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Abstract. The Λ-transformation is quadratic in the projective 3-space and
originally based on an irreducible spatial cubic. Here the case is addressed where
the cubic splits into a conic and a straight line. Two cases are distinguished
depending on whether the conic and the line are disjoint or not. An analytic
representation of the Λ-transformation is given and the images of planes and lines
are studied in detail.
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1. Introduction

In 1978 J. Fellmann [1] published a paper on the Λ-transformation based on a twisted curve
C3 of third order and an autocollineation ϕ of this curve. In the following work we use a
straight line t and a non-coplanar conic s. In this sense one can say that this is a special case
of [1]. Instead of using an autocollineation, our definition of the Λ-transformation is based on
the elements of the congruence K[2, 2] of bisecants of the spatial cubic t ∪ s (Fig. 1).

2. Part I

2.1. Definition of the Λ-transformation

In the projective space P3 over the field of real numbers R we choose a certain conic s and
a non-coplanar straight line t; in Part I we suppose s ∩ t = ∅. At the beginning we prove
that the set of bisecants of the spatial cubic s∪ t is a congruence K[2, 2] of second order and
second class.

Really, remembering that the order of a congruence is equal to the number of elements
(lines) of the congruence passing through an arbitrary point Q, let us take Q apart from line
t. Line t and point Q span a plane α (Fig. 2). This plane intersects the conic s at two points
R1 and R2. The lines QR1 and QR2 intersect line t at the points R1 and R2, respectively.
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Figure 1: Definition of the Λ-transformation M 7→ X for s ∩ t = ∅ (Part I)

Figure 2: The congruence K of bisecants
is of order 2

Figure 3: The congruence K of bisecants
is of class 2

In the congruence K the lines R1R1 and R2R2 are the only two elements which pass through
point Q. Hence, the congruence K is of the second order.

Further, the class of a congruence is defined as the number of elements of the congruence
lying in an arbitrary plane. So, let β be any plane distinct from the plane of the conic s and
not passing through the line t. The two lines joining the points R1, R2 ∈ s∩ β with the point
P = t ∩ β are the only two elements in the congruence K which lie in the plane β (Fig. 3).
Hence, the congruence K is of second class.

Definition 1 (Definition of the Λ-transformation):
In the real projective 3-space P3 let a conic s and a non-coplanar line t be given. Let K[2, 2]
denote the congruence of bisecants of the reducible spatial cubic s ∪ t. In addition, let λ be
any given real number, λ 6= 0, 1.
Then, on any line p intersecting s at A and t at A, i.e. p ∈ K[2, 2], for given point M ∈ p the
point X ∈ p is called the image of point M under the Λ-transformation if the cross-ratio of
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the four points A, A, M , and X (see Fig. 1) is equal to the given λ, i.e., if

(AAM X) = λ . (1)

Varying line p and applying the properties of the cross-ratio of four points (cf. [2]), we
get in this way a single-valued correspondence M 7→ X of points M,X ∈ P3.

In the whole paper the reasoning is done analytically by use of homogenous projective
coordinates in P3. Without loss of generality, we can choose a simplex P0, P1, P2, P3 as the
frame of reference for the projective coordinates such that the line t is identical with the edge
P2P3 and the conic s is located in the plane P0P1P3. We may assume that s is tangent at
points P0, P1 to the edges P0P3, P1P3, respectively (Fig. 4). We specify the conic s in the
pencil x2 = 0, x23 − kx0x1 = 0, k ∈ R, by setting

s : x23 − x0x1 = 0, x2 = 0. (2)

The line t is determined by the system of equations

t : x0 = x1 = 0. (3)

In order to obtain equations of the Λ-transformation we must determine at least one line
p ⊂ K[2, 2], i.e., passing through an arbitrary point M and intersecting the conic s and the
line t simultaneously:

The line t and the point M span a plane ϕ. The equation of this plane can be written in
the form

det









x0 x1 x2 x3
m0 m1 m2 m3

0 0 1 0
0 0 0 1









= 0 .

i.e., m1x0 −m0x1 = 0 with arbitrary x2, x3.

