Journal for Geometry and Graphics
Volume 6 (2002), No. 2, 151-165.

A Quadratic Transformation Based on
a Straight Line and a Conic

Eugeniusz Korczak

ul. sw. Rocha 6B m. 5, PL 61-142 Poznar, Poland
email: ekorczak@math.put.poznan.pl

Abstract. The A-transformation is quadratic in the projective 3-space and
originally based on an irreducible spatial cubic. Here the case is addressed where
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1. Introduction

In 1978 J. FELLMANN [1] published a paper on the A-transformation based on a twisted curve
C? of third order and an autocollineation ¢ of this curve. In the following work we use a
straight line ¢ and a non-coplanar conic s. In this sense one can say that this is a special case
of [1]. Instead of using an autocollineation, our definition of the A-transformation is based on
the elements of the congruence K[2,2] of bisecants of the spatial cubic t U s (Fig. 1).

2. Part 1

2.1. Definition of the A-transformation

In the projective space P? over the field of real numbers R we choose a certain conic s and
a non-coplanar straight line ¢; in Part I we suppose s Nt = (). At the beginning we prove
that the set of bisecants of the spatial cubic s Ut is a congruence K[2,2] of second order and
second class.

Really, remembering that the order of a congruence is equal to the number of elements
(lines) of the congruence passing through an arbitrary point @, let us take ) apart from line
t. Line ¢t and point ) span a plane a (Fig. 2). This plane intersects the conic s at two points
Ry and R,. The lines QRy and QR, intersect line ¢ at the points R; and R, respectively.
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Figure 2: The congruence K of bisecants Figure 3: The congruence K of bisecants
is of order 2 is of class 2

In the congruence K the lines R; R, and RyR, are the only two elements which pass through
point (). Hence, the congruence K is of the second order.

Further, the class of a congruence is defined as the number of elements of the congruence
lying in an arbitrary plane. So, let § be any plane distinct from the plane of the conic s and
not passing through the line . The two lines joining the points R, Ry € s N3 with the point
P =t N[ are the only two elements in the congruence K which lie in the plane 5 (Fig. 3).
Hence, the congruence K is of second class.

Definition 1 (Definition of the A-transformation):

In the real projective 3-space P? let a conic s and a non-coplanar line t be given. Let K|2,2]
denote the congruence of bisecants of the reducible spatial cubic s Ut. In addition, let X\ be
any given real number, A\ # 0, 1.

Then, on any line p intersecting s at A and t at A, i.e. p € K[2,2], for given point M € p the
point X € p is called the image of point M under the A-transformation if the cross-ratio of
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the four points A, A, M, and X (see Fig. 1) is equal to the given ), i.e., if
(AAMX)=X\. (1)

Varying line p and applying the properties of the cross-ratio of four points (cf. [2]), we
get in this way a single-valued correspondence M — X of points M, X € P3.

In the whole paper the reasoning is done analytically by use of homogenous projective
coordinates in P2. Without loss of generality, we can choose a simplex Py, P, P», P3 as the
frame of reference for the projective coordinates such that the line ¢ is identical with the edge
P, P; and the conic s is located in the plane PyP; P;. We may assume that s is tangent at
points Py, P; to the edges PyPs, P Ps, respectively (Fig. 4). We specify the conic s in the
pencil zo = 0, 22 — kxgr, = 0, k € R, by setting

s: x5 —x071 =0, x9=0. (2)
The line ¢ is determined by the system of equations
t: To = T1 = 0. (3)

In order to obtain equations of the A-transformation we must determine at least one line
p C KJ2,2], i.e., passing through an arbitrary point M and intersecting the conic s and the
line ¢ simultaneously:

The line ¢ and the point M span a plane ¢. The equation of this plane can be written in
the form
o L1 T2 T3
mo M1 M2 M3
0O 0 1 0
0 0 0 1

i.e., myxg — mor; = 0 with arbitrary zo, x3.

det =0.

Figure 4: The simplex P, ..., P3 of reference

The plane ¢ and the face PP, P3 share a line k determined by the two equations

mixg — mex; = xo =0, (x3 arbitrary).
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For the computation of the common points of conic s and line k& we solve the system of
equations

3 —xor; = 0
mixto —mery = 0
Ty = 0

and get

mo mq mo
To="1/—x3, T1=F+—,/—x3, 19=0.
my mo y My

Since z3 has an arbitrary value, we can assume x3 = y/m;/myg. Finally, we obtain coordinates
of points Ay, A, in the form

Ay =(mo:my:0:y/memy), As=(—mo:—my:0:/momy). (4)

In the following discussion we use point A; only. We will return to A, later.
From [2] we know that the coordinates of any third point on the line M A; can be written
as a linear combination of coordinates of M and A;. So, we have

pro = p1Mmoy -+ p2my
pry = pimy+ pamy
(5)
pra = pima+ p20
pPT3 = P1M3 + P2/MoMmy .

