A Quadratic Transformation Based on a Straight Line and a Conic

Eugeniusz Korczak
ul. św. Rocha 6B m. 5, PL 61-142 Poznań, Poland
email: ekorczak@math.put.poznan.pl

Abstract

The Λ-transformation is quadratic in the projective 3 -space and originally based on an irreducible spatial cubic. Here the case is addressed where the cubic splits into a conic and a straight line. Two cases are distinguished depending on whether the conic and the line are disjoint or not. An analytic representation of the Λ-transformation is given and the images of planes and lines are studied in detail.

Keywords: Λ-transformation, quadratic transformation
MSC 2000: 51N15, 51N35

1. Introduction

In 1978 J. Fellmann [1] published a paper on the Λ-transformation based on a twisted curve C^{3} of third order and an autocollineation φ of this curve. In the following work we use a straight line t and a non-coplanar conic s. In this sense one can say that this is a special case of [1]. Instead of using an autocollineation, our definition of the Λ-transformation is based on the elements of the congruence $K[2,2]$ of bisecants of the spatial cubic $t \cup s$ (Fig. 1).

2. Part I

2.1. Definition of the Λ-transformation

In the projective space \mathbb{P}^{3} over the field of real numbers \mathbb{R} we choose a certain conic s and a non-coplanar straight line t; in Part I we suppose $s \cap t=\emptyset$. At the beginning we prove that the set of bisecants of the spatial cubic $s \cup t$ is a congruence $K[2,2]$ of second order and second class.

Really, remembering that the order of a congruence is equal to the number of elements (lines) of the congruence passing through an arbitrary point Q, let us take Q apart from line t. Line t and point Q span a plane α (Fig. 2). This plane intersects the conic s at two points R_{1} and R_{2}. The lines $Q R_{1}$ and $Q R_{2}$ intersect line t at the points \bar{R}_{1} and \bar{R}_{2}, respectively.

Figure 1: Definition of the Λ-transformation $M \mapsto X$ for $s \cap t=\emptyset$ (Part I)

Figure 2: The congruence K of bisecants is of order 2

Figure 3: The congruence K of bisecants is of class 2

In the congruence K the lines $R_{1} \bar{R}_{1}$ and $R_{2} \bar{R}_{2}$ are the only two elements which pass through point Q. Hence, the congruence K is of the second order.

Further, the class of a congruence is defined as the number of elements of the congruence lying in an arbitrary plane. So, let β be any plane distinct from the plane of the conic s and not passing through the line t. The two lines joining the points $R_{1}, R_{2} \in s \cap \beta$ with the point $P=t \cap \beta$ are the only two elements in the congruence K which lie in the plane β (Fig. 3). Hence, the congruence K is of second class.

Definition 1 (Definition of the Λ-transformation):
In the real projective 3 -space \mathbb{P}^{3} let a conic s and a non-coplanar line t be given. Let $K[2,2]$ denote the congruence of bisecants of the reducible spatial cubic $s \cup t$. In addition, let λ be any given real number, $\lambda \neq 0,1$.
Then, on any line p intersecting s at A and t at \bar{A}, i.e. $p \in K[2,2]$, for given point $M \in p$ the point $X \in p$ is called the image of point M under the Λ-transformation if the cross-ratio of
the four points A, \bar{A}, M, and X (see Fig. 1) is equal to the given λ, i.e., if

$$
\begin{equation*}
(A \bar{A} M X)=\lambda \tag{1}
\end{equation*}
$$

Varying line p and applying the properties of the cross-ratio of four points (cf. [2]), we get in this way a single-valued correspondence $M \mapsto X$ of points $M, X \in \mathbb{P}^{3}$.

In the whole paper the reasoning is done analytically by use of homogenous projective coordinates in \mathbb{P}^{3}. Without loss of generality, we can choose a simplex $P_{0}, P_{1}, P_{2}, P_{3}$ as the frame of reference for the projective coordinates such that the line t is identical with the edge $P_{2} P_{3}$ and the conic s is located in the plane $P_{0} P_{1} P_{3}$. We may assume that s is tangent at points P_{0}, P_{1} to the edges $P_{0} P_{3}, P_{1} P_{3}$, respectively (Fig. 4). We specify the conic s in the pencil $x_{2}=0, x_{3}^{2}-k x_{0} x_{1}=0, k \in \mathbb{R}$, by setting

$$
\begin{equation*}
s: \quad x_{3}^{2}-x_{0} x_{1}=0, \quad x_{2}=0 . \tag{2}
\end{equation*}
$$