Figure 4: The simplex P0 . . . , P3 of reference

The plane ϕ and the face P0P1P3 share a line k determined by the two equations

m1x0 −m0x1 = x2 = 0 , (x3 arbitrary).
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For the computation of the common points of conic s and line k we solve the system of
equations

x23 − x0x1 = 0
m1x0 −m0x1 = 0

x2 = 0

and get

x0 = ±
√

m0

m1

x3 , x1 = ±
m1

m0

√

m0

m1

x3 , x2 = 0 .

Since x3 has an arbitrary value, we can assume x3 =
√

m1/m0. Finally, we obtain coordinates
of points A1, A2 in the form

A1 = (m0 : m1 : 0 :
√
m0m1 ), A2 = (−m0 : −m1 : 0 :

√
m0m1 ). (4)

In the following discussion we use point A1 only. We will return to A2 later.
From [2] we know that the coordinates of any third point on the line MA1 can be written

as a linear combination of coordinates of M and A1. So, we have

ρx0 = p1m0 + p2m0

ρx1 = p1m1 + p2m1

ρx2 = p1m2 + p20
ρx3 = p1m3 + p2

√
m0m1 .

(5)

Using systems (5) and (3) we get the coordinates of point A1, the common point of lines t
and MA1, in the form

(

0 : 0 : m2 : m3 −
√
m0m1

)

.

For three distinct points, A1, A1, M on line p there is a local system of projective coor-
dinates such that the local coordinates of these points are (1 : 0), (0 : 1), (1 : 1), respectively.
Hence, the coordinates of any fourth point X on line p can be written as

ρx0 = µ1m0 + µ20
ρx1 = µ1m1 + µ20
ρx2 = µ10 + µ2m2

ρx3 = µ1
√
m0m1 + µ2(m3 −

√
m0m1 ).

(6)

It is well known (see [2]) that the cross ratio equals (A1A1MX) = µ1/µ2. So, recalling
condition (1), we get finally λ = µ1/µ2, and the equations of the Λ-transformation are

ρx0 = λm0

ρx1 = λm1

ρx2 = m2

ρx3 = (λ− 1)
√
m0m1 +m3 .

(7)

When deriving the above equations we took A1 and A1 as the basic points. It is easy to show
that for A2 and A2 the system (7) turns into the form

ρx0 = λm0

ρx1 = λm1

ρx2 = m2

ρx3 = (1− λ)
√
m0m1 +m3 .

(8)

Obviously, the two points X, X ′ obtained from equations (7) and (8) are distinct.
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2.2. Properties of the Λ-transformation

Let us start with the investigation of fixed points under the transformation (7): Any point
of the conic s described by eq. (2) has coordinates of the form A =

(

a0 : a1 : 0 :
√
a0a1

)

.
Its image is the point A′ =

(

λa0 : λa1 : 0 : (λ− 1)
√
a0a1 +

√
a0a1

)

. Hence A equals A′, and
all points of the conic s are fixed points under the Λ-transformation. Similarly, any point
B = (0 : 0 : b2 : b3) lying on line t is mapped onto B ′ = (0 : 0 : b2 : (λ− 1)

√
0 · 0 + b3). So we

obtain B = B′, and line t is pointwise fixed under the Λ-transformation.
When investigating the Λ-transformation, the main problem is to get an answer to the

following question: What is the locus of points X when point M describes a certain plane ψ?

Let us choose a plane ψ described by

ψ : u0x0 + u1x1 + u2x2 + u3x3 = 0. (9)

In order to receive the answer to the above question, we must add to the system (7) the
condition that point M = (m0 : . . . : m3) lies in plane ψ, and then eliminate from the
obtained system the coordinates m0, . . . ,m3 of the varying point M . So, we have the system
of equations

ρx0 = λm0

ρx1 = λm1

ρx2 = m2

ρx3 = (λ− 1)
√
m0m1 +m3

0 = m0x0 +m1x1 +m2x2 +m3x3 .

From this system of equations we deduce

m0 =
ρx0
λ
, m1 =

ρx1
λ
, m2 = ρx2,

m3 = ρx3 − (λ− 1)
√
m0m1 = ρx3 −

ρ(λ− 1)

λ

√
x0x1 .

