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Abstract. In computer graphics, it is often an advantage to calculate refractions
directly, especially when the application is time-critical or when line graphics have
to be displayed. We specify efficient formulas and parametric equations for the
refraction on straight lines and planes. Furthermore, we develop a general theory
of refractions, with reflections as a special case. In the plane case, all refracted
rays are normal to a characteristic conic section. We investigate the relation of
this conic section and the diacaustic curve. Using this, we can deduce properties
of reciprocal refraction and a virtual object transformation that makes it possible
to produce 2D-refraction images with additional depth information.
In the three-dimensional case, we investigate the counter image of a straight line.
It is a very special ruled surface of order four. This yields results on the order of
the refrax of algebraic curves and on the shading of refracted polygons. Finally,
we provide a formula for the diacaustic of a circle.
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1. Introduction and state of the art

Refractions are to be seen everywhere in daily life. Diving in the sea or watching fish in an
aquarium produces remarkable optical effects. Refractions play an important role in technical
applications as well: eye glasses, optical lenses, underwater photography etc. Mathematicians
have been interested in refraction phenomena for quite a while. We will now briefly describe
the most important results of 300 years of research.

The first to investigate refraction and reflection wereTschirnhaus andHuygens (around
1680). They and — a little later — Johann Bernoulli were especially interested in caustics,
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the hull curves of a one parameter set of rays that are reflected or refracted on a plane curve.1

Caustics produce nice optical effects because the light intensity is maximal along them. They
also permit a deeper insight into many reflection and refraction phenomena. E.g., the cata-
caustic of a pencil E(e) of rays with respect to a circle c is an algebraic curve of class four.
Thus, a circle (or a sphere) has theoretically four specular points (see Fig. 1).2

Figure 1: The catacaustic c of a circle k with respect to the light source E: The involute o
of c is at the same time the orthonomic of k (a limaçon of Pascal). The conic section s with
focal points E and F through R osculates k.

It also makes sense to investigate caustic surfaces, i.e., the focal surfaces of a two param-
eter set of rays refracted or reflected on a surface [8, 10]. Luckily, the spatial problem can
sometimes be reduced to a planar problem.

The case where the set of rays being refracted is a pencil E(e) is of special interest. It
serves as a 2D-model for human perception as well as for illumination of a scene with refracting
objects. In [7] and [14], a general method of constructing caustics in this case was introduced:
The refracted rays are all perpendicular to a hull curve h of certain circles. Thus, the caustic
is the evolute of h (compare Fig. 17).3

Since the days of Tschirnhaus and Huygens, the caustics for many special cases were
described by a number of authors [3, 11, 15, 20].

Caustics of higher order were also studied. The light rays are not only refracted once
but twice or even more often on a certain curve or surface. The problem of the n-th caustic
of reflection on a circle, e.g., was solved in [9]. In this context the theorem of Malus is
important: A two parameter set of straight lines is called a line normal congruence when it is
the set of normals of a surface. The theorem of Malus now states that a normal congruence
remains normal after an arbitrary number of reflections or refractions.4

In [5], the caustics of a pencil of lines E(e) with respect to a plane curve k . . . ~x = ~x(t)
were calculated in a general form. The same authors solved the problem of finding the

1The caustics of reflections are called catacaustics, those of refraction diacaustics. The term caustic refers
to both cata- and diacaustics.

2It is quite remarkable that all four specular points can be of practical relevance (see [8]).
3In case of a reflection h is the orthonomic o of the reflecting curve with respect to E (compare Fig. 1).
4For a proof of this theorem, see [18]. Of course, an analogous theorem holds for the plane case.
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“anticaustics”, i.e., the one parameter set of curves producing a certain given caustic in [6].
The given formulas, however, and the related differential equations are quite complicate.

In [12] a completely different way of constructing the catacaustic of a pencil of lines E(e)
was introduced:

We regard a conic section s osculating the reflecting curve k and having E as one focal
point. Then the corresponding point on the catacaustic is the focal point F 6= E of this conic
(see Fig. 1).

A lot of recent books and publications on computer graphics deal with the topic of re-
flection and refraction. Apart from rather basic considerations, however, they usually rely on
ray-tracing methods or approximating calculations and hardly ever make use of the profound
(but rather old and not well-known) theoretical background. Therefore we think it is time to
present a new theory of reflection and refraction adapted to the needs of modern computer
graphics.

