obviously a convex closed
set that in principle can be empty. We shall assume however that S(0, y) 6= ∅. The
following is the list of problems to be addressed in the paper:
∗The recearch was completed during the author’s stay in the Centre de Recerca Matematica at
Univ. Autonoma de Barcelona in October 2010; an earlier version of the paper appeared as CRM
preprint no. 924, November 2010.
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(P1) Lipschitz stability of solutions to (1) at (0, y). Specifically: given an x ∈
S(0, y), find the Lipschitz modulus of S at ((0, y), x). We recall that the
Lipschitz modulus of S at ((0, y), x) (with respect to a given norm ‖(p, y)‖ in
ℓ∞×Y ) is the lower bound of K > 0 having the property that for some ε > 0
(depending on K)

S(p′, y′)
⋂

B(x, ε) ⊂ S(p, y) +K‖(p, y)− (p′, y′)‖B.

Here B(x, ε) is the (closed) ball of radius ε around x and B stands for the
unit ball (here obviously in X).

(P2) Effect of perturbations of the system. Specifically, what will happen with the
Lipschitz modulus of S(0, y) if we replace ϕt(x) by ϕt(x)+ 〈x∗

t , x−x〉 and Ax

by Ax+ Λ(x− x) (Λ : X → Y also being a bounded linear operator)?

(P3) Distance to infeasibility. Specifically, what is the minimal norm of the per-
turbations ((x∗

t ),Λ) that make infeasible the system

ϕt(x) + 〈x∗
t , x− x〉 ≤ pt, (A+ Λ)x = y.

These (and related problems) have been actively discussed in the regularity theory
of variational analysis both for systems involving only convex objects similar to
(1) (e.g. [2, 3, 5, 6, 8, 11, 12] and for more general objects (see e.g. [15, 18] for
monographic accounts and [1, 10] for surveys). The paper offers solutions to the
problems for systems (1) under no additional (to the mentioned above) assumptions
on the data. In particular, the most recent results containing formulas for regu-
larity moduli obtained in [3, 6] (for linear systems) and [5] (for systems of convex
inequalities) follow from our results without much effort.

However the generality of the setting is not the only, and actually not the main
contribution of the paper. More important is the understanding that all information
about the stability related behaviour of (1) comes from analysis of a much simpler
system containing just one numerical inequality

Φ(x) ≤ ξ, Ax = b,

where Φ(x) = supt ϕt(x). In terms of the system (1) this means that there is no
need to look at the effect of all possible perturbations of the inequalities: constant
perturbations with pt ≡ const are enough. A similar observation has been made in
a very recent paper by Cánovas, Gómez-Senent and Parra [5] for the case of a pure
inequality system on IRn with T being a compact Hausdorff space and (t, x) → ϕt(x)
continuous on T×IRn (and of course convex as functions of x) under the assumption
that the Slater constrained qualification is satisfied. As we shall see, none of these
conditions are really needed to state and proof the main results.

To conclude the introduction, I wish to emphasize that only the means of convex
analysis are used in the paper, with no mention of the techniques of the general
subdifferential theory of variational analysis. This remark seems to be especially
important in view of the growing tendency in some recent publications to apply
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heavy machinery of general theories for problems which can be more efficiently and
elegantly treated by more specialized techniques1.

The core of our approach is a combination of some elementary but convenient prop-
erties of ℓ∞(T ) and the techniques provided by the quantitative regularity theory
for set-valued mappings with convex graphs. This theory is now well developed.
Its three main ingredients are the exact formula for the surjection modulus of such
mappings (containing earlier Robinson’s estimates for convex constrained systems),
the concept of perfect regularity and its dual characterization, both obtained in
Ioffe-Sekiguchi [12] and the formula for the distance to infeasibility in Dontchev-
Lewis-Rockafellar [7]. As we shall see, all three work very efficiently for (1), and
compared to earlier publications, even relating to the systems of linear inequalities,
our proofs seem to be shorter and less technical.

2. Preliminaries.

2.1. Regularity of convex multifunction

The key (and the only!) fact of the general regularity theory needed for our future
discussions is that the Lipschitz modulus of a set-valued mapping at a certain point
of its graph is reciprocal of the modulus of surjection of the inverse mapping at
the same point. To be precise, let X and Y be metric spaces, and let F : X ⇉ Y

be a set-valued mapping. Let Ψ : Y ⇉ X stand for the inverse mapping, that is
Ψ(y) = {x ∈ X : y ∈ F (x)}. We fix a certain point (x, y) ∈ GraphF and recall that
the rate or modulus of surjection of F at (x, y), denoted usually by surF (x|y), is the
upper bound of r > 0 such that for some ε > 0 the inclusion B(y, rt) ⊂ F (B(x, t))
holds for all (x, y) ∈ GraphF

⋂
(

B(x, ε) × B(y, ε)
)

and all t ∈ (0, ε). If no such r

exists we set surF (x|y) = 0. We say that F is regular at (x, y) if surF (x|y) > 0.

The Lipschitz modulus of the inverse mapping at (y, x), denoted by lipΨ(y|x), is
the lower bound of K > 0 such that for some ε > 0 we have

Ψ(x)
⋂

B(y, ε) ⊂ Ψ(x′) +K‖x− x′‖B

if x, x′ belong to B(x, ε). If no such K exists, we set lipΨ(y|x) = ∞. Then under
the convention that 0 · ∞ = 1 the equality surΦ(x|y) · lipΨ(y|x) = 1 is valid
unconditionally (see e.g. [10] for a short proof).