After substituting the first three expressions in the last equation we get

Φ(x0, . . . , x3) :≡ (u0x0 + u1x1 + λu2x2 + λu3x3)
2 − u23(λ− 1)2x0x1 = 0. (10)

If we use the system (8) instead of (7), we obtain the same expression (10). It means that the
two distinct points X and X ′ (described by (7) or (8), respectively) satisfy the same equation
(10). Hence, we get the basic theorem of Part I

Corollary 1 The image of any plane ψ ⊂ P3 under the Λ-transformation is a quadric Φ,
described by the equation (10).

Note that we obtained all the above results under the tacid assumption that in the pair
of points (A1, A1) the first one is always on the conic s and the second on the line t. In the
reversed order, it is well known (cf. [2]) that the value of the cross ratio changes to 1/λ. Then,
the quadric Φ would be replaced by the quadric

Φ1(x0, . . . , x3) :≡ (λu0x0 + λu1x1 + u2x2 + u3x3)
2 − u23(1− λ)2x0x1 = 0 .

The two quadrics Φ and Φ1 are essentially distinct. Equality Φ = Φ1 occurs iff 1/λ = λ, i.e.,
when λ = −1.
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2.3. Investigation of the quadric Φ

In order to determine the character of the quadric Φ we apply the standard method [3] of
checking the sign of certain expressions built from the coefficients aik of the quadratic form.
According to [3], we define the following two matrices

V :=









a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44









, W :=





a11 a12 a13
a21 a22 a23
a31 a32 a33



 ,

and the expression (trace) W1 := a11 + a22 + a33. In our case we have

VΦ =









u20
1
2
(2u0u1 − (λ− 1)2u23) λu0u2 λu0u3

1
2
(2u0u1 − (λ− 1)2u23) u21 λu1u2 λu1u3

λu0u2 λu1u2 λ2u22 λ2u2u3
λu0u3 λu1u3 λ2u2u3 λ2u23









,

WΦ =





u20
1
2
(2u0u1 − (λ− 1)2u23) λu0u2

1
2
(2u0u1 − (λ− 1)2u23) u21 λu1u2

λu0u2 λu1u2 λ2u22



 ,

and
W1Φ = u20 + u21 + λ2u22 .

Since RankVΦ = RankWΦ = 3 and detWΦ = −1
4
(λ2(λ− 1)2u22u

4
3), so detWΦ ·W1Φ ≤ 0,

and by virtue of [3] we have

Theorem 1 In the generic case the quadric Φ defined by eq. (10) is a cone of the second
order.

2.4. Position of the cone Φ

Let us consider the location of the cone Φ with respect to the basis simplex, the conic s and
the line t. Does the conic s lie on the cone Φ?

Setting x2 = 0 in eq. (10) we get a conic section

(u0x0 + u1x1 + λu3x3)
2 − (λ− 1)2u23x0x1 = 0. (11)

We see that the conic (11) differs from s. Hence,

Corollary 2 The cone Φ does not pass through the conic s.

Is line s a generator of the cone Φ? Line t is defined as the edge P2P3 of our simplex.
Setting x0 = 0 and x1 = 0 in (10), we get

(u0x0 + λu2x2 + λu3x3)
2 = 0 , (12)

(u1x1 + λu2x2 + λu3x3)
2 = 0 , (13)

respectively. As we can see we have obtained two twofold covered straight lines. Hence

Corollary 3 The line t does not lie on the cone Φ. The cone touches the two faces x0 = 0,
x1 = 0 of the simplex along lines (12) and (13), respectively (see Fig. 5).
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Figure 5: Position of the cone Φ with respect to the simplex P0, . . . , P3 of reference

To determine the vertex S of the cone, it is sufficient to set x0 = 0 in (13) and x1 = 0 in
(12). This results in two identical formulas of the form λu2x2+λu3x3 = 0, and the coordinates
of the vertex are

S = (0 : 0 : −u3 : u2) .

It is easy to see that these coordinates satisfy eq. (9) of the plane ψ. So, we have

Corollary 4 The vertex S of cone Φ is the common point of the line t and the given plane
ψ.

2.5. Degeneration of the cone Φ

If plane ψ passes through the vertex P3 = (0 : 0 : 0 : 1) of the basis simplex, i.e., if we put
u3 = 0 in eq. (9), then equation (10) turns into the form

Φ(x0, . . . , x3) ≡ (u0x0 + u1x1 + λu2x2)
2 = 0, x3 arbitrary.