2. The physical approach: Snell’s Law, Fermat’s principle

We will now present the physical basics of geometrical optics in Euclidean 2-space E2. We
choose a straight refracting line s, an eye point E /∈ s and a positive real fraction ratio r.
For easier writing, R[s; r;E] shall denote the refraction on s with ratio r with respect to E.
(This notation is generalization of the notation introduced in [8] for reflections.)

Figure 2: Refraction on a straight line

Physically speaking, r has the following meaning: When light propagates with speed c1

on the side of E, it propagates with speed c2 = c1/r on the other side of s. For r > 1, the
side on E is “optically less dense”. In Fig. 2, r ≈ 1.33 was chosen for the ratio of the light
speed in the atmosphere (to the right) and water (to the left).

With R[s; r;E], we connect a Cartesian coordinate system as follows (Fig. 2): E is a
point on the positive x-axis (position vector ~e = (e, 0)T ) and s is the y-axis.

Due to the physical law of refraction (Snell’s law), a straight line b1 (incidence angle α1

to the normal of s) is refracted into a straight line b2 = R[s; r;E](b1) through B = b1∩ s with
incidence angle α2 according to the equation

sinα1 = r sinα2. (1)



4 G. Glaeser, H.P. Schröcker: Reflections on Refractions

Though in principle we have α1, α2 ∈ [−π/2, π/2], there is a restriction on either α1 or α2:
For r > 1, the refracted ray will have a maximum angle of |α2| ≤ arcsin(1/r), for r < 1
rays are only refracted when |α1| ≤ arcsin r. E.g., for r ≈ 0.75 (water −→ air) we have
|α1| ≤ αmax

1 = 48.5◦. Refraction is always accompanied by reflection: The smaller the angle
α1 is, the less reflection occurs. For |α1| ≥ αmax

1 , we have total reflection on s.

Figure 3: Who can see whom?

As a consequence, fish A in a calm pool (Fig. 3) will see
• “everything” outside the pool, though partly very distorted. The refracted image fills a

circle c on the surface that stems from a cone of revolution Γ with apex angle 2× 48.5◦;

• the total reflections of those parts of the pool that are outside the reflected cone Γ∗

(e.g., fish C);

• very dim reflections of the rest of the pool (e.g., fish B) inside c as a result of partial
reflection;

• “everything” inside the pool, e.g. fish B and C.
When a person outside the pool takes a picture of the pool (e.g., from the spring board), the
image will show all the fish. In the following section we will develop an efficient method of
computing the seeming positions on this photo.

3. Refracting projecting rays through space points

Snell’s law does not explicitely require the position of the eye point. Nevertheless, we will
now take into account such a point, since we usually observe with our eye (or even two eyes, of
course). Therefore, we will distinguish between projection rays through E and general rays.

Let us take a simple example: From the border of a pool, we are watching a fish swimming
around. We all know that the fish is not at the position we see it. Our goal is now to solve
the two problems:

1. Given the position S of a point on the fish’s surface, we are looking for the projection
ray r through our eye that runs through S after being refracted on the pools plane
surface σ. The intersection point R = r ∩ σ will be the key for the determination of r.

2. Given the point R, can we say anything about the spatial position of S? Well, of course
we cannot with only one eye, but what if we look two-eyed?
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Speaking of fish: We call the photographic images created by refracting optical ultra-wide
angle lenses “fish-eye perspectives”. The creation of such curved perspectives is another
motivation for the investigation of refractions.

To cut longer sentences short, we will henceforth use a new word:

Definition 1 The “image” R ∈ Φ of a point S under the influence of a refraction on a
surface Φ (R = R[Φ; r;E](S)) is called refrax of S on Φ.