Calculation of the exact value of the rate of surjection is possible only in certain
specific cases. The case of set-valued mappings with convex graphs is one of them.
Namely, the following theorem holds true.

Theorem 2.1 (Ioffe-Sekiguchi [12], Th. 1). Let F : X ⇉ Y be a set-valued
mapping with convex graph. If intF (X) 6= ∅2, then for any (x, y) ∈ GraphF

surF (x|y) = lim
λ→+0

inf
‖y∗‖=1

inf
x∗

(

‖x∗‖+
1

λ
SGraphF−(x,y)(x

∗, y∗)

)

. (2)

1In his 1949 autobiography A. Einstein speaks about two criteria for choosing a scientific theory.
One is "external justification" and the other "internal perfection" by which he means that the
theory should be "natural" in the sense that the means it uses must correspond to the nature of
the problem.
2Here of course F (X) is the full image of X under F .
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Here SQ(x
∗) stands for the support function of Q: SQ(x

∗) = supx∈Q〈x
∗, x〉.

In certain cases, calculation of the surjection rate of a convex set-valued mapping
can be further simplified. The key for this simplification is the notion of perfect
regularity introduced in the same paper [12]. Recall that, given a convex set Q ⊂ X

and an x ∈ Q, the tangent cone T (Q, x) to Q at x is the closed cone generated by
the set Q−x. In other words, T (Q, x) is the closure of the set of all vectors λ(u−x),
where λ ≥ 0 and u ∈ Q. Clearly, convexity of Q implies convexity of the tangent
cone to Q at every point. The polar of the tangent cone, N(Q, x) = T ◦(Q, x) =
{x∗ ∈ X∗ : 〈x∗, h〉 ≤ 0, ∀ h ∈ T (Q, x)} is called the normal cone to Q at x.

If Q ⊂ X × Y , that is to say, Q is the graph of a certain set-valued mapping
F : X ⇉ Y , and (x, y) ∈ Q, then we can view the tangent cone T (Q, (x, y)) as
the graph of some other set-valued mapping from X into Y , which associates with
every h ∈ X the collection of v ∈ Y such that (h, v) ∈ T (Q, (x, y)). This mapping
is often called the (contingent) derivative of F at (x, y) and is denoted DF (x, y).
We shall denote by surDF (x, y) the rate of surjction of DF (x, y) at (0, 0).

Likewise, the normal cone N(Q, (x, y)) can be viewed as the graph of a set-valued
mapping from Y ∗ into X∗, namely associating with every y∗ ∈ Y ∗ the set {x∗ :
(x∗,−y∗) ∈ N(Q, (x, y))}. This mapping is called the coderivative of F at (x, y)3.

As follows from the definition, Q ⊂ x + T (Q, x) if Q is a convex set and x ∈ Q.
Therefore by (2) for any set-valued mapping with convex graph and any (x, y) ∈
GraphF we have surF (x|y) ≤ surDF (x, y)(0|0). A set-valued mapping F with
convex graph is called perfectly regular (see [12]) at (x, y) ∈ GraphF if

surF (x|y) = surDF (x, y)(0|0).

It was shown in [12] (Theorem 3) that a mapping with convex locally closed graph
is perfectly regular at (x, y) if and only if

surF (x|y) = inf{‖x∗‖ : x∗ ∈ D∗F (x, y)(y∗), ‖y∗‖ = 1} (3)

(with the standard convention that inf ∅ = ∞).

The following proposition offers a sufficient condition for perfect regularity.

Proposition 2.2 ([12], Prop. 5). Let F : X ⇉ Y be a set-valued mapping with
convex and locally closed graph. Suppose there is a weak-star closed convex subset
Q∗ of the unit sphere in Y ∗ such that for some (x, y) ∈ GraphF

SGraphF−(x,y)(x
∗, y∗) < ∞ & ‖y∗‖ = 1 ⇒ y∗ ∈ Q∗.

Then F is perfectly regular at (x, y).

3For set-valued mappings with convex graphs the concept of a coderivative under a different name
was introduced by Pschenichnyi in late 60s - see e.g. [16]. Mordukhovich in 1980 in [14] extended
the definition to arbitrary set-valued mappings. For estimating the surjection and metric regularity
moduli of set-valued mappings coderivatives were first applied by the author in [9] where the very
term “coderivative” was introduced.
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2.2. Radius of regularity and distance to infeasibility

The famous Milyutin’s inequality says that

sur(F + g)(x|y + g(x) ≥ surF (x|y)− lip g(x),

where g : X → Y is single-valued and lip g(x) is the Lipschitz constant of g at x.
In particular, for g(x) = Ax we have sur(F + A)(x|y + Ax) ≥ surF (x|y)− ‖A‖.

Following [7] we define the radius of regularity of a set-valued mapping F : X ⇉ Y

at (x, y) ∈ GraphF as the lower bound of norms of linear bounded operators
A : X → Y such that F + A is not regular at (x, y):

radF (x|y) = inf{‖A‖ : sur(F + A)(x|y + Ax) = 0}.