This is a certain twofold covered plane, and it passes through the vertex P3 = (0 : 0 : 0 : 1),
too. If we assume that ψ passes through vertex P2 = (0 : 0 : 1 : 0), i.e., if u2 = 0, then eq.
(10) takes the form

Φ(x0, . . . , x3) ≡ (u0x0 + u1x1 + λu3x3)
2 − u23(λ− 1)2x0x1 = 0, x2 arbitrary,

and this is still a cone of second order.

2.6. Image of a straight line q

Let us specify a straight line q by its parametric representation

ρmi = ait+ bi, i = 0, . . . , 3 . (14)
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After substituting these coordinates (m0 : . . . : m3) into the systems (7) and (8), we get the
images of the straight line q described by the two systems

ρx0 = λ(a0t+ b0)
ρx1 = λ(a1t+ b1)
ρx2 = a2t+ b2
ρx3 = (λ− 1)

√

(a0t+ b0)(a1t+ b1)+
+a3t+ b3 ,

ρx0 = λ(a0t+ b0)
ρx1 = λ(a1t+ b1)
ρx2 = a2t+ b2
ρx3 = (1− λ)

√

(a0t+ b0)(a1t+ b1)+
+a3t+ b3 .

(15)

These two systems describe two different arcs of the same conic s1. Hence, we have

Theorem 2 The image of a straight line q ⊂ P3 under the Λ-transformation is in the generic
case a single conic s1 defined by the systems (15) of parametric equations.

The two arcs meet each other when the parameter t is satisfying the condition (a0t +
b0)(c1t+ b1) = 0, i.e., for t1 = −b0/a0 or t2 = −b1/a1 . Hence, the common points of the two
arcs are

T0 = (0 : λ(b1a0 − ab0) : (b2a0 − ab0) : (b3a0 − a3b0)) and

T1 = (λ(b0a1 − a1b0) : 0 : (b2a1 − b1a2) : (b3a1 − a3b1)) .

These points T0 and T1 are the common points of the conic s1 with the faces x0 = 0 and
x1 = 0. So, we get

Corollary 5 The conic s1 touches the faces x0 = 0 and x1 = 0 of the basis simplex at the
points T0 and T1, respectively.

Finally, let us determine equation of the plane passing through the conic s1:

If we choose any three arbitrary and distinct points on the conic, e.g., T0, T1 and (for t = 0)
point R =

(

λb0 : λb1 : b2 : (b3 − (λ− 1)
√
b0b1 )

)

, then one can express the equation of the
plane in the form

det









x0 x1 x2 x3
0 λ(b1a0 − a1b0) b2a0 − a2b0 b3a0 − a3b0

λ(b0a1 − b1a0) 0 b2a1 − a2b1 b3a1 − a3b1
λb0 λb1 b2 b3 − (λ− 1)

√
b0b1









= 0 ,

or after the evaluation

(b2a1 − a2b1)x0 − (b2a0 − a2b0)x1 − λ(b0a1 − a0b1)x2 = 0, x3 arbitrary. (16)

In this way we obtain

Corollary 6 The plane of the conic s1 depends on λ, ai and bi, i = 0, . . . , 3, and passes
through the point P3 = (0 : 0 : 0 : 1).

3. Part II

It is known that an irreducible spatial curve C3 of third order does not possess any singular
point. If such a point exists, then the curve C3 must break up into a certain conic and a
straight line cutting the conic at a single point, and this is the case we are investigating now.
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3.1. Definition of the Λ-transformation

Let a curve C3 with a double point be given (Fig. 6). Like in Part I we can prove that the
set of all bisecants of such a curve C3 forms a congruence K[2, 2] of second order and second
class.

Without loss of generality we may specify the simplex P0, . . . , P3 in such a way that the
conic s passes through vertices P0, P1, P3, and line t is the edge P2P3 of the simplex. If we
assume that the point E = (1 : 1 : 0 : 1) lies on conic s (Fig 7), then the pencil of conics
passing through the four points P0, P1, P3, E can be written in the form

x2 = 0, kx0x1 + x0x3 − (k + 1)x1x3 = 0, k ∈ R.

