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In their study of price discrimination for a monopolist selling heterogeneous products to consumers
having private information about their own multidimensional types, J.-C. Rochet and P. Choné
[Ironing, sweeping, and multidimensional screening, Econometrica 66 (1998) 783–826] discovered
a new form of screening in which consumers with intermediate types are bunched together into
isochoice groups of various dimensions incentivized to purchase the same product. They analyzed
a particular example involving customer types distributed uniformly over the unit square. For
this example, we prove that their proposed solution is not selfconsistent, and we indicate how
consistency can be restored.
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1. Introduction

Let potential consumers be parameterized by types x ∈ Rn and products by types
y ∈ [0,∞)n, with y = (0, . . . , 0) representing the null product or outside option.
Taking b(x, y) = x · y to be the direct utility of product y to agent x, Rochet and
Choné [6] study the price menu v(y) a monopolist will select to maximize her profits
when the price v(0, . . . , 0) = 0 of the outside option is constrained, assuming the
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distribution dµ(x) of agents and the monopolist’s cost c(y) to produce each product
y are both known. They show v can be taken to be the convex dual function of the
consumers’ indirect utility u(x), which in turn maximizes the profit functional

Φ[u] :=

∫
Rn

[x ·Du(x)− u(x)− c(Du(x))] dµ(x) (1)

among non-negative convex functions u : Rn −→ [0,∞] which are coordinatewise
nondecreasing. The product y = Du(x) selected by consumer type x coincides
with the gradient of u at its points of differentiability. They give an abstract char-
acterization of the maximizing u, and explore its implications for the particular
example in which c(y) = |y|2/2, n = 2 and µ is distributed uniformly over the
square Ω := [a, a + 1]2 for fixed a > 0. Although their abstract characterization is
no doubt correct, we demonstrate an inconsistency in their subsequent analysis of
the square example; we show it is possible to restore consistency by modifying their
solution to accommodate an overlooked market segment. In this example, Rochet
and Choné assert the unique maximizer u ∈ C1(Ω) and divides Ω into three regions

Ω0

Ω1

Ω2

Figure 1.1: Partition of Ω (according to the rank of D2u) given by Rochet and
Choné [6].

Ω0 = {(x1, x2) ∈ Ω : x1 + x2 ≤ t0.5} (2)
Ω1 = {(x1, x2) ∈ Ω : t0.5 < x1 + x2 ≤ t1.5} (3)
Ω2 = {(x1, x2) ∈ Ω : t1.5 < x1 + x2} (4)

of qualitatively different behaviour: a triangle Ω0 of excluded customers on which
u(x) = 0; a strip Ω1 foliated by lines x1+x2 = t of customers each of whom chooses
a product y = (U ′(t), U ′(t)) from the diagonal, where

u(x1, x2) = u1(x1, x2) = U(x1 + x2)

satisfies U(t) =
3

8
t2 − 1

2
at− 1

2
log |t− 2a|+ C0, (5)

with matching conditions U(t0.5) = 0 = U ′(t0.5) selecting the constants C0 and t0.5;
and a third region Ω2 on which u = u2 is strictly convex (so that each agent gets a
customized product) and satisfies the mixed Dirichlet / Neumann problem for the
Poisson equation 

∆u2 := (
∂2u2

∂x2
1

+
∂2u2

∂x2
2

) = 3, on Int(Ω2),

(Du2(x)− x) · n̂(x) = 0, on ∂Ω2 ∩ ∂Ω,

u2 − u1 = 0, on ∂Ω1 ∩ ∂Ω2.

(6)
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Here n̂(x) denotes the outer unit normal to the interior Int(Ω2) of the domain at
x ∈ ∂Ω2, and the additional boundary condition

D(u2 − u1) · n̂(x) = 0, on ∂Ω1 ∩ ∂Ω2 (7)

is supposed to select and be satisfied by some constant t1.5 ∈ R.
Subsequent numerics by Ekeland and Moreno-Bromberg [3] and Mirebeau [5] sug-
gest this description is mostly but not entirely correct: in Figure 1.2, the region
Ω1 appears not to be a strip, but to have a more complicated upper boundary,
parameterized by a nonsmooth curve t1.5( · ) over the anti-diagonal:

Ω1 = {(x1, x2) ∈ Ω : t0.5 < x1 + x2 ≤ t1.5(x1 − x2)}. (8)