The general fact valid unconditionally for all set-valued mappings between Banach
spaces with closed graphs is that the radius of regularity is not smaller than the
modulus of surjection (at the same point of the graph). But for perfect regularity
mappings a stronger statement holds true.

Proposition 2.3. If F : X ⇉ Y is a set-valued mapping with convex locally closed
graph which is perfectly regular at (x, y) ∈ GraphF , then

radF (x|y) = surF (x|y).

Proof. Let A : X → Y be a bounded linear operator. Set G = F + A. We first
observe that

T (GraphG, (x, y + Ax)) = {(h, v + Ah) : (h, v) ∈ T (GraphF, (x, y))}.

This is imediate from the definition (and continuity of A). It follows that

D∗G(x, y + Ax)(y∗) = D∗F (x, y)(y∗) + A∗y∗. (4)

On the other hand by Theorem 2.9 of [7]

surDG(x, y + Ax)(0|0) = inf{‖x∗‖ : x∗ ∈ D∗G(x, y)(y∗), ‖y∗‖ = 1}. (5)

Denote surF (x|y) by r. As F is perfectly regular at (x, y), we can for any ε > 0
find a y∗ε and an x∗

ε ∈ D∗F (x, y)(y∗ε) such that ‖y∗ε‖ = 1, ‖xε‖ ≤ (1 + ε)r. Let
further vε ∈ Y satisfy

‖vε‖ = 1, 〈y∗ε , vε〉 ≥ (1− ε),

We use these four vectors to define an operator Aε : X → Y as follows:

Aεu = −
〈x∗

ε, u〉

〈y∗ε , vε〉
vε.

Then ‖Aε‖ ≤ 1+ε
1−ε

r and

A∗
εy

∗ = −
〈y∗, vε〉

〈y∗ε , vε〉
x∗
ε.
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Thus −x∗
ε = A∗y∗ε and therefore by (4) 0 ∈ D∗Gε(x, y)(y

∗
ε), where Gε = F +Aε. By

(5) this means that surDG(x, y + Aεx)(0|0) = 0.

On the other hand, as we have mentioned,

surDG(x, y + Ax)(0|0) ≥ surG(x|y + Ax)

= sur(F + A)(x|y + Ax) ≥ surF (x|y)− ‖Aε‖.

Thus radF (x|y) ≤ ‖Aε‖ → r as ε → 0.

The concept of distance of feasibility refers to the minimal perturbation that makes
the inclusion y ∈ F (x) infeasible. It was first introduced by Renegar [17] for linear
systems and then extended by Dontchev-Lewis-Rockafellar in [7] to arbibtrary set-
valued mappings with convex graphs. Namely, given a y ∈ F (X), the distance
of infeasibility for the system y ∈ F (x) is the minimal norm of pairs (A, y) with
A : X → Y being a bounded linear operator and y ∈ Y such that y + y no longer
belongs to the range of F+A: y+y 6∈ (F+A)(X). The specific value of the distance
to infeasibility depends, of course on the choice of the norm in L(X, Y ) × Y . We
shall use, as in [7] the max norm ‖(A, y)‖ = max{‖A‖, ‖y‖}. It was shown in [7]
that the distance to infeasibility is also connected with the rate of surjection of
some convex process associated with F . We need however another result: a direct
formula for the distance of infeasibility in terms of F itself.

Proposition 2.4 (Dontchev-Lewis-Rockafellar [7], Th. 4.8). Let F : X ⇉ Y

be a set-valued mapping with convex and closed graph. Set ‖(A, y)‖=max{‖A‖,‖y‖}.
Then the distance to infeasibility for the system y ∈ F (x) is equal to

inf
‖y∗‖=1

inf
x∗

max{‖x∗‖, SGraphF (x
∗, y∗) + 〈y∗, y〉}.

2.3. Elementary facts about ℓ∞(T )

This is obviously a Banach space. Denote by K the cone of nonnegative elements
of ℓ∞, that is p = (pt) ∈ K if pt ≥ 0 for all t, and by K∗ the dual cone of K (the
opposite of the polar of K): p∗ ∈ (ℓ∞)∗ belongs to K∗ if and only if 〈p∗, p〉 ≥ 0 for
all p ∈ K. We usually write p∗ ≥ 0 for p∗ ∈ K∗. As well known, the dual space
(ℓ∞)∗ can be represented as the collection of all bounded finitely additive measures
on T .

The space ℓ∞ ordered by K is a conditionally complete Banach lattice: any bounded
set has an exact upper bound and the norm is a monotone function on K. The
function 1l identically equal to 1 on T is the unique unit on ℓ∞: 〈p∗,1l〉 = ‖p∗‖ for
p∗ ∈ K∗ and Q ⊂ ℓ∞ is bounded if and only if |a| = (|at|) ≤ λ1l for some λ > 0 and
all a ∈ Q. Thus the set

P ∗ = {p∗ ∈ (ℓ∞)∗ : p∗ ≥ 0, ‖p∗‖ = 1}

is convex and weak∗ closed, hence weak∗ compact. The same is clearly valid for the
set {p∗ ∈ (ℓ∞)∗ : p∗ ≥ 0, ‖p∗‖ ≤ 1}.
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3. Systems of convex inequalities.