We select the conic with k = 1. Hence the equations of s read

s : x2 = 0, x0x1 + x0x3 − 2x1x3 = 0. (17)

As in Part I, line t is defined by the system (3) of equations.

Figure 6: Definition of the
Λ-transformation M 7→ X
under s ∩ t 6= ∅ (Part II)

Figure 7: The simplex P0 . . . , P3 of reference
in Part II

In order to determine a line pj ∈ K[2, 2], passing through an arbitrary point M(m0 : . . . :
m3), where M 6= Pi, i = 0, . . . , 3, and M 6∈ t, we take the plane δ = MP2P3 (Fig. 8). Its
equation is

m1x0 −m0x1 = 0, x2, x3 arbitrary. (18)

We define line p as the common line of δ and the face P1P2P3 of the basis simplex. Hence,
line p is determined by the two equations

m1x0 −m0x1 = x2 = 0, x3 arbitrary.

From the first equation we have x0 = m0x1/m1, m1 6= 0. Substituting this expression in the
equation (17) of s, we obtain the coordinates of the common points of plane δ and conic s.
They satisfy the system

x1(m0x1 +m0x3 − 2m1x3) = x2 = 0 .



160 E. Korczak: A Quadratic Transformation Based on a Straight Line and a Conic

For x1 = 0 we get the following solution: x0 = x1 = x2 = 0, x3 arbitrary. In other words, we
get the point A1 = P3 = (0 : 0 : 0 : 1), the first common point of conic s and plane δ.

The equations m0x1 +m0x3 − 2m1x3 = 0 and x2 = 0 result in

x1
x3

=
2m1 −m0

m0

,

and finally we get the second common point

A2 = (m0(2m1 −m0) : m1(2m1 −m0) : 0 : m0m1) .

In this way we obtain the two bisecants p1, p2 ∈ K[2, 2] passing through the arbitrary point
M , i.e., the lines MA1 and MA2. In the sequel we use line MA2 only. We will return to line
MA1 later.

Figure 8: Construction of lines p1, p2 ∈ K[2, 2] through point M

Now we compute point A2, the common point of the lines t and MA2 : This point on
MA2 can be written as a linear combination of the coordinates of M and A2. Hence

ρx0 = p1m0 + p2m0(2m1 −m0)
ρx1 = p1m1 + p2m1(2m1 −m0)
ρx2 = p1m2 + p20
ρx3 = p1m3 + p2m0m1 .

Line t is defined by the system (3). So the coordinates of point A2 must fulfil the following
conditions:

0 = p1m0 + p2m0(2m1 −m0) = p1m1 + p2m1(2m1 −m0),

i.e., 0 = p1 + p2(2m1 − m0) and finally p1 = −2m1 + m0, p2 = 1. Substituting the last
expressions in the system of equations, we get the coordinates of point A2

A2 = (0 : 0 : (2m1 −m0)m2 : (2m1 −m0)m3 −m0m1) . (19)
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For three distinct points M , A2, A2 on a line a local system of projective coordinates on this
line can be introduced [2] such that A2 = (1 : 0), A2 = (0 : 1), M = (1 : 1). In our case the
coordinates of any fourth point X on line MA2A2 can be written in the form

ρx0 = µ0m0(2m1 −m0) + µ10
ρx1 = µ0m1(2m1 −m0) + µ10
ρx2 = µ00 + µ1m2(2m1 −m0)
ρx3 = µ0m0m1 + µ1[m3(2m1 −m0)−m0m1].

According to condition (1) we have µ0/µ1 = λ. Finally the equations of the Λ-transformation
in Part II are

ρx0 = λm0(2m1 −m0)
ρx1 = λm1(2m1 −m0)
ρx2 = m2(2m1 −m0)
ρx3 = (λ− 1)m0m1 +m3(2m1 −m0).

(20)

Now, it is the right place to return to point A1. It is clear (Fig. 9) that A1 = P3 = A1 for any
position of point M . From the properties of a cross-ratio [2] we know that if A1 = A1 then
(A1A1MX) = 1, and this contradicts the assumption in Definition 1. This implies that we
can omit in our investigations the line MA1 and use the line MA2 only.