This comes close to the word “reflex” for the image of a point in a (plane) mirror.
We now want to solve the first problem: Given a point S left to σ, we are looking for its

refrax on σ, i.e., the point which we practically look at when we try to see S.
Obviously, the problem is two-dimensional: We consider the situation in an auxiliary

plane ν through E and S perpendicular to σ. Due to the laws of optics, R will automatically
lie in ν. In ν, the points have the coordinates E(e, 0), S(sx, sy), R(0, ry). The refracting line
is s = ν ∩ σ. Let again c1 be the light speed on the eye point’s side (e.g., outside the pool),
and c2 be the light speed on the other side (e.g., in the water ⇒ r = c1/c2 ≈ 1.33). Snell’s
physical approach was now to minimize the time the light ray needs to propagate from S
to E. Actually, the calculation used Fermat’s principle:

When light travels from E to S, it travels along a path or ray for which the time taken
(the “optical length”) has a stationary value with respect to infinitesimal variations of the path
(see, e.g., [18]):

ER/c1 +RS/c2 → min. ⇒
√
e2 + r2

y + r

√
s2

x + (ry − sy)2 → min. (2)

We introduce the variable y = ry. Then the “total-time function” or “optical length function”
(Fig. 4)

t(y) =
√
e2 + y2 + r

√
s2

x + (y − sy)2 (3)

has to have a minimum:

t′(y) =
y√

e2 + y2
+

r(y − sy)√
s2

x + (y − sy)2
= 0 (4)

This leads to an algebraic equation f(y) of fourth order in y:

f(y) = Ny4 − 2Nsyy
3 + (Ns2

y +
s2

x

r2
− e2)y2 + 2e2syy − e2s2

y = 0 with N =
1

r2
− 1. (5)

We now prove

Theorem 1 The calculation of the “refrax” R = R[s; r;E](S) leads to the determination
of the roots of an algebraic polynomial (5) of degree four. The only root y0 that lies in the
interval [0, sy] is the practical solution.

Proof: Let u(y) =
√
e2 + y2 and v(y) = r

√
s2

x + (y − sy)2. All the solutions of (5) then

fulfill t′(y) = u′(y) + v′(y) = 0, or t̃′(y) = u′(y)− v′(y) = 0, respectively. Only those solutions
that fulfill t′(y) = 0 (4) are practical solutions. We will now show that exactly only one of
the roots yi fulfills (4), whereas the residual ones fulfill t̃′ = 0 (Fig. 4).

We have to verify: t(y) has only one position y0 of extremal value. y0 is the position of
a minimum and is in the interval [0, sy]. The positions of extremal values of t̃(y) are outside
this interval. This is exactly the contents of the following Lemma 1 with x0 = 0, x1 = sy.
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Figure 4: The four roots of f(y) Figure 5: Number of roots

Lemma 1 Let I ⊂ R be a real interval and u, v two strictly convex functions in C∞[I,R]. x0

and x1 > x0 be positions of minimum of u and v, respectively. Then we have:

1. The function t := u+ v has a unique position of minimum xm and xm ∈ [x0, x1].

2. The function t̃ := u− v has no position of extremum in [x0, x1].

Proof: t is strictly convex as well, and has therefore at most one position of minimum and
no position of maximum. Furthermore, strictly convex functions have strictly monotonous
derivatives which gives t′(x0) = v′(x0) < 0 and t′(x1) = u′(x1) > 0. Now by the theorem of
intermediate values there exists a real xm ∈ [x0, x1] satisfying t′(xm) = 0. xm is the uniquely
determined position of minimum of t.

Let us now suppose that xm ∈ I is a position of minimum of t̃. Then we necessarily get
u′(xm) = v′(xm). As xm 6= x0, x1 and u′ > 0 and v′ < 0 in (x0, x1), xm cannot be in [x0, x1].

Fig. 5 illustrates where we can expect four real roots yi, and where only two can be found.
Small areas around certain conics are numerically instable, i.e., we will not be able to verify
(4) when we declare an ε that is too small for |t′(y)| < ε (in Fig. 5, ε = 10−11 was chosen;
with ε = 10−6, the verification was always OK). We will explain this behavior in Section 4; it
is closely connected with the three residual roots of equation (5).

Anyway, the fast criterion 0 ≤ y ≤ sy (or sy ≤ y ≤ 0, respectively) works fine for all
points S ∈ E2, even on the side of E, since the sign of sx does not have an impact on (5).