In this section we consider systems containing only inequalities with convex lower
semicontinuous functions, that is

ϕt(x) ≤ pt, ∀ t ∈ T (6)

and denote as before by S(p) the set of solutions of (6). We shall assume that ϕt

satisfy the following uniform boundedness condition

(UB) inf
t∈T

inf
x∈X

ϕt(x) > −∞.

It will be clear that in the context of this paper the assumption does not really
impose any restrictions on the choice of possible ϕt. For instance, if we are interested
in Lipschitz stability of S at (x,0), then replacing ϕt by max{−1, ϕt(x)} does not
make any change.

We associate with (ϕt) the set valued mapping

F (x) = {a ∈ ℓ∞ : at ≥ ϕt(x), ∀ t}

from X into ℓ∞(T ) and the function

Φ(x) = sup
t∈T

ϕt(x).

It is clear that the graph of F is closed and convex,

F (x) +K ⊂ F (x), ∀ x (7)

and domF = {x : F (x) 6= ∅} = domΦ. As the interior of K is nonempty, it follows
from (7) that the range of F is either empty or its interior is nonemty. Equally
obvious is that Φ is a lower semicontinuous convex function bounded from below
(by (UB)). If F (x) 6= ∅ for a certain x, then the vector ϕ(x) = (ϕt(x)) belongs to
ℓ∞ (also by (UB)).

Proposition 3.1. The mapping F is perfectly regular at any point of its graph.

Proof. Clearly, GraphF is a closed set as all ϕt are lower semicontinuous. Take
an (x, a) ∈ GraphF and suppose that SGraphF−(x,y)(x

∗,−p∗) = K < ∞ for some
x∗, p∗ with ‖p∗‖ = 1. The inequality means that 〈x∗, x− x〉 − 〈p∗, a− a〉 ≤ K for
all (x, a) ∈ GraphF . By (7), 〈p∗, p〉 ≥ −K for all p ∈ K which may happen only if
p∗ ≥ 0. Thus p∗ ∈ P ∗. Apply Proposition 2.2 with Q = P ∗.

An immediate consequence of the proposition is that surF (x|0) = ∞ if Φ(x) < 0.
Indeed in this case the tangent cone to F (x) at 0 is the whole of ℓ∞ which means
that surDF (x,0) = ∞. Therefore our main attention in the future discussions will
be given to the nontrivial case Φ(x) = 0.

The following function p∗ ◦ F defined for a given a p∗ ≥ 0 plays central role in our
discussions:

(p∗ ◦ F )(x) = inf
a∈F (x)

〈p∗, a〉 =

{

〈p∗, ϕ(x)〉, if F (x) 6= ∅;

∞, otherwise.
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In particular, if p∗ = 0, then (p∗ ◦ F )(x) is the indicator of domF which is the
function equal to zero on domF and +∞ outside of domF . It is clear that p∗ ◦ F
is a convex function (as so are all ϕt and p∗ ≥ 0).

In what follows we fix a certain x ∈ X and assume that Φ(x) ≤ 0, that is ϕt(x) ≤ 0
for all t.

Proposition 3.2. If Φ(x) ≤ 0, then (x∗,−p∗) ∈ N(GraphF, (x,0)) if and only if

p∗ ≥ 0, x∗ ∈ ∂(p∗ ◦ F )(x), (p∗ ◦ F )(x) = 0. (8)

In particular, if Φ(x) < 0, then (x∗,−p∗) ∈ N(GraphF, (x,0)) if and only if p∗ = 0
and x∗ ∈ N(domF, x).

Proof. Suppose (x∗,−p∗) ∈ N(GraphF, (x,0)), that is

〈x∗, x〉 − 〈p∗, a〉 ≤ 〈x∗, x〉, ∀ (x, a) ∈ GraphF. (9)

By (7) p∗ ≥ 0. As ϕ(x) is the minimal element of F (x) whenever F (x) 6= ∅, it
follows that

〈x∗, x〉 − (p∗ ◦ F )(x) ≤ 〈x∗, x〉, ∀ x (10)

which means that
(p∗ ◦ F )∗(x∗) ≤ 〈x∗, x〉. (11)

On the other hand, the inequality (p∗ ◦F )(x)+ (p∗ ◦F )∗(x∗) ≥ 〈x∗, x〉 holds uncon-
ditionally. Therefore, as (p∗ ◦ F )(x) ≤ 0 by the assumption, (11) implies that

(p∗ ◦ F )(x) = 0 and x∗ ∈ ∂(p∗ ◦ F )(x).

This completes the proof of (8).

Conversely, let (8) hold. Then for any x

〈x∗, x〉 − (p∗ ◦ F )(x) ≤ (p∗ ◦ F )∗(x∗) = 〈x∗, x〉

which is (10). But (10) implies (9) because 〈p∗, a〉 ≥ (p∗ ◦ F )(x) if a ∈ F (x).

Denote by ∆ the set of "Dirac measures" on T , which are functionals δt ∈ (ℓ∞)∗

defined by
〈δt, a〉 = at, ∀a ∈ ℓ∞.

Recall:
P ∗ := {p∗ ∈ (ℓ∞)∗ : p∗ ≥ 0, ‖p∗‖ = 1}.