Using systems (5) and (3) we get the coordinates of point A, the common point of lines
and M A1, in the form (0 :0:mg:m3 — moml).

For three distinct points, Ay, A1, M on line p there is a local system of projective coor-
dinates such that the local coordinates of these points are (1:0), (0: 1), (1: 1), respectively.
Hence, the coordinates of any fourth point X on line p can be written as

pro = pamg + f120
pry = pimy + p20 (6)
pro = 10+ pams

prs = ,ul,/mom1+u2(m3—\/m0m1).

It is well known (see [2]) that the cross ratio equals (A, A, MX) = uy/up. So, recalling
condition (1), we get finally A = p1/u2, and the equations of the A-transformation are

pro = Amyg
pri = Amy
Pry = Mo (7)

prs = ()\ — 1)w/m0m1 +ms.

When deriving the above equations we took A; and A; as the basic points. It is easy to show
that for A; and Ay the system (7) turns into the form

pro = Amyg
pry = Amy
PLa = Ty (8)

prs = (1—XN)y/memi+ms.

Obviously, the two points X, X’ obtained from equations (7) and (8) are distinct.
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2.2. Properties of the A-transformation

Let us start with the investigation of fixed points under the transformation (7): Any point
of the conic s described by eq. (2) has coordinates of the form A = (ao caq 20 \/ao—al).
Its image is the point A" = ()\ao tAap 0 (A —1)y/apar + \/M). Hence A equals A’, and
all points of the conic s are fixed points under the A-transformation. Similarly, any point
B =(0:0:0by:bs) lying on line ¢ is mapped onto B’ = (0: 0: by : (A —1)v/0-0+ b3). So we
obtain B = B’, and line ¢ is pointwise fixed under the A-transformation.

When investigating the A-transformation, the main problem is to get an answer to the
following question: What is the locus of points X when point M describes a certain plane 7

Let us choose a plane 9 described by
w: ULy + U1 T + U2X2 + U3T3 = 0. (9)

In order to receive the answer to the above question, we must add to the system (7) the

condition that point M = (mg : ... : mg) lies in plane v, and then eliminate from the
obtained system the coordinates my, ..., m3 of the varying point M. So, we have the system
of equations

prog = Amy

pri = Amy

pra = M2

prs = (A—1)y/momi +my

0 = mowo+ mix1 + maxa +m3x3.

From this system of equations we deduce

PTo PL1
moZT, m; = T’ mg = P,
p(A—1)

mg = pr3 — (A — 1)\/memq = pr3 — 5 /ToTq .

After substituting the first three expressions in the last equation we get
®(zg, ..., 73) := (upmo + urm1 + MigTo + Ausws)? — ui(A — 1)%zez; = 0. (10)

If we use the system (8) instead of (7), we obtain the same expression (10). It means that the
two distinct points X and X’ (described by (7) or (8), respectively) satisfy the same equation
(10). Hence, we get the basic theorem of Part I

Corollary 1 The image of any plane v C P? under the A-transformation is a quadric @,
described by the equation (10).

Note that we obtained all the above results under the tacid assumption that in the pair
of points (A;, A1) the first one is always on the conic s and the second on the line ¢. In the
reversed order, it is well known (cf. [2]) that the value of the cross ratio changes to 1/A. Then,
the quadric ® would be replaced by the quadric

1 (z0, ..., 23) = (AupZo + Ay xy + Uy + uzxs)® — ui(1 — N\)2xer; = 0.

The two quadrics ® and ®; are essentially distinct. Equality ® = ®; occurs iff 1/A = A, i.e.,
when A = —1.