3.2. Properties of the Λ-transformation

It is important to observe that the transformation defined by the system (20) is a birational
Cremona transformation [4], more exactly, a special kind of a quadratic transformation. Let
us start with the determination of the fixed points of the transformation:

We write the system (20) in the form

ρx0 = λm0

ρx1 = λm1

ρx2 = m2

ρx3 =
(λ− 1)m0m1

2m1 −m0

+m3 .

and note that for any point D ∈ t we have

D = (0 : 0 : a : b) 7→ D′ = (0 : 0 : a : b),

and for any B ∈ s
B = (c : d : 0 : −cd/(c− 2d)) 7→ B ′ = (c : d : 0 : −cd/(c− 2d)) .

Corollary 7 The line t and the conic s are pointwise fixed under the Λ-transformation.

The main problem of this chapter is to give an answer to the question: What is the locus
of points X when point M varies in a plane ψ?

If we assume that the equation of plane ψ is again in the form (9), then after adding to the
system (20) the condition that point M = (m0 : . . . : m3) lies in the plane ψ, we get

ρx0 = λm0(2m1 −m0)
ρx1 = λm1(2m1 −m0)
ρx2 = m2(2m1 −m0)
ρx3 = (λ− 1)m0m1 +m3(2m1 −m0)
0 = u0m0 + u1m1 + u2m2 + u3m3 .



162 E. Korczak: A Quadratic Transformation Based on a Straight Line and a Conic

We eliminate from this system the coordinates m0, . . . ,m3 of the varying point M and obtain

Φ(x0, . . . , x3) :≡ (2x1 − x0)(u0x0 + u1x1 + λu2x2 + λu3x3)− (λ− 1)u3x0x1 = 0. (21)

This equation describes the locus of points X. Hence, we got

Corollary 8 In the generic case the image of a plane ψ (eq. (9)) under the Λ-transformation
is the quadric Φ with equation (21).

3.3. Investigation of the quadric Φ

As we remember from Part I, line t does not belong to the quadric. Now, we have quite a
different situation: It is easy to observe that any point with coordinates (0 : 0 : a : b) on this
line satisfies the equation (21). This means

Corollary 9 Line t lies on the quadric Φ, i.e., the quadric Φ is a ruled quadric.

In a similar way as in Part I we get

Corollary 10 The conic s does not lie on the quadric Φ.

Following the way of reasoning from Part I, let us investigate the character of the quadric
Φ: The two matrices VΦ and WΦ are of the form

VΦ =











u0 −1
2
(2u0 − u1 − (λ− 1)u3)

1
2
λu2

1
2
λu3

−1
2
(2u0 − u1 − (λ− 1)u3) −2u1 −λu2 −λu3

1
2
λu2 −λu2 0 0

1
2
λu3 −λu3 0 0











,

WΦ =





u0 −1
2
(2u0 − u1 − (λ− 1)u3)

1
2
λu2

−1
2
(2u0 − u1 − (λ− 1)u3) −2u1 −λu2

1
2
λu2 −λu2 0



 .

After some calculations we get RankVΦ = RankWΦ = 3. By virtue of [3] and remembering
that the space P3 is over the field of real numbers, we obtain

Theorem 3 In the generic case the quadric Φ with equation (21) is a cone of the second
order (Fig. 9)

3.4. Location of the quadric Φ

As we have proved above, line t is one of the generators of the cone Φ. Let us intersect
the cone with the faces P0P2P3, and P1P2P3 of the simplex. It means that we must set
in eq. (21) either x1 = 0 or x0 = 0. Hence, we get x0(u0x0 + λu2x2 + λu3x3) = 0 and
x1(u1x1+λu2x2+λu3x3) = 0, respectively. In both cases we get the line t and two generators
t1 : u0x0 + λu2x2 + λu3x3 = 0 and t2 : u1x1 + λu2x2 + λu3x3 = 0 of the cone.

In order to determine the vertex of the cone, we compute the common point of the three
lines t, t1 and t2. This common point is S = (0 : 0 : −u3 : u2), and its coordinates satisfy the
equation (9) of the plane ψ. So, we get

Corollary 11 The vertex S of the cone Φ is the common point of plane ψ and line t.
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Figure 9: The image Φ of a plane ψ under the Λ-transformation

We proved above that in the generic case the image of a plane is a cone Φ, and the line
t is one of its generators. An interesting question arises: Do all cones, images of different
planes, simply pass through line t or touch each other along this line?