The line t is determined by the system of equations

$$
\begin{equation*}
t: \quad x_{0}=x_{1}=0 \tag{3}
\end{equation*}
$$

In order to obtain equations of the Λ-transformation we must determine at least one line $p \subset K[2,2]$, i.e., passing through an arbitrary point M and intersecting the conic s and the line t simultaneously:

The line t and the point M span a plane φ. The equation of this plane can be written in the form

$$
\operatorname{det}\left[\begin{array}{cccc}
x_{0} & x_{1} & x_{2} & x_{3} \\
m_{0} & m_{1} & m_{2} & m_{3} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]=0
$$

i.e., $m_{1} x_{0}-m_{0} x_{1}=0$ with arbitrary x_{2}, x_{3}.

Figure 4: The simplex $P_{0} \ldots, P_{3}$ of reference
The plane φ and the face $P_{0} P_{1} P_{3}$ share a line k determined by the two equations

$$
m_{1} x_{0}-m_{0} x_{1}=x_{2}=0, \quad\left(x_{3} \text { arbitrary }\right)
$$

For the computation of the common points of conic s and line k we solve the system of equations

$$
\begin{aligned}
x_{3}^{2}-x_{0} x_{1} & =0 \\
m_{1} x_{0}-m_{0} x_{1} & =0 \\
x_{2} & =0
\end{aligned}
$$

and get

$$
x_{0}= \pm \sqrt{\frac{m_{0}}{m_{1}} x_{3}}, \quad x_{1}= \pm \frac{m_{1}}{m_{0}} \sqrt{\frac{m_{0}}{m_{1}} x_{3}}, \quad x_{2}=0
$$

Since x_{3} has an arbitrary value, we can assume $x_{3}=\sqrt{m_{1} / m_{0}}$. Finally, we obtain coordinates of points A_{1}, A_{2} in the form

$$
\begin{equation*}
A_{1}=\left(m_{0}: m_{1}: 0: \sqrt{m_{0} m_{1}}\right), \quad A_{2}=\left(-m_{0}:-m_{1}: 0: \sqrt{m_{0} m_{1}}\right) \tag{4}
\end{equation*}
$$

In the following discussion we use point A_{1} only. We will return to A_{2} later.
From [2] we know that the coordinates of any third point on the line $M A_{1}$ can be written as a linear combination of coordinates of M and A_{1}. So, we have

$$
\begin{align*}
\rho x_{0} & =p_{1} m_{0}+p_{2} m_{0} \\
\rho x_{1} & =p_{1} m_{1}+p_{2} m_{1} \\
\rho x_{2} & =p_{1} m_{2}+p_{2} 0 \tag{5}\\
\rho x_{3} & =p_{1} m_{3}+p_{2} \sqrt{m_{0} m_{1}} .
\end{align*}
$$

Using systems (5) and (3) we get the coordinates of point \bar{A}_{1}, the common point of lines t and $M A_{1}$, in the form $\left(0: 0: m_{2}: m_{3}-\sqrt{m_{0} m_{1}}\right)$.

For three distinct points, A_{1}, \bar{A}_{1}, M on line p there is a local system of projective coordinates such that the local coordinates of these points are $(1: 0),(0: 1),(1: 1)$, respectively. Hence, the coordinates of any fourth point X on line p can be written as

$$
\begin{align*}
& \rho x_{0}=\mu_{1} m_{0}+\mu_{2} 0 \\
& \rho x_{1}=\mu_{1} m_{1}+\mu_{2} 0 \\
& \rho x_{2}=\mu_{1} 0+\mu_{2} m_{2} \tag{6}\\
& \rho x_{3}=\mu_{1} \sqrt{m_{0} m_{1}}+\mu_{2}\left(m_{3}-\sqrt{m_{0} m_{1}}\right) .
\end{align*}
$$

It is well known (see [2]) that the cross ratio equals $\left(A_{1} \bar{A}_{1} M X\right)=\mu_{1} / \mu_{2}$. So, recalling condition (1), we get finally $\lambda=\mu_{1} / \mu_{2}$, and the equations of the Λ-transformation are

$$
\begin{align*}
& \rho x_{0}=\lambda m_{0} \\
& \rho x_{1}=\lambda m_{1} \tag{7}\\
& \rho x_{2}=m_{2} \\
& \rho x_{3}=(\lambda-1) \sqrt{m_{0} m_{1}}+m_{3} .
\end{align*}
$$

When deriving the above equations we took A_{1} and \bar{A}_{1} as the basic points. It is easy to show that for A_{2} and \bar{A}_{2} the system (7) turns into the form

$$
\begin{align*}
\rho x_{0} & =\lambda m_{0} \\
\rho x_{1} & =\lambda m_{1} \tag{8}\\
\rho x_{2} & =m_{2} \\
\rho x_{3} & =(1-\lambda) \sqrt{m_{0} m_{1}}+m_{3}
\end{align*}
$$

Obviously, the two points X, X^{\prime} obtained from equations (7) and (8) are distinct.