Below, we prove rigorously that Rochet and Choné [6]’s ansatz t1.5 ≡ const cannot
be correct. Before doing so, we explain how to correct it and make it consistent with
the theoretical and numerical evidence: assuming temporarily that we know Ω1 (and
hence Ω2), we first augment Rochet and Choné’s description of u = u1 in Ω1; we
claim that (Ω1, u2) solves the boundary value problem (6)–(8). In [4], the authors
give a nonrigorous justification of this claim, along with the rigorous proof that only
one such pair (Ω1, u2) solving (6)–(8) can yield u convex throughout Ω. Setting
aside the degree of rigor of the justification, this gives a unique characterization of
the solution. Since finding the edge ∂Ω1∩∂Ω2 of the unknown domain is half of the
challenge, this is called a free boundary problem in the mathematical literature.

Figure 1.2: Numerics from [5].
Left: level sets of detD2u with u = 0 on Ω0 and detD2u = 0 on Ω0 ∪ Ω1;
Right: intensity of products sold by the monopolist.

We begin with the ansatz that Ω1 = Ω0
1 ∪ Ω+

1 ∩ Ω−
1 splits into three regions: a strip

Ω0
1 := {(x1, x2) ∈ Ω1 : x1 + x2 ∈ (t0.5, t1.0]}, (9)

plus two regions
Ω±

1 := {(x1, x2) ∈ Ω1 \ Ω0
1 : ±(x1 − x2) ≥ 0}, (10)
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placed symmetrically below and above the diagonal as in Figure 1.3. The region
Ω0

1 is foliated by anti-diagonal isochoice sets, and the solution there u(x1, x2) =
U(x1 + x2) is exactly as Rochet and Choné describe (5). However, the region Ω−

1

and its reflection Ω+
1 below the diagonal are foliated by isochoice segments making

continuously varying angles θ with the horizontal.

θ

Ω0

Ω0
1

Ω−
1

Ω+
1

Ω2

(a, t0.5 − a)

(a, t1.0 − a)

(a, h(θ))

(a, x̄2)

Figure 1.3: Revised partition of the space Ω of agent types, and coordinates in Ω−
1 .

We describe the solution u = u−
1 in this region using an Euler-Lagrange equation

derived in [4]. Index each isochoice segment in Ω−
1 by its angle θ ∈ (−π

4
, π
2
]. Let

(a, h(θ)) denote its left-hand endpoint and parameterize the segment by distance
r ∈ [0, R(θ)] to this boundary point (a, h(θ)). Along the hypothesized length R(θ)
of this segment assume u increases linearly with slope m(θ) and offset b(θ):

u−
1

(
(a, h(θ)) + r(cos θ, sin θ)

)
= m(θ)r + b(θ). (11)

Given a constant t1.0 ∈ [2a, 2a + 1] and R :
[
−π

4
, π
2

]
→

[
0,
√
2
)

locally Lipschitz on
its interval of positivity, with R

(
−π

4

)
= (t1.0 − 2a)/

√
2, solve

m(−π

4
) = 0, m′(−π

4
) =

√
2U ′ (t1.0) such that (12)

(m′′(θ) +m(θ)− 2R(θ))(m′(θ) sin θ −m(θ) cos θ + a) =
3

2
R2(θ) cos θ. (13)

Then set

h(θ) = (t1.0 − a) +
1

3

∫ θ

−π/4

(m′′(ϑ) +m(ϑ)− 2R(ϑ))
dϑ

cosϑ
, (14)

b(θ) = U(t1.0) +

∫ θ

−π/4

(m′(ϑ) cosϑ+m(ϑ) sinϑ)h′(ϑ)dϑ. (15)

Given t1.0 and R(·) as above, the triple (m, b, h) satisfying (13)–(15) exists and is
unique on the interval where R(·) > 0. Thus the shape of Ω−

1 – or equivalently t1.5(·)
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from (8) – and the value of u−
1 on it will be uniquely determined by t1.0 ∈ [2a, 2a+1]

and R :
(
−π

4
, π
2

]
→

[
0,
√
2
)
. We henceforth restrict our attention to choices of t1.0

and R(·) for which the resulting set Ω−
1 lies above the diagonal and in the square