The up to four real solutions of the polynomial (5) can be calculated by means of well
known formulas [16].5

5When less accuracy is necessary, we can find the only practical usable root of the polynomial even a bit
faster by means of Newton’s iteration, since we explicitly have the equation of f ′(x):

xn+1 = xn −
f(xn)

f ′(xn)
= xn −

c4x
4
n + c3x

3
n + c2x

2
n + c1xn + c0

4c4x3
n + 3c3x2

n + 2c2xn + c1

. (6)
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Figure 6: The characteristic ellipse Figure 7: The characteristic hyperbola

4. Diacaustic and characteristic conic of R[s; r; E]

In this section, we will take a closer look at the diacaustic of R[s; r;E]. Actually, for given r

and α1 (1) has two solutions α0
2 and π−α0

2. When we have a ray r1, we will therefore assume
two refracted rays r2 and r∗2 that are symmetric with respect to the refracting line s. This is
not appropriate in a physical model of refraction but here it makes sense as we will regard
refractions in terms of algebraic geometry as well.

We have to mention a special case: The refraction R[s; 1;E] (r = 1) is a reflection,
where each line l is reflected into a pair of lines r1 and r2 = l symmetrical with respect to s.
We will exclude this case sometimes without explicitly saying so in order to perform certain
calculations. In general, however, reflection is a special case of refraction.

For r < 1, a straight line r through E must intersect the refracting line s in a point
R(0, ry) with |ry| < er(1 − r2)−1/2 in order to produce real refracted rays, else there is no
restriction.

Definition 2 The diacaustic d of a pencil of rays E(1) with respect to a refracting line s is
the hull curve of all rays r2, r

∗
2.

Let now r1 = ER be a straight line (R(0, y = ry) ∈ s). We refract r1 and get a pair of straight
lines r2, r

∗
2. Let X(x, 0) be the intersection of r2 with the x-axis (Fig. 6). For α1 and α2 we

then have

sinα1 =
y√

e2 + y2
and sinα2 =

y√
x2 + y2

.

Together with (1), we get the following quadratic relation which describes a conic c:

c . . . x2 + y2(1− r2) = e2r2. (7)

We call c the characteristic conic ofR[s; r;E], since we can find a refracted ray by orthogonally
projecting a conic point on the coordinate axes and connecting these two points (Figures 6,
7). c is an ellipse if r < 1 (Fig. 6), a pair of parallel lines y = ±e if r = 1, and a hyperbola
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Figure 8: Diacaustic and involute ellipse Figure 9: Diacaustic and involute hyperbola

if r > 1 (Fig. 7). If r 6= 1, the vertices of the conic lie on the coordinate axes and have
coordinates (±a, 0)T , (0,±b)T (b is imaginary for r > 1):

a = er, b =
er√
1− r2

⇒ a

b
=
√
1− r2 (8)

In case of r = 1, all refracted (actually reflected) rays belong to one of the pencils with vertices
E or E∗(0,−e). Thus the diacaustic (actually catacaustic) degenerates into the two points E
and E∗.

If c is an ellipse or a hyperbola, a simple consideration shows that the diacaustic d is the
evolute of a conic h of the same type as c (Figures 8, 9). For the elliptic case we will give an
elementary proof:

We apply an affine transformation to the characteristic conic c such that it appears as
circle with radius b (Fig. 8). Then the line XR has constant length b and the affine hull curve
is the result of an elliptic motion, i.e., an astroid. Thus, d is affine to an astroid and evolute
of a conic [20]. The equation of this involute conic is

a2x2 + b2y2 =
a4b4

(a2 − b2)2
or r2(1− r2)x2 + r2y2 = e2(1− r2). (9)

Obviously, E is focus of h (see also [15]).
The refraction R[s; r;E] is fully described by the numbers a and b, since we then can

calculate r and e from a and b:

r =

√
1− a2

b2
, e =

a

r
. (10)

We can say:

Theorem 2 Each refraction R[s; r;E] is characterized by the conic (7). The diacaustic of
the pencil E(r1) with respect to R[s; r;E] is the evolute of a conic of the same type and has
its four real cusps in the vertices of the characteristic conic.

It is now time to reveal the secret of Fig. 5. The region where we can expect four real
solutions is the interior I(d) of the diacaustic (I(d) can be defined as the set of all points
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through which four real tangents of d pass).6 It is not difficult to show that the four roots
of equation (5) are the y-coordinates of the intersection points of these tangents with the y-
axis. Their geometrical meaning is quite remarkable, as three of them stem from the residual
solutions of a merely physical problem. The regions of numerical instability in Fig. 5 are just
the characteristic conics of the refraction.