156 E. Korczak: A Quadratic Transformation Based on a Straight Line and a Conic

2.3. Investigation of the quadric ¢

In order to determine the character of the quadric ® we apply the standard method [3] of
checking the sign of certain expressions built from the coefficients a;; of the quadratic form.
According to [3], we define the following two matrices

ailr a2 a1z Qiq
A1 Q22 (23 A24
V= W .=
a31 32 33 aA34
aq1 Q42 Q43 Q44

aijx Qa2 13
a1 Q22 Q23 |,
a31 32 33

and the expression (trace) Wi := ay; + agz + ass. In our case we have

ug % (2uour — (A —1)%u3)  Augus  Augus
Ve = % (2u0u1 - ()‘ - 1)216%) U% )\U1U2 )\ulu3
® - Aoty AUqUs ANuZ o Nugug |
AMugus Mg s Nuguz  ANuj
ug 5 (Quour — (A = 1)%u3)  Auous
We = % (2upur — (A — 1)%u3) u Auqug |,
AUoUs AU Us )\2u§

and
Wie = ud +u? + \u3.

Since Rank Vg = RankWe =3 and det Wo = —1 (A2(X — 1)*u3u3), so det Wy - Wig < 0,

and by virtue of [3] we have

Theorem 1 In the generic case the quadric ® defined by eq. (10) is a cone of the second
order.

2.4. Position of the cone ¢

Let us consider the location of the cone ® with respect to the basis simplex, the conic s and
the line t. Does the conic s lie on the cone ®7

Setting x5 = 0 in eq. (10) we get a conic section
(uozo + iy + Auzws)® — (A — 1)*uizoz; = 0. (11)
We see that the conic (11) differs from s. Hence,

Corollary 2 The cone ® does not pass through the conic s.

Is line s a generator of the cone ®? Line ¢ is defined as the edge P, P3 of our simplex.
Setting o = 0 and x; = 0 in (10), we get

(Ugl'o + )\UQI’Q + /\U31E3)2 = 07 (12)
(Ull'l + )\UQI’Q + /\U3I3)2 == 07 (13)
respectively. As we can see we have obtained two twofold covered straight lines. Hence

Corollary 3 The line t does not lie on the cone . The cone touches the two faces xq = 0,
x1 = 0 of the simplex along lines (12) and (13), respectively (see Fig. 5).



E. Korczak: A Quadratic Transformation Based on a Straight Line and a Conic 157

Figure 5: Position of the cone ® with respect to the simplex Py, ..., Ps of reference

To determine the vertex S of the cone, it is sufficient to set xy = 0 in (13) and z; = 0 in
(12). This results in two identical formulas of the form Ausxs+ Augzs = 0, and the coordinates
of the vertex are

S=0:0: —ug: uy).

It is easy to see that these coordinates satisfy eq. (9) of the plane 1. So, we have

Corollary 4 The vertex S of cone ® is the common point of the line t and the given plane

0.

2.5. Degeneration of the cone ¢

If plane 1 passes through the vertex P; = (0: 0 : 0 : 1) of the basis simplex, i.e., if we put
uz = 0 in eq. (9), then equation (10) turns into the form

(g, ..., w3) = (uoTo + w1 + Augxs)®> =0, 3 arbitrary.

This is a certain twofold covered plane, and it passes through the vertex Py = (0:0:0: 1),
too. If we assume that 1) passes through vertex P, = (0: 0:1:0), i.e., if uy = 0, then eq.
(10) takes the form

®(zg, ..., 73) = (UoTo + w11 + Muzwz)? — uz(A — 1)%z9z, =0, a9 arbitrary,
and this is still a cone of second order.
2.6. Image of a straight line ¢
Let us specify a straight line ¢ by its parametric representation
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After substituting these coordinates (myg : ... : mg3) into the systems (7) and (8), we get the
images of the straight line ¢ described by the two systems
pro = M agt + bo) pro = A agt + by)
pr1 = /\(alt + bl) prL = )\(alt + bl)
pPTy = ast + by pra = ast+ by (15)
pPry = ()\ — 1)\/(@075 + bo)(alt + bl) + prs = (1 - )\) \/(aot + bo)(@lt + bl) +
+a3t + b3 s —I—a3t + b3 .

These two systems describe two different arcs of the same conic s;. Hence, we have

Theorem 2 The image of a straight line ¢ C P? under the A-transformation is in the generic
case a single conic s; defined by the systems (15) of parametric equations.

The two arcs meet each other when the parameter ¢ is satisfying the condition (agt +
bo)(cit +b1) =0, i.e., for t; = —by/ag or ty = —b;/a; . Hence, the common points of the two
arcs are

T[) = (0 : )\(bla,o - abo) : (bga,o - abo) : (b3a0 — a,gb())) and
T1 = (/\(b0a1 — albg) . 0 . (bgal — blag) . (b3a1 — agbl)) .