We claim that 〈p∗, a〉 ≤ sup{at : t ∈ T} for any p∗ ∈ P ∗ and any a ∈ ℓ∞. In
particular

(p∗ ◦ F )(x) ≤ Φ(x), ∀x (12)

if p∗ ∈ P ∗. Indeed, if a′ ≥ a, then 〈p∗, a′〉 ≥ 〈p∗, a〉. It follows that for an a = (at)
with at ≡ α ≥ 0 we have 〈p∗, a〉 = α‖p∗‖ and the claim immediately follows.

Proposition 3.3. P ∗ = cl∗(conv∆).
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Proof. It is obvious that P ∗ is convex and weak∗-closed (even weak∗-compact) and
that ∆ ⊂ P ∗, so we only have to prove that P ∗ ⊂ cl∗(conv∆). Assuming the
contrary we find an p∗ ∈ P ∗\ cl∗(conv∆). Then there is an a ∈ ℓ∞ such that

〈p∗, a〉 > sup{at : t ∈ T}.

But as we have just seen this cannot be true.

Proposition 3.4. Under (UB), for any x∗ the function p∗ 7→ (p∗ ◦ F )∗(x∗) on
(ℓ∞)∗ is convex and weak∗-lower semicontinuous on its domain.

Proof. Convexity follows from the obvious inequality

sup
x

(

〈x∗, x〉 − ((αp∗1 + (1− α)p∗2) ◦ F )(x)
)

= sup
x

(

α(〈x∗, x〉 − (p∗1 ◦ F )(x)) + (1− α)(〈x∗, x〉 − (p∗2 ◦ F )(x))
)

≤ α sup
x

(〈x∗, x〉 − (p∗1 ◦ F )(x)) + (1− α) sup
x

(〈x∗, x〉 − (p∗2 ◦ F )(x)).

On the other hand, if ϕ(x) ∈ ℓ∞, then p∗ 7→ 〈p∗, ϕ(x)〉 is linear and weak∗-
continuous. It follows that for any x∗ the function p∗ 7→ (p∗ ◦ F )∗(x∗) is an upper
bound of affine and weak∗-continuous functions corresponding to x ∈ domF .

Proposition 3.5. Suppose that Φ(x) = 0. Then x∗ ∈ ∂Φ(x) if and only if there is
a p∗ ∈ P ∗ such that (x∗,−p∗) ∈ N(GraphF, (x,0)).

Proof. Let p∗ ∈ P ∗ and (x∗,−p∗) ∈ N(GraphF, (x, 0)). Then (12) holds, so that

(p∗ ◦ F )∗(u∗) ≥ Φ∗(u∗), ∀u∗ ∈ X∗.

On the other hand, by Proposition 3.2 x∗ ∈ ∂(p∗◦F )(x) and (p∗◦F )(x) = Φ(x) = 0.
Thus

Φ∗(x∗) ≤ (p∗ ◦ F )∗(x∗) = 〈x∗, x〉 − (p∗ ◦ F )(x) = 〈x∗, x〉 − Φ(x)

which shows that x∗ ∈ ∂Φ(x).

To prove the opposite implication, we first observe that

Φ(x) = sup
p∗∈P ∗

(p∗ ◦ F )(x).

Indeed, on the one hand, we have (12). On the other hand, (δt ◦ F )(x) = ϕt(x)
if F (x) 6= ∅ which together with the fact that otherwise (p∗ ◦ F )(x) = ∞ for any
p∗ ≥ 0 gives the opposite inequality.

As P ∗ is a convex and weak∗-compact set, it follows, in view of the minimax theorem
of Sion [19], that

Φ∗(x∗) = sup
x

(〈x∗, x〉)− sup
p∗∈P ∗

(p∗ ◦ F )(x))

= sup
x

inf
p∗∈P ∗

(〈x∗, x〉 − sup
p∗∈P ∗

(p∗ ◦ F )(x))

= inf
p∗∈P ∗

sup
x

(〈x∗, x〉 − (p∗ ◦ F )(x))

= inf
p∗∈P ∗

(p∗ ◦ F )∗(x∗). (13)
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By Proposition 3.3 the infimum in the last expression is attained, so that Φ∗(x∗) =
(p∗ ◦ F )∗(x∗) for some p∗ ∈ P ∗. If now x∗ ∈ ∂Φ(x), we therefore get

(p∗ ◦ F )∗(x∗) = Φ∗(x∗) = 〈x∗, x〉 − Φ(x) ≤ 〈x∗, x)− (p∗ ◦ F )(x)

which may be valid only if x∗ ∈ ∂(p∗ ◦ F )(x) and (p∗ ◦ F )(x) = Φ(x) = 0.

Summarizing the results of Propositions 3.2 and 3.5, we get the following theorem.

Theorem 3.6. Suppose that the functions ϕt are convex and lower semicontinuous
for all t ∈ T and Φ(x) = 0 for some x ∈ X. Then the following conditions are
equivalent if (UB) holds:

(a) x∗ ∈ ∂Φ(x);

(b) x∗ ∈ ∂(p∗ ◦ F )(x) for some p∗ ∈ P ∗ such that (p∗ ◦ F )(x) = 0;

(c) (x∗,−p∗) ∈ N(GraphF, (x, 0)) for some p∗ ∈ P ∗;

(d) (x∗, 〈x∗, x〉) ∈ epi Φ∗.

Proof. Propositions 3.5 and 3.2 show that (a), (b) and (c) are equivalent, and (d)
is an obvious reformulation of (a) if Φ(x) = 0.