2.2. Properties of the Λ-transformation

Let us start with the investigation of fixed points under the transformation (7): Any point of the conic s described by eq. (2) has coordinates of the form $A=\left(a_{0}: a_{1}: 0: \sqrt{a_{0} a_{1}}\right)$. Its image is the point $A^{\prime}=\left(\lambda a_{0}: \lambda a_{1}: 0:(\lambda-1) \sqrt{a_{0} a_{1}}+\sqrt{a_{0} a_{1}}\right)$. Hence A equals A^{\prime}, and all points of the conic s are fixed points under the Λ-transformation. Similarly, any point $B=\left(0: 0: b_{2}: b_{3}\right)$ lying on line t is mapped onto $B^{\prime}=\left(0: 0: b_{2}:(\lambda-1) \sqrt{0 \cdot 0}+b_{3}\right)$. So we obtain $B=B^{\prime}$, and line t is pointwise fixed under the Λ-transformation.

When investigating the Λ-transformation, the main problem is to get an answer to the following question: What is the locus of points X when point M describes a certain plane ψ ? Let us choose a plane ψ described by

$$
\begin{equation*}
\psi: u_{0} x_{0}+u_{1} x_{1}+u_{2} x_{2}+u_{3} x_{3}=0 . \tag{9}
\end{equation*}
$$

In order to receive the answer to the above question, we must add to the system (7) the condition that point $M=\left(m_{0}: \ldots: m_{3}\right)$ lies in plane ψ, and then eliminate from the obtained system the coordinates m_{0}, \ldots, m_{3} of the varying point M. So, we have the system of equations

$$
\begin{aligned}
\rho x_{0} & =\lambda m_{0} \\
\rho x_{1} & =\lambda m_{1} \\
\rho x_{2} & =m_{2} \\
\rho x_{3} & =(\lambda-1) \sqrt{m_{0} m_{1}}+m_{3} \\
0 & =m_{0} x_{0}+m_{1} x_{1}+m_{2} x_{2}+m_{3} x_{3} .
\end{aligned}
$$

From this system of equations we deduce

$$
\begin{gathered}
m_{0}=\frac{\rho x_{0}}{\lambda}, \quad m_{1}=\frac{\rho x_{1}}{\lambda}, \quad m_{2}=\rho x_{2}, \\
m_{3}=\rho x_{3}-(\lambda-1) \sqrt{m_{0} m_{1}}=\rho x_{3}-\frac{\rho(\lambda-1)}{\lambda} \sqrt{x_{0} x_{1}} .
\end{gathered}
$$

After substituting the first three expressions in the last equation we get

$$
\begin{equation*}
\Phi\left(x_{0}, \ldots, x_{3}\right): \equiv\left(u_{0} x_{0}+u_{1} x_{1}+\lambda u_{2} x_{2}+\lambda u_{3} x_{3}\right)^{2}-u_{3}^{2}(\lambda-1)^{2} x_{0} x_{1}=0 . \tag{10}
\end{equation*}
$$

If we use the system (8) instead of (7), we obtain the same expression (10). It means that the two distinct points X and X^{\prime} (described by (7) or (8), respectively) satisfy the same equation (10). Hence, we get the basic theorem of Part I

Corollary 1 The image of any plane $\psi \subset \mathbb{P}^{3}$ under the Λ-transformation is a quadric Φ, described by the equation (10).

Note that we obtained all the above results under the tacid assumption that in the pair of points $\left(A_{1}, \bar{A}_{1}\right)$ the first one is always on the conic s and the second on the line t. In the reversed order, it is well known (cf. [2]) that the value of the cross ratio changes to $1 / \lambda$. Then, the quadric Φ would be replaced by the quadric

$$
\Phi_{1}\left(x_{0}, \ldots, x_{3}\right): \equiv\left(\lambda u_{0} x_{0}+\lambda u_{1} x_{1}+u_{2} x_{2}+u_{3} x_{3}\right)^{2}-u_{3}^{2}(1-\lambda)^{2} x_{0} x_{1}=0 .
$$

The two quadrics Φ and Φ_{1} are essentially distinct. Equality $\Phi=\Phi_{1}$ occurs iff $1 / \lambda=\lambda$, i.e., when $\lambda=-1$.