These points Ty and T are the common points of the conic s; with the faces xg = 0 and
x1 = 0. So, we get

Corollary 5 The conic s; touches the faces xy = 0 and x1 = 0 of the basis simplex at the
points Ty and T}, respectively.

Finally, let us determine equation of the plane passing through the conic s;:

If we choose any three arbitrary and distinct points on the conic, e.g., Ty, T} and (for t = 0)
point R = (/\bo D Aby t byt (b — (A — 1)V boby )), then one can express the equation of the
plane in the form

o 1 T2 T3
det 0 )\(blao — a,lbo) b2a0 — a2b0 bgao — agbo —0
© )\(boal — bla0> 0 bg(ll — &le bgal — agbl o
Abo Aby by by — (A — 1)v/bobs
or after the evaluation
(b2a1 — CLle)IO — (bgao - CLQbQ)ZEl - )\(boal - aobl)lL’Q = 0, T3 arbitrary. (16)

In this way we obtain
Corollary 6 The plane of the conic s; depends on A\, a; and b;, i = 0,...,3, and passes

through the point Py = (0:0:0:1).

3. Part 11

It is known that an irreducible spatial curve C? of third order does not possess any singular
point. If such a point exists, then the curve C?® must break up into a certain conic and a
straight line cutting the conic at a single point, and this is the case we are investigating now.
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3.1. Definition of the A-transformation

Let a curve C® with a double point be given (Fig. 6). Like in Part I we can prove that the
set of all bisecants of such a curve C? forms a congruence K[2,2] of second order and second
class.

Without loss of generality we may specify the simplex Py, ..., P; in such a way that the
conic s passes through vertices Py, P, P3, and line t is the edge P, P5 of the simplex. If we
assume that the point £ = (1 :1:0 : 1) lies on conic s (Fig 7), then the pencil of conics
passing through the four points Py, P, P53, E can be written in the form

To = 0, k?l’o!El + ToT3 — (k? + 1)1’1ZE3 = 07 k € R.
We select the conic with £ = 1. Hence the equations of s read
s: mxe =0, Tox1 + Tox3 — 2x123 = 0. (17)

As in Part I, line ¢ is defined by the system (3) of equations.

Figure 6: Definition of the Figure 7: The simplex F ..., P; of reference
A-transformation M +— X in Part IT
under s Nt # () (Part II)

In order to determine a line p; € K2, 2], passing through an arbitrary point M(mg : ... :
ms), where M # P;, i = 0,...,3, and M ¢ t, we take the plane 6 = M P,P; (Fig. 8). Its
equation is

myxg — mox; = 0, X9, T3 arbitrary. (18)
We define line p as the common line of  and the face P; P,P; of the basis simplex. Hence,
line p is determined by the two equations

mixg — moxry = o = 0, w3 arbitrary.

From the first equation we have xq = mox1/my, my # 0. Substituting this expression in the
equation (17) of s, we obtain the coordinates of the common points of plane § and conic s.
They satisfy the system

a:l(moxl + Mmpxrs — 2m1x3) = T2 = 0.
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For x1 = 0 we get the following solution: zy = 1 = x5 = 0, x3 arbitrary. In other words, we
get the point A; = P3 = (0:0:0: 1), the first common point of conic s and plane J.
The equations mox, + moxrs — 2mixs = 0 and z9 = 0 result in

T 2m1 — My

)

T3 mo
and finally we get the second common point
Ay = (mo(2my —mg) : mi(2my —mg) 1 0: memyq).

In this way we obtain the two bisecants py,ps € K[2,2] passing through the arbitrary point
M, i.e., the lines M A; and M A,. In the sequel we use line M Ay only. We will return to line
MA, later.

Figure 8: Construction of lines py,p; € K|[2,2] through point M

Now we compute point As, the common point of the lines t and M As: This point on
M A5 can be written as a linear combination of the coordinates of M and A,. Hence

pro = pimg + pamo(2my — my)
pr1 = pimi+ pam(2my —my)
pra = pimz + p20

pr3 = pi1ms -+ pamomy .