Evolutes of conic sections are rational curves. Homogeneous rational parameter represen-
tations are for example

e1 . . . ~e1(t) =




(1 + t2)3

a1(1− t2)3

8b1t
3


 , e2 . . . ~e2(t) =




(1− t2)3

a2(1 + t2)3

8b2t
3


 , t ∈ R ∪ {∞}. (11)

In this formula e1 is the evolute of an ellipse, e2 the evolute of a hyperbola. a1, b1, a2 and b2

denote the (real) half-length of the axes of e1 and e2, respectively. The collineation

κ : R2 → R2, X =̂ ~x 7→ κ(X) =̂A~x,

where A is the matrix 


0 b1 0
a1b1a2 0 0

0 0 a1b2


 ,

maps the point ~e1(t) to the point ~e2(t).
7 The evolute of an ellipse and a hyperbola are hence

projectively equivalent. The same holds for the evolutes of two ellipses or two hyperbolas and
can easily be verified. With respect to the refraction this means:

Theorem 3 The diacaustics of all refractions on a straight line (with arbitrary ratio) are
projectively equivalent.

Theorem 3 is not difficult to prove, but not trivial, as the evolute of a curve is an object of
Euclidean geometry. It has an important consequence for the real time calculation of refraction
images. If we implement just one standard refraction (e.g., R[s; 4/5;E(0, 1)] ⇒ a = 4/5,
b = 4/3) by creating tables, we can calculate all other refractions in real time by transforming
the scenery using a simple collineation.

A well known parameter representation of d (see [1]) is

d . . . ~d(u) =

(
aC(u)
bS(u)

)
, u ∈ I (12)

where
C(u) = cosh(u), S(u) = sinh(u), I = R if c is an ellipse.
C(u) = cos(u), S(u) = sin(u), I = [−π, π) if c is a hyperbola.

Theorem 3 gives us now at once a second possible parameter representation of d:

d . . . ~d(u) =
1

C3(u)

(
a

bS3(u)

)
. (13)

We will refer to this parameterization in the next section.

6The evolutes of ellipses and hyperbolas are algebraic curves of order 6 and class 4, i.e., we have at most
four real tangents.

7Two of the cusps of e1 are mapped to the points at infinity of e2.
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5. Reciprocal refractions

We are going to study a special pair of refractions now:

Definition 3 Two refractions R[s; r;E] := R and R[s̃; r̃; Ẽ] := R̃ will be called a pair of
reciprocal refractions, if s and s̃ are parallel lines and rr̃ = 1.

Reciprocal refractions deserve special interest, as they are quite common in everyday life: Rays
of light passing trough a thick window are refracted reciprocally when they propagate from
air to glass and from glass to air, respectively. It is well known (and immediately clear from
the definition of refraction!) that a ray refracted reciprocally does not change its direction.

We will now compute a parameter representation of the diacaustic d̃ of a pencil of lines
E(r1) undergoing the reciprocal refraction R̃ ◦ R. Basic considerations show that it has to
be symmetric with respect to s̃, if we take into account all possible refracted rays: One ray r
through E corresponds to four rays r1 . . . r4 after the two refractions.

We use the parameter representation (12) of d. The tangent t(u) of d has then the equation

t(u) . . . bS(u)x+ εaC(u)y = abS(u)C(u),

where ε = 1 if r < 1 and ε = −1 otherwise. The intersection points P1 and P2 of t1 and the
axes of refraction s and s̃ . . . x = ξ̃, respectively, have coordinates

P1(0, εbS) and P2

(
ξ̃,

εbS(aC − ξ̃)

aC

)
.

The tangent t̃(u) = R(t(u)) of d contains P2 and is parallel to EP1.
8 Its equation is

t̃(u) . . . abSCx+ εaeCy = ab(e+ ξ̃)SC − ebξ̃S. (14)

From (14) we can now deduce a parameter representation of the envelope d̃ of the lines t̃(u):

d̃ . . . ~̃d(u) =
1

aC3

(
a(ξ̃ + e)C3 + εeξ̃

bξ̃S3

)
. (15)

Apart from a simple translation, this is just a parameter representation of the shape (13)!
The relevant part for practical purposes does not differ from the diacaustic of a simple

refraction on a straight line. In this sense, reciprocal refraction is just as simple as an ordinary
refraction on a straight line. In fact, we can even replace it by the refraction R[ŝ; r̂; Ê], that
is determined by

ŝ . . . x = ξ̃ + e, r̂ =

√
|b2 − e2|

b2
, ê =

ebξ̃√
a2(b2 − e2)

.