Remark 3.7. Condition (d) can be equivalently written as

(x∗, 〈x∗, x〉) ∈ cl∗ conv

(

⋃

t∈T

Graphϕ∗
t

)

. (14)

Indeed, as Φ(x) = 0, (d) is obviously the same as (x∗, 〈x∗, x〉) ∈ GraphΦ∗. On the
other hand, the epigraph of Φ∗ is the weak∗ closure of the convex hull of the union
of epiϕ∗

t . (14) is an immediate consequence of these two facts.

Theorem 3.8. Assume that the functions ϕt are convex and lower semicontinuous
and 0 ∈ F (x), that is Φ(x) ≤ 0. Then

surF (x|0) =

{

d(0, ∂Φ(x)) = min{‖x∗‖ : x∗ ∈ ∂Φ(x)} if Φ(x) = 0;

∞, if Φ(x) < 0.

and therefore
lipS(0, x) = sup{‖x∗‖−1 : x∗ ∈ ∂Φ(x)}.

if Φ(x) = 0 and lipS(0, x) = 0 if Φ(x) < 0.

Proof. The case Φ(x) < 0 is trivial as in this case the tangent cone to F (x) at 0 is
the whole of Y , and the result is immediate from Proposition 3.1. In the nontrivial
case Φ(x) = 0 the result follows from Theorem 3.6 (and Proposition 3.1).

Consider a special case of (6) with

ϕt(x) = 〈at, x〉 − βt; at ∈ X∗, bt ∈ R. (15)

The Fenchel conjugate of ϕt is equal to βt plus the indicator of {at}. Applying this
along with Remark 3.7, we get
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Corollary 3.9. Let x ∈ X solves (4) with ϕt given by (15) and Φ(x) = 0. Set

C = cl∗ conv

(

⋃

t∈T

(at, βt)

)

.

Then surF (x|0) = inf{‖x∗‖ : (x∗, 〈x∗, x〉) ∈ C}.

The corollary strengthens the recent result of [6] in two important respects. First
it shows that no qualification condition is needed for the result. In [6] it is assumed
that the strong Slater condition is satisfied, that is there are x and ε > 0 such
that ϕt(x) < −ε for all t. (Of course the absence of this condition trivially implies
that surF (x|0) = 0 but the point is that there is no need in a priori verification of
the Slater condition which may be as painstaking as the calculation of the rate of
surjection). Secondly we do not assume that either at or bt are uniformly bounded.

The questions about the radius of regularity of F at (x, 0) and the distance to
infeasibility for the system 0 ∈ F (x) can also be easily answered. In the proposition
below we consider the max-norm ‖(x∗, α)‖ = max{‖x∗‖, |α|} in X∗ × IR.

Proposition 3.10. The radius of regularity of F at (x,0) is equal to d(0, ∂Φ(x)),
and the distance to feasibility for the system 0 ∈ F (x) is

d((0, 0), epi Φ∗) = inf{‖(x∗, α)‖ : (x∗, α) ∈ epi Φ∗} = inf
x∗

max{‖x∗‖,Φ∗(x∗)}.

In particular for systems of linear inequalities with ϕt defined by (15), the distance
to infeasibility of the system 0 ∈ F (x) is

d((0, 0), C) = inf{(‖(x∗, α)‖ : (x∗, α) ∈ C}.

Proof. The first statement is an immediate consequence of Propositions 2.3 and
3.1 and Theorem 3.8. To prove the second we apply Proposition 2.4. We have

SGraphF (x
∗,−p∗) =

{

(p∗ ◦ F )∗(x∗), if p∗ ≥ 0;

∞, otherwise

The arguments needed for the proof of the equality basically repeat what was said
in the beginning of the proof of Proposition 3.2. We have therefore

inf
‖p∗‖=1

inf
x∗

max{‖x∗‖, SGraphF (x
∗,−p∗)}

= inf
x∗

inf
p∗∈P ∗

max{‖x∗‖, (p∗ ◦ F )∗(x∗)}

= inf
x∗

max{‖x∗‖, inf
p∗∈P ∗

(p∗ ◦ F )∗(x∗)} = max{‖x∗‖,Φ∗(x∗)}

(the second equality due to (11)). A reference to Proposition 2.4 completes the
proof.
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4. Equality and inequality constraints.

We now turn to the general system (1) containing a linear operator equality along
with a system of convex inequalities. As above we start by introducing the set-
valued mapping G : X ⇉ ℓ∞(T )× Y :

G(x) = {(a, y) ∈ ℓ∞(T )× Y : at ≥ ϕt(x), ∀ t ∈ T, y = Ax} = F (x)× {A(x)}.

As in the case of F , our purpose will be to find estimates for the rate of surjection
of G at a certain given point of the graph. To this end, we fix the max norm
in ℓ∞ × Y : ‖(a, y)‖ = max{‖a‖, ‖y‖}, so that the dual norm in (ℓ∞)∗ × Y ∗ is
‖(p∗, y∗)‖ = ‖p∗‖+ ‖y∗‖.

We shall need "ε-versions" of some of the implications of Theorem 3.6. Recall
that, given a function f on X, the ε-subdifferential of f at x is ∂εf(x) = {x∗ :
f(x) + f ∗(x∗) ≤ 〈x∗, x〉+ ε}.