Line ¢ is defined by the system (3). So the coordinates of point A, must fulfil the following
conditions:
0 = p1mg + pamo(2my — mo) = p1my + pama (2my — my),

ie, 0 = p; + p2(2my — mg) and finally p; = —2my + mg, po = 1. Substituting the last
expressions in the system of equations, we get the coordinates of point A,

Ay =(0: 0: (2my —mg)ma : (2my — meo)ms — memy) . (19)
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For three distinct points M, Ay, A, on a line a local system of projective coordinates on this
line can be introduced [2] such that Ay = (1:0), Ay = (0:1), M = (1:1). In our case the
coordinates of any fourth point X on line M Ay A5 can be written in the form

pro = pomo(2m; —mo) + 110
pr1 = pomi(2my —mg) + 10
pra = o0+ pryme(2my — my)
prs = pomomy + py[ms(2my —mg) — momy).

According to condition (1) we have 1o/p; = A. Finally the equations of the A-transformation
in Part II are

pry = Amo(2my —my)
pry = Amq(2my —my)

20
pra = mo(2my — my) (20)
prs = (A —1)memy + mg(2m; — my).

Now, it is the right place to return to point A;. It is clear (Fig. 9) that A; = P; = A, for any
position of point M. From the properties of a cross-ratio [2] we know that if A; = A; then
(A;A;MX) = 1, and this contradicts the assumption in Definition 1. This implies that we
can omit in our investigations the line M A; and use the line M A, only.

3.2. Properties of the A-transformation

It is important to observe that the transformation defined by the system (20) is a birational
Cremona transformation [4], more exactly, a special kind of a quadratic transformation. Let
us start with the determination of the fixed points of the transformation:

We write the system (20) in the form

pry = Amy
pri = Amy
pPr2 = M2
A—1
2m1 — My

and note that for any point D € t we have
D=(0:0:a:b) — D'=(0:0:a:b),
and for any B € s
B=(c:d:0:—cd/(c—2d)) — B =(c:d:0:—cd/(c—2d)).
Corollary 7 The line t and the conic s are pointwise fixed under the A-transformation.

The main problem of this chapter is to give an answer to the question: What is the locus
of points X when point M varies in a plane 7

If we assume that the equation of plane v is again in the form (9), then after adding to the

system (20) the condition that point M = (mg : ... : mg) lies in the plane ¥, we get
pro = Amo(2my —my)
pry = Amy(2mq — my)
pra = ma(2my —my)
prs = (A—1)momy + ms(2my —my)

0 = wugmg+ uymq + usmeo + usms .
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We eliminate from this system the coordinates my, ..., mgs of the varying point M and obtain
O(xg, ..., x3) = (221 — x0) (uomo + 11 + Ausxs + Augws) — (A — 1)uzzrer; = 0. (21)
This equation describes the locus of points X. Hence, we got

Corollary 8 In the generic case the image of a plane 1 (eq. (9)) under the A-transformation
is the quadric ® with equation (21).

3.3. Investigation of the quadric ¢

As we remember from Part I, line ¢ does not belong to the quadric. Now, we have quite a
different situation: It is easy to observe that any point with coordinates (0:0: a : b) on this
line satisfies the equation (21). This means

Corollary 9 Line t lies on the quadric ®, i.e., the quadric ® is a ruled quadric.
In a similar way as in Part [ we get
Corollary 10 The conic s does not lie on the quadric P.

Following the way of reasoning from Part I, let us investigate the character of the quadric
®: The two matrices Vg and W are of the form

Ug —% <2U0 — Uy — ()\ - ].)Ug) %)\Ug % )\Ug
Ve — —% (2’&0 — Uy — (/\ — 1)U3) —2U1 —/\’LLQ —/\’LL3
® % )\UQ —)\UQ 0 0 ’
% )\Ug —)\Ug 0 0
Uo —% (QU() — Uy — ()\ - ].)Ug) % )\Ug
Wq) = —% (2’&0 — Uy — (/\ - 1)U3) —2U1 —)\Ug
% )\Ug —>\U2 0

After some calculations we get Rank Vg = Rank Wy = 3. By virtue of [3] and remembering
that the space P? is over the field of real numbers, we obtain

Theorem 3 In the generic case the quadric ® with equation (21) is a cone of the second
order (Fig. 9)

3.4. Location of the quadric ¢

As we have proved above, line t is one of the generators of the cone ®. Let us intersect
the cone with the faces PyP,P3;, and PP, P of the simplex. It means that we must set
in eq. (21) either 1 = 0 or zp = 0. Hence, we get zo(uozo + Ausxs + Auzzrsz) = 0 and
x1(ury + Mg + Auzzs) = 0, respectively. In both cases we get the line ¢ and two generators
t1: upxg + Ause + Ausxs = 0 and to: uyxy + Ause + Ausxs = 0 of the cone.