Taking into account all possible refracted rays, we get

Theorem 4 10 The diacaustic d̃ of a pair of reciprocal refractions consists of the evolutes of
two congruent conic sections. For practical purposes, the reciprocal refraction is equivalent to
the ordinary refraction determined by â = −εξ̃e/a, b̂ = ξ̃b/a and axis of refraction ŝ . . . x =

ξ̃ + e. This refraction is always of the same type as the refraction belonging to the reciprocal
refraction index 1/r of the first refraction.

8Here we omit the second refracted ray in order to make the calculation more lucid. In Theorem 10, we
will summarize the result for all possible refracted rays.
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Figure 10: The diacaustic of reciprocal refraction: Relevant parts are drawn bold.

6. Refraction on a plane

The above considerations shall now be extended to Euclidean 3-space E3. We choose a
refracting plane σ and an eye point E /∈ σ. We can use a Cartesian coordinate system such
that the x-axis is perpendicular to σ and E has the coordinate vector (e, 0, 0)T . the coordinate
system is not uniquely determined and can still be scaled and rotated around the x-axis.

The refraction on σ can, of course, be reduced to the plane case. Being given a straight
line r we take the plane % through r that is perpendicular to σ and reflect r in % on the line
σ ∩ %.

Thus, r is again refracted into two straight lines r1 and r2 and Snell’s law (1) holds if
α1 and α2 denote the angles that r and the reflected rays form with the normal of σ.

Using the rotational symmetry of the system {E, σ}, we can immediately make use of the
results of the previous chapters:

1. The calculation of the refrax of a point S needs the solution of an algebraic equation of
order four and only one of the four possible solutions is relevant for practical purposes.

2. Applying the refraction R[σ; r;E] to the bundle E(r) yields a two parameter manifold
N of rays that can be characterized in two ways:

• N consists of all rays tangent to the diacaustic surface ∆ that intersect the x-axis.
∆ is of course the surface of revolution with the plane diacaustic d as meridian
curve and axis of rotation x.

• N is the normal congruence of a surface H of order two. H is an ellipsoid of
revolution for r < 1 and a hyperboloid of revolution for r > 1.

3. The results of section 5 hold for the 3-dimensional case as well.

We will now take a closer look at the counter image Φ of a straight line, i.e. the set of all
points P ∈ E3 with refraxes on a straight line d ⊂ σ. This investigation will be followed by
a theorem on the order of the refrax of algebraic curves and a direct application in computer
graphics.
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It is no loss of generality to assume that

d . . .

{
x = 0
z = dz

are the equations of d. It is clear that Φ is a ruled surface with double line d that has σ and
the [xz]-plane as planes of symmetry. The x-axis is a double line of Φ as well for reasons of
symmetry.

We will now assume that H is an ellipsoid of revolution.9 It can be parameterized according
to

H . . . ~h(u, v) =




A cos(u)
B sin(u) sin(v)
B sin(u) cos(v)


 (16)

where A and B are the half length of the axis of the conic section (9). The normals n(u, v)
of H that intersect d are characterized by

sin(u) cos(v) =
Bdz

B2 − A2
. (17)

Substituting this in (16) we find that the corresponding points on H lie in the plane z =
B2dz(B

2 − A2)−1. Φ is therefore the normal surface of a quadric surface along a planar
section c and thus an algebraic surface of order four (see [13]). In the line at infinity lu of
the [xy]-plane two generating lines of Φ coincide. Therefore each plane through lu has a conic
section in common with Φ (see Fig. 11 and Fig. 12). Summarizing all results we get

Figure 11: Ruled surface and ellipsoid Figure 12: Ruled surface and hyperboloid

Theorem 5 The counter image of a straight line d is a ruled surface Φ of order four. Φ
has two double lines x and d two planes of symmetry σ and [xz]. On Φ we can find a one
parameter set of conic sections in the planes parallel to x and d.

9If H is a hyperboloid we will of course get analogous results; compare Fig. 12
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It is now easy to prove a theorem of great theoretical interest:

Theorem 6 The refrax of an algebraic curve k of order m is an algebraic curve kr which in
general is of order 4m.

Proof: We have to show that kr and a generic straight line l ⊂ σ have — in algebraic sense
— 4m points of intersection. Each point of intersection corresponds to a point in k ∩ Φ and
there exist exactly 4m such points as Φ is of order four.