Proposition 4.1. We posit the assumptions of Theorem 3.6. Let ε ≥ 0, p∗ ∈ P ∗

and (p∗ ◦ F )(x) ≥ −ε. If under these conditions x∗ ∈ ∂ε(p
∗ ◦ F )(x), then x∗ ∈

∂2εΦ(x).

Proof. Indeed, as we have seen (p∗ ◦ F )∗(x∗) ≥ Φ∗(x∗) and, on the other hand,
(p∗ ◦ F )(x) ≥ Φ(x)− ε by the assumption. Thus

Φ∗(x∗) ≤ 〈x∗, x〉 − (p∗ ◦ F )(x) + ε ≤ 〈x∗, x〉 − Φ(x) + 2ε

as claimed.

We are ready to prove the second main result of the paper. Set

Ω(x) = {(α, y∗) ∈ IR× Y ∗ : α ≥ 0, αΦ(x) = 0, α+ ‖y∗‖ = 1}.

Theorem 4.2. Assume as before that ϕt for any t ∈ T is a convex lower semi-
continuous function, the uniform boundedness assumption is satisfied and Φ(x) =
supt ϕt(x). Let A : X → Y be a linear bounded operator, and let Φ(x) ≤ 0, Ax = y

for some x ∈ X, y ∈ Y , so that (x,0, y) ∈ GraphG. Then

surG(x|(0, y)) ≤ inf{‖x∗ + A∗y∗‖ : x∗ ∈ ∂(αΦ)(x)), (α, y∗) ∈ Ω(x)};

surG(x|(0, y)) ≥ lim
ε→0

inf{‖x∗ + A∗y∗‖ : x∗ ∈ ∂ε(αΦ)(x)), (α, y
∗) ∈ Ω(x)};

Moreover, if dimY < ∞, equality holds in both relations. In other words, in this
case

surG(x|(0, y)) = inf{‖x∗ + A∗y∗‖ : x∗ ∈ ∂(αΦ)(x)), (α, y∗) ∈ Ω(x)};

Remark 4.3. Here we identify (0 · Φ)(·) with the indicator of domΦ (obviously
equal to domF ). The theorem also applies to the degenerate cases when T = ∅ or
Y = {0}. In the first case Φ(x) ≡ −∞ and the condition αΦ(x) = 0 may only be
satisfied when α = 0, and we may adopt the convention that 0× (−∞) = 0 to make
the conclusion formally valid. If Y = {0}, then also Y ∗ may contain only the zero
vector and we get the already established result with α = 1.
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Proof. Denote by A the contingent derivative of G at (x, (0, y)). Then

surG(x|(0, y)) ≤ surA(0|(0, 0)).

(since GraphG ∈ (x|(0, y))+GraphA). On the other hand, as follows from (3) and
Theorem 3 of [12], every closed convex process is perfectly regular at the origin.
But the normal cone to the graph of A at the origin coincides with the normal cone
to the graph of G at (x, (0, y)). This means that x∗ ∈ D∗A(0|(0, 0))(p∗, y∗) if and
only if

〈x∗, x− x〉 − 〈p∗, a〉 − 〈y∗, y − y〉 ≤ 0, ∀(x, a, y) ∈ GraphG,

which is the same as

〈x∗ − A∗y∗, x− x〉 − 〈p∗, a〉 ≤ 0, ∀(x, a) ∈ GraphF.

By Proposition 2.4 the latter is equivalent to

p∗ ≥ 0, x∗ − A∗y∗ ∈ ∂(p∗ ◦ F )(x), (p∗ ◦ F )(x) = 0.

As follows from Proposition 3.3 the relations u∗ ∈ ∂(p∗ ◦ F )(x), (p∗ ◦ F )(x) =
Φ(x) = 0 and ‖p∗‖ = α are equivalent to u∗ ∈ ∂(αΦ(x)) if α > 0. For α = 0 the
equivalence follows from the fact that both p∗ ◦F and αΦ reduce in this case to the
indicator of domΦ. Thus

surA(0|(0, 0)) = inf{‖x∗‖ : x∗ − A∗y∗ ∈ ∂(αΦ(x)), α+ ‖y∗‖ = 1}.

Replacing x∗ by x∗ + A∗y∗, we get the first of the two declared inequalities.

The proof of the second inequality needs Theorem 2.1. According to the formlula
for the surjection modulus of a convex set-valued mapping provided by the theorem

surG(x|(0, y)) = lim
λ→0

inf

{

‖u∗‖+
1

λ
SQ(u

∗, p∗, y∗) : ‖p∗‖+ ‖y∗‖ = 1

}

, (16)

where Q = GraphG− (x, 0, y) and SQ is the support function of Q, that is

SQ(u
∗, p∗, y∗) = sup{〈u∗, x− x〉+ 〈p∗, a〉+ 〈y∗, y − y〉 : (x, a, y) ∈ GraphG}

= sup{〈u∗ − A∗y∗, x− x〉+ 〈p∗, a〉 : (x, a) ∈ GraphF}.