Ω. In this case Ω+
1 and the value of u = u+

1 on Ω+
1 are determined by reflection

symmetry x1 ↔ x2 across the diagonal. Together, u±
1 and (5) define u = u1 on

Ω1 and provide the boundary data on ∂Ω1 ∩ ∂Ω2 needed for the boundary value
problem (6) which determines u2. Finally, as claimed above, for only one choice of
t1.0 and R(·) can u (pieced together from u0, u1 and u2) be convex and satisfy the
extra boundary condition (7); when it exists (and we argue conditionally in [4] that
it does) this choice uniquely solves Rochet and Choné’s [6]’s square model.
The solution we propose also appears consistent with phenomena observed numeri-
cally and discussed in an investment-to-match taxation model proposed by Boerma,
Tsyvinski and Zimin [1] simultaneously and independently of the present work. In
their terminology Ω1 decomposes into a blunt bunching region Ω0

1 in which the op-
timal product selected does not differentiate between buyers according to the sign
x1−x2 distinguishing their dominant trait, as opposed to the targeted bunching re-
gions Ω±

1 in which the product selected sorts along the dimension of their dominant
trait and bunches in the other dimension. In our case, the two regions can also be
distinguished by the fact that the indirect utility u(x) is constant on each bunch
in the blunt bunching region Ω0

1, whereas it varies along generic bunches in the
targeted bunching regions Ω±

1 . The latter are responsible for the anomalously high
consumption of products along the red part of the boundary lining the yellow-green
customization region in Figure 2.
As shown in Figure 1.1, Rochet and Choné [6] hypothesized that the regions (2)–(4)
are separated by two segments parallel to the anti-diagonal, so

Ω1 = {(x1, x2) ∈ Ω : t0.5 < x1 + x2 ≤ t1.5}

with t0.5 =
4a+

√
4a2+6
3

and t1.5 = 2a+
√
6
3

. Thus, they do not consider the possibility
of a non-empty subset Ω±

1 ⊂ Ω1 where u(x) does not just depend on x1 + x2 (nor
do they consider any system of equations comparable to (11)–(15)). Apart from
that, their proposed solution is identical to ours, except that they fail to take into
account that enforcing both the Dirichlet and Neumann conditions (6)–(7) on a line
separating Ω1 from Ω2 overdetermines the problem and prevents the free interface
from being a line segment. As a result, we now show their proposed solution to
be inconsistent with the continuous differentiability u ∈ C1(Ω) up to the boundary
claimed by Rochet and Choné [6], and also by Carlier and Lachand-Robert [2].

Lemma 1.1. If u : Ω −→ [0,∞) convex nondecreasing satisfies (2) –(7) (so that
Ω±

1 are empty), then u ̸∈ C1(Ω) hence cannot maximize (1) for c(y) = |y|2/2 and
dµ(x) = 1Ω(x)dx.

Proof. Rochet and Choné [6] showed that if u convex and (coordinatewise) nonde-
creasing satisfies (2)–(7) (so Ω±

1 are empty), then

Ω1 = {(x1, x2) ∈ Ω | t0.5 ≤ x1 + x2 ≤ t1.5}

is bounded by t0.5 =
4a+

√
4a2+6
3

and t1.5 = 2a+
√
6
3

= t1.0.
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Differentiating (5) at x1 + x2 = t1.5 implies their solution to (6) also satisfies

Du(x) = (a, a) on ∂Ω1 ∩ ∂Ω2. (16)

Assume that Rochet and Choné’s solution u ∈ C1(Ω) exists and is convex. This
convexity implies ux1x1 ≥ 0 on the interior Int(Ω2) of Ω2, hence the Poisson equation
implies ux2x2 ≤ 3 there.

Set x′ = (a, a +
√
6
3
) ⊂ ∂Ω ∩ ∂Ω1 ∩ ∂Ω2. From (16), ux2(x

′) = a. Since u ∈ C1(Ω),
there exists a point x′′ ∈ Int(Ω2) with the same x2 coordinate as x′ such that
ux2(x

′′) ≤ a+ 1
10

.
Denote by x′′′ = (x′′

1, a+1) ∈ ∂Ω the point on the top edge of the square having the
same x1 coordinate as x′′. Then the Neumann condition (6) implies ux2(x

′′′) = a+1.

But ux2(x
′′′)− ux2(x

′′) =

∫ a+1

a+
√

2/3

ux2x2(x
′′
1, x2)dx2

≤ 3[1−
√

2/3)] <
3

5
,

contradicting ux2(x
′′′)− ux2(x

′′) ≥ (a+ 1)− (a+ 1
10
) = 9

10
.

This contradiction shows the C1 differentiability of the maximizer up to the bound-
ary is inconsistent with the convexity of Rochet and Choné’s [6] alleged solution, in
which Ω±

1 are empty.
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