In order to determine the vertex of the cone, we compute the common point of the three
lines ¢, t; and t5. This common point is S = (0: 0 : —u3 : uy), and its coordinates satisfy the
equation (9) of the plane ¥. So, we get

Corollary 11 The vertex S of the cone ® is the common point of plane v and line t.
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Figure 9: The image ® of a plane i) under the A-transformation

We proved above that in the generic case the image of a plane is a cone ®, and the line
t is one of its generators. An interesting question arises: Do all cones, images of different
planes, simply pass through line ¢ or touch each other along this line?

When an algebraic surface with equation (zy, ..., z3) = 0is given, then the plane tangent
to this surface at its point (2o, ..., 23) has the equation
0N
—(20,...,23)x0+ ... +=—(20,...,23)23=0.
8513'0(0 ; 3) 0 8x3< 0 ; 3) 3

Let us determine the plane tangent to our cone ® at the point P3 = (0 : 0 : 0 : 1). The
derivatives are

S—Z(xo, coyx3) = 2uxg + [ug + (N — Dug — 2up|zy + Augms + Augzs,
S—Z(a:o, coyxy) = [ug + (A= Dus — 2uglrg — dugmy — 2 ugxe — 2Augws,
S—Z(%,---;ﬂ?s) = Aug(mo — 271),

S—Z(xo,...,x;Q = Jug(zo — 22).

Finally, the equation of the plane tangent to the cone ® at Pj is
This equation is independent from the coefficients u;, = 0,...,3. So we have

Corollary 12 All cones which are images of planes under the A-transformation touch each
other along the line t.



164 E. Korczak: A Quadratic Transformation Based on a Straight Line and a Conic

3.5. Degeneration of the cone ¢

Similarly to Part I it follows from eq. (21) that if ug = 0, i.e., if plane ¢ passes through point
P;=(0:0:0:1), the cone breaks up into two planes

21 —x9g =0, 9,23 arbitrary, and
UgTo + u1x1 + Augws = 0, a3 arbitrary.
Hence we got
Corollary 13 If the plane 1) passes through the vertex P = (0 : 0 : 0 : 1), then its image
consists of the two planes 2x, — xo = 0 and ugxg + u1z1 + Ausxs = 0.
The first plane is independent from the coefficients of the plane 1 and passes through the line
t. The second plane passes through the vertex P3 = (0:0:0:1).
3.6. Image of a straight line p
Let the line p be given by its parametric representation
pmz:azt%—bl, Z:O,,S

identical to (14). Under the A-transformation (20) we obtain the conic

Py = (aot + bo)[ (Cllt + bl) — aot — bo]
pr1 = Mait + by)[2(art + by) — agt — by (23)
pra = A agt +b)[2(a1 + b1) — aot — by

pr3 = (/\ 1)(a0t + bo)(alt + bl) + (CL3t -+ b3)[2(a1t + bl) — aot — bo]
Hence, we can formulate

Theorem 4 The image of a straight line p is a conic section s, with the parametric repre-
sentation (23).

Let us intersect the conic s, with the face o = 0. The condition
(Clot + bo)[2(a1t + bl) — aot — bo] =0

results in (agt + bg) = 0. Hence, t; = —by/ag, ag # 0, or 2(a;t + by) — agt — by = 0,
to = (bo — 2b1)/(2a; — ag). The points corresponding to these values of t are

T1 = (0 . )\(aobl - a1b0> : (Clon - a2b0) : (a0b3 - a3b0) and T2 = (0 :0:0: 1) = P3.

Further, we find the common points of the conic s and the face 1 = 0:

Setting z1 = 0 in (23) we get t3 = —by/ay and t4 = (by — 2b1)/(2a; — ag). Because of ty = 4
we obtain Ty = T4, = P5. Point T3 has the coordinates

T3 = ()\((llbo — aobl) 0 (albg - CLle) : (a1b3 - agbl)) .
So, we can formulate the last
Corollary 14 All conics, which are images of straight lines, intersect the line t at point Pj.

Finally, using the three points 77, T3, P53, one can compute the equation of the plane in
which the conic s; is located. We get

(b2a1 - CLle)IO - (bgao - CLQbQ)ZEl - )\(boal - aobl)ZL’Q = 0, T3 arbitrary.

Note that this equation is identical with equation (16).
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