As above we see that if SQ(u
∗,−p∗,−y∗) < ∞, then p∗ ≥ 0 and

SQ(u
∗,−p∗,−y∗) = sup

x

(〈u∗ − A∗y∗, x− x〉 − (p∗ ◦ F )(x))

= (p∗ ◦ F )∗(u∗ − A∗y∗)− 〈u∗ − A∗y∗, x〉. (17)

Observe further that surG(x|(0, y)) ≤ surA if dimY > 0 (in other words, if the
equality part of (1) is present), and the surjection rate of a linear operator is nec-
essarily finite. Therefore surG(x|(0, y)) < ∞ and for some K > 0 the inequal-
ity SQ(u

∗, p∗, y∗) ≤ Kλ holds whenever (u∗, p∗, y∗) realize, say λ-infimum in (16).
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On the other hand SQ(u
∗, p∗, y∗) ≥ 0 for all u∗, p∗, y∗ as Q contains the origin of

X × ℓ∞(T )× Y . Therefore

surG(x, (0, y)) ≥ lim
ε→0

inf{‖u∗‖ : SQ(u
∗, p∗, y∗) ≤ ε, ‖p∗‖+ ‖y∗‖ = 1} (18)

Combining (17) with (18) and setting x∗ = u∗ − A∗y∗, we get

surG(x, (0, y)) (19)

≥ lim
ε→0

{‖x∗ + A∗y∗‖ : p∗ ≥ 0, ‖p∗‖+ ‖y∗‖ = 1, (p∗ ◦ F )∗(x∗) ≤ 〈x∗, x〉+ ε}.

We note next that (p∗ ◦ F )(x) ≥ −ε if (p∗ ◦ F )∗(x∗) ≤ 〈x∗, x〉+ ε and on the other
hand, the latter inequality together with the fact that (p∗◦F )(x) ≤ Φ(x) ≤ 0 implies
that x∗ ∈ ∂ε(p

∗ ◦ F )(x) and therefore by Proposition 3.4 that x∗ ∈ ∂2ε‖p
∗‖Φ(x) if

p∗ 6= 0. If p∗ = 0, the equality, as in the first part of the proof follows from the fact
that both p∗ ◦F and ‖p∗‖Φ reduce to the indicator of domΦ. Setting α = ‖p∗‖, we
get from (19) the second of the declared inequalities.

If finally dimY < ∞, take x∗
n, p

∗
n, y

∗
n realizing infimum in (18) for ε = n−1. Let

x∗, p∗, y∗ be a weak∗ cluster point of the sequence. Then p∗ ≥ 0 ‖p∗‖ + ‖y∗‖ = 1,
x∗ +A∗y∗ ∈ ∂Φ(x) and ‖x∗ +A∗y∗‖ ≤ lim inf ‖x∗

n +A∗y∗n‖. Thus, setting α = ‖p∗‖,
we see from the second inequality in the statement that α + ‖A∗y∗‖ = 1 and
surG(x|(0, y) ≥ ‖x∗ + A∗y∗‖. The reference to the first inequality completes the
proof of the theorem.

We observe that here again no qualification condition is required by the theorem.
Its specialization for the case of linear inequalities is technically not much more
complicated that in the pure inequality case of the previous section. In particular,
for the case dimY < ∞ we get

Corollary 4.4. Suppose dimY < ∞ and ϕt(x) = 〈at, x〉 − βt. Let x ∈ X be such
that ϕt(x) ≤ 0 for all t ∈ T . Set Ax = y. then

surG(x|(0, y)) = inf{‖u∗‖ : (u∗, 〈u∗, x〉) ∈ E},

where

E = cl∗ (conv{α(at.βt) + (A∗y∗, 〈y∗y〉) : α ≥ 0, α+ ‖y∗‖ = 1, t ∈ T}) .

An alternative way to prove the part of the theorem relating to A with finite di-
mensional range is offered by the following proposition.

Proposition 4.5. If dimY < ∞, then G is perfectly regular at any point of its
graph. Hence in this case radG(x, (0, y)) = surG(x|(0, y)).

Proof. This is an immediate consequence of Proposition 2.2. Indeed, on the one
hand, the set Q = {(−p∗, y∗) ∈ (ℓ∞)∗ × y∗ : p∗ ≥ 0, ‖p∗‖ + ‖y∗‖ = 1} is com-
pact in the product of the weak∗-topology in (ℓ∞)∗ and standard topology of Y ∗

and, on the other hand, as we have seen, (p∗, y∗) ∈ Q if ‖p∗‖ + ‖y∗‖ = 1 and
SGraphG−(x,0,y)(x

∗,−p∗, y∗) < ∞.
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Thus the problem of radius of regularity in this case is trivially solved by this
proposition. The question about the radius of regularity of G in case of infinitely
many equalities remains however open. Finally, as far as the distance to infeasibility
is concerned, the same simple arguments as in the proof of Proposition 3.10 lead to

Proposition 4.6. Under the assumptions of Theorem 4.2 the distance to infeasi-
bility of the system (0, y) ∈ G(x) is

inf
x∗

max{‖x∗‖, inf{αΦ∗(x∗ − A∗y∗) + 〈y∗, y〉 : α+ ‖y∗‖ = 1}}.

In particular, if y = 0 the distance to infeasibility is

inf{‖(x∗ + A∗y∗, β)‖ : (x∗, β) ∈ epi(αΦ∗); α ≥ 0, α+ ‖y∗‖ = 1}.

Acknowledgements. I am thankful to the referee for pointing out a gap in the proof

of Proposition 2.3.
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infinite constraint systems, Math. Program. 104 (2005) 329–346.
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