When an algebraic surface with equation Ω(x0, . . . , x3) = 0 is given, then the plane tangent
to this surface at its point (z0, . . . , z3) has the equation

∂Ω

∂x0
(z0, . . . , z3)x0 + . . . +

∂Ω

∂x3
(z0, . . . , z3)x3 = 0 .

Let us determine the plane tangent to our cone Φ at the point P3 = (0 : 0 : 0 : 1). The
derivatives are

∂Ω

∂x0
(x0, . . . , x3) = 2u0x0 + [u1 + (λ− 1)u3 − 2u0]x1 + λu2x2 + λu3x3,

∂Ω

∂x1
(x0, . . . , x3) = [u1 + (λ− 1)u3 − 2u0]x0 − 4u1x1 − 2λu2x2 − 2λu3x3,

∂Ω

∂x2
(x0, . . . , x3) = λu2(x0 − 2x1),

∂Ω

∂x3
(x0, . . . , x3) = λu3(x0 − 2x).

Finally, the equation of the plane tangent to the cone Φ at P3 is

x0 − 2x1 = 0 . (22)

This equation is independent from the coefficients ui, i = 0, . . . , 3. So we have

Corollary 12 All cones which are images of planes under the Λ-transformation touch each
other along the line t.
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3.5. Degeneration of the cone Φ

Similarly to Part I it follows from eq. (21) that if u3 = 0, i.e., if plane ψ passes through point
P3 = (0 : 0 : 0 : 1), the cone breaks up into two planes

2x1 − x0 = 0, x2, x3 arbitrary, and

u0x0 + u1x1 + λu2x2 = 0, x3 arbitrary.

Hence we got

Corollary 13 If the plane ψ passes through the vertex P3 = (0 : 0 : 0 : 1), then its image
consists of the two planes 2x1 − x0 = 0 and u0x0 + u1x1 + λu2x2 = 0.
The first plane is independent from the coefficients of the plane ψ and passes through the line
t. The second plane passes through the vertex P3 = (0 : 0 : 0 : 1).

3.6. Image of a straight line p

Let the line p be given by its parametric representation

ρmi = ait+ bi , i = 0, . . . , 3

identical to (14). Under the Λ-transformation (20) we obtain the conic

ρx0 = λ(a0t+ b0)[2(a1t+ b1)− a0t− b0]
ρx1 = λ(a1t+ b1)[2(a1t+ b1)− a0t− b0]
ρx2 = λ(a2t+ b2)[2(a1 + b1)− a0t− b0]
ρx3 = (λ− 1)(a0t+ b0)(a1t+ b1) + (a3t+ b3)[2(a1t+ b1)− a0t− b0].

(23)

Hence, we can formulate

Theorem 4 The image of a straight line p is a conic section s2 with the parametric repre-
sentation (23).

Let us intersect the conic s2 with the face x0 = 0. The condition

(a0t+ b0)[2(a1t+ b1)− a0t− b0] = 0

results in (a0t + b0) = 0. Hence, t1 = −b0/a0, a0 6= 0, or 2(a1t + b1) − a0t − b0 = 0,
t2 = (b0 − 2b1)/(2a1 − a0). The points corresponding to these values of t are

T1 = (0 : λ(a0b1 − a1b0) : (a0b2 − a2b0) : (a0b3 − a3b0) and T2 = (0 : 0 : 0 : 1) = P3 .

Further, we find the common points of the conic s2 and the face x1 = 0 :

Setting x1 = 0 in (23) we get t3 = −b1/a1 and t4 = (b0 − 2b1)/(2a1 − a0). Because of t2 = t4
we obtain T2 = T4 = P3. Point T3 has the coordinates

T3 = (λ(a1b0 − a0b1) : 0 : (a1b2 − a2b1) : (a1b3 − a3b1)) .

So, we can formulate the last

Corollary 14 All conics, which are images of straight lines, intersect the line t at point P3.

Finally, using the three points T1, T3, P3, one can compute the equation of the plane in
which the conic s2 is located. We get

(b2a1 − a2b1)x0 − (b2a0 − a2b0)x1 − λ(b0a1 − a0b1)x2 = 0, x3 arbitrary.

Note that this equation is identical with equation (16).
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