The ruled surface Φ can be used to solve a problem of computer graphics as well. If you
want to display the refrax of a filled polygon P you may run into troubles: Suppose that d
and P lie in a common plane δ. d1 and d2 be the generators of Φ in δ. If P intersects one or
both of these lines, its refrax Pr will have up to two overlappings.10 This will cause problems
with the filling algorithms (compare Fig. 13).

Figure 13: The refrax of the rectangle ABCD has two overlappings as it is intersected by two
refracted rays d1, d2.

To avoid this mess, you can clip P with the straight lines d1 and d2. It is easy to derive
their equations from the following parameter representation of Φ

1− v

A2




Â(A2 −B2) cos(ϕ)
0
0


+

v

B2




0

B̂(B2 − A2) sinϕ
B2dz


 , ϕ ∈ [−π, π], v ∈ R, (18)

where Â and B̂ are the length of the major axes of the conic section c:

Â = A

√
(B2 − A2)2 −B2d2

z

B2 − A2
and B̂ = B

√
(B2 − A2)2 −B2d2

z

B2 − A2
.

Alternatively, one can use the algebraic (2, 2)-correspondence between x and the straight line
d ⊂ δ. The point X(ξ, 0, 0)T ∈ x corresponds to the point D(0, η, dz)

T ∈ d if and only if ξ
and η satisfy the relation

ξ2 = e2r2 + (η2 + d2
z)(r

2 − 1). (19)

Note that (19) is valid for both cases r < 1 and r > 1.
10E.g., if you fix a little rectangle in an inclined position (see Fig. 13) in a box filled with water and watch

it from an extreme point of view, you might be able to see both sides of the card.
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Figure 14: Reconstruction (two refraxes) Figure 15: Passage to the limit E1 → E2

7. Image lifting — the virtual object transformation

In this section we return to the refraction on a straight line. We want to investigate the
second problem we mentioned at the beginning of Section 3 for the plane case: Given two eye
points E1 and E2, and two refraxes R1 and R2 of a space point S on a straight line s. Can
we say anything about the position of S?

The answer is, of course, yes (Fig. 14): The projection rays E1R1 and E2R2 intersect in

a point S̃. In this way, we can reconstruct geometrical primitives like straight lines b. Of
course, the result can be rather complex. Even for b = n ⊥ s, e.g., the viewer sees a curved
line b̃ that does not look like a straight line, especially close to s (Fig. 14). In general, one
can say: Objects appear both closer to the eye points and also closer to the refracting line.

The reconstruction depends on the distance of the eye points. The question is now:
Whereto does S̃ converge when we do a passage to the limit E1 → E2. For this purpose,
we consider a pencil of rays through S (Fig. 15). After being refracted on s inversely, they
envelope a curve di (“inverse diacaustic”). Two neighboring tangents of di pass through E1

and E2. For E1 → E2, these two tangents intersect in a point S̃ ∈ di.
This shows that the transformation of the plane E2 is independent of the passage to the

limit E1 → E2. Therefore we can give the following definition:

Definition 4 The transformation E2 → E2: S → S̃ = R2(s, r, E)(S) denotes a plane trans-

formation called plane refractor, where S̃ is the tangent point of the inverse diacaustic d on
the ray through E and the refrax of S.

The refractor image of a point can be computed very efficiently with the help of formulas
(5), (8) and (11). The presentation of a precise algorithm is planned for a later paper.
One can argue that this transformation produces the impression of a refracted scene plus
additional information about seeming distances. When you watch an underwater scenery
you will notice extreme distortions, but still you always have the impression of being able to
estimate distances. Of course these estimations are misleading and differ considerably from
our daily life experience.

Our transformation is capable of explaining well-known optical effects:
Think of a person standing on a spring board above a swimming pool with constant

depth (Fig. 16). The straight section line b of the bottom with a plane perpendicular to
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Figure 16: The bottom of a swimming pool with constant depth

the surface will have the 3D-image b̃. In the upper images, the distance of the eye points
E1E2 is exaggerated, in the lower image it is “infinitesimally” small. The upper image can be
interpreted as the sight through a diver’s mask, where the “surface” is the glass of the mask.
Therefore, one has always the impression to be above the “deepest region” of the pool when
diving or snorqueling around in the pool.

8. Refraction on a circle

The refraction on a circle is much harder to deal with than the refraction on a straight line.
Especially obtaining explicit formulas is a difficult task. We will therefore restrict ourselves
to computing a parameter representation of the circle diacaustic.11

Let c . . . x2+y2 = R2 be a circle around O and E(e > 0, 0)T the eye point. The diacaustic
d of R[c; r;E] is then the evolute of a so called Cartesian Oval h [4, 20]. One way of defining
a Cartesian Oval is the following:

Let F1 and F2 be two distinct (real or imaginary) points. Then a Cartesian Oval h is the
set of all points X, satisfying

τXF1 +XF2 = λ; τ, λ ∈ R. (20)

This definition is a generalization of the definition of a conic section through its focal property.
But Cartesian Ovals are a generalization of conic sections in another respect as well:

The diacaustic of the pencil of lines F1(f1) with respect to the refracting curve h and a
suitable index of refraction is just F2.

12

11The following considerations are all due to [20]. There, the author gave all necessary details to compute
a parameter representation of the diacaustic but not the parameter representation itself.

12That is why F1 and F2 are called focal points of h. In addition, F1 and F2 satisfy the Plücker-definition
of a focal point as well: they are intersection points of isotropic tangents of h. Considering the facts that h is
an algebraic curve of order four and that it has cusps at the circular points at infinity, we can even say that
there exist nine focal points, three of them on the x-axis. Not all of them are real, of course.
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In case of a refraction we have to take

F1 = E∗(R2/e, 0)T , F2 = E, τ = − e

R
, λ =

R2 − e2

rR
. (21)

The explicit equation of h can now be derived from (20):

h . . .
(
r4 − r2[(e2 −R2)(x2 + y2)− e2(R2 − 2) +R4] + e4

)2

=

= 4R2r2(r2 − e2)2[(x− e)2 + y2].
(22)

If we translate the coordinate system by the vector
−−→
OE∗ (the new origin is then E∗) we can

give a parameterization of h in polar coordinates (%, θ). Using the abbreviations

α = EE∗ =
e2 − R2

e
, λ =

R2 − e2

rR
, τ = − e

R
,

∆ = ∆(θ) = λ2 + α2τ 2 − 2αλτ cos θ − α2 sin2 θ,

we have
(τ 2 − 1)%(θ) = λτ − α cos θ ±

√
∆. (23)

In order to compute the evolute d of h we need the derivatives of first and second order of ∆
and %:

∆′ = 2αλτ sin θ − 2α2
1 sin θ cos θ,

∆′′ = 2αλτ cos θ − 2α2 cos 2θ,

(τ 2 − 1)%′ = α sin θ ± ∆′

2
√
∆

,

(τ 2 − 1)%′′ = α cos θ ± 2∆∆′′∆′2

4∆3/2
.

(24)

By substituting (24) in the well known formulas (see [1])

x = % cos θ − (%2 + %′2)(% cos θ + %′ sin θ)

%2 + 2%′2 − %%′′
,

y = % sin θ − (%2 + %′2)(% sin θ − %′ cos θ)

%2 + 2%′2 − %%′′
,

we finally get a parameter representation of the diacaustic d of R[c; r;E] in terms of e, R and
r only.13 This parameter representation was used to draw Fig. 17.

9. Future work — a 3D-refractor map

In section 7 we presented a method of reconstructing a point S from two refraxes. In the 3D-
case the analogous reconstruction of a space point fails because the projection rays through
E1 and E2 in general do not intersect. One way of overcoming this problem is to assume the
midpoint M of the common normal of the projection rays as the seeming position of S. But
then another problems occurs: If E2 converges to E1, M does not have a well defined limiting
point. I.e., the limiting point heavily depends on the limiting process E2 → E1.

13Do not forget to apply the translation x 7→ x−R2e−1 if you want to use the standard coordinate system
with center O!
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Figure 17: The diacaustic d of a circle and its involute h (Cartesian oval). Only the larger
ring of h is relevant for practical purposes.

We are currently preparing a paper on this topic where we will propose a method that is
capable of dealing with these difficulties. The results of the previous sections will be essential
in this investigation.

The 3D-case has applications in underwater photography, underwater archaeology and
computer graphics. For this reason parameter representations of the curves in Fig. 14, Fig.
15 and Fig. 16 are of interest.
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