2.3. Investigation of the quadric Φ

In order to determine the character of the quadric Φ we apply the standard method [3] of checking the sign of certain expressions built from the coefficients $a_{i k}$ of the quadratic form. According to [3], we define the following two matrices

$$
V:=\left[\begin{array}{cccc}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34} \\
a_{41} & a_{42} & a_{43} & a_{44}
\end{array}\right], \quad W:=\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right],
$$

and the expression (trace) $W_{1}:=a_{11}+a_{22}+a_{33}$. In our case we have

$$
\begin{gathered}
V_{\Phi}=\left[\begin{array}{cccc}
u_{0}^{2} & \frac{1}{2}\left(2 u_{0} u_{1}-(\lambda-1)^{2} u_{3}^{2}\right) & \lambda u_{0} u_{2} & \lambda u_{0} u_{3} \\
\frac{1}{2}\left(2 u_{0} u_{1}-(\lambda-1)^{2} u_{3}^{2}\right) & u_{1}^{2} & \lambda u_{1} u_{2} & \lambda u_{1} u_{3} \\
\lambda u_{0} u_{2} & \lambda u_{1} u_{2} & \lambda^{2} u_{2}^{2} & \lambda^{2} u_{2} u_{3} \\
\lambda u_{0} u_{3} & \lambda u_{1} u_{3} & \lambda^{2} u_{2} u_{3} & \lambda^{2} u_{3}^{2}
\end{array}\right], \\
W_{\Phi}=\left[\begin{array}{ccc}
& & \frac{1}{2}\left(2 u_{0} u_{1}-(\lambda-1)^{2} u_{3}^{2}\right) \\
\frac{1}{2}\left(2 u_{0} u_{2}\right. \\
\left.\frac{u_{0}^{2}}{2} u_{1}-(\lambda-1)^{2} u_{3}^{2}\right) & u_{1}^{2} & \lambda u_{1} u_{2} \\
\lambda u_{0} u_{2} & \lambda u_{1} u_{2} & \lambda^{2} u_{2}^{2}
\end{array}\right],
\end{gathered}
$$

and

$$
W_{1 \Phi}=u_{0}^{2}+u_{1}^{2}+\lambda^{2} u_{2}^{2} .
$$

Since $\operatorname{Rank} V_{\Phi}=\operatorname{Rank} W_{\Phi}=3$ and $\operatorname{det} W_{\Phi}=-\frac{1}{4}\left(\lambda^{2}(\lambda-1)^{2} u_{2}^{2} u_{3}^{4}\right)$, so $\operatorname{det} W_{\Phi} \cdot W_{1 \Phi} \leq 0$, and by virtue of [3] we have

Theorem 1 In the generic case the quadric Φ defined by eq. (10) is a cone of the second order.

2.4. Position of the cone Φ

Let us consider the location of the cone Φ with respect to the basis simplex, the conic s and the line t. Does the conic s lie on the cone Φ ?

Setting $x_{2}=0$ in eq. (10) we get a conic section

$$
\begin{equation*}
\left(u_{0} x_{0}+u_{1} x_{1}+\lambda u_{3} x_{3}\right)^{2}-(\lambda-1)^{2} u_{3}^{2} x_{0} x_{1}=0 \tag{11}
\end{equation*}
$$

We see that the conic (11) differs from s. Hence,
Corollary 2 The cone Φ does not pass through the conic s.
Is line s a generator of the cone Φ ? Line t is defined as the edge $P_{2} P_{3}$ of our simplex. Setting $x_{0}=0$ and $x_{1}=0$ in (10), we get

$$
\begin{align*}
& \left(u_{0} x_{0}+\lambda u_{2} x_{2}+\lambda u_{3} x_{3}\right)^{2}=0 \tag{12}\\
& \left(u_{1} x_{1}+\lambda u_{2} x_{2}+\lambda u_{3} x_{3}\right)^{2}=0 \tag{13}
\end{align*}
$$

respectively. As we can see we have obtained two twofold covered straight lines. Hence
Corollary 3 The line t does not lie on the cone Φ. The cone touches the two faces $x_{0}=0$, $x_{1}=0$ of the simplex along lines (12) and (13), respectively (see Fig. 5).

Figure 5: Position of the cone Φ with respect to the simplex P_{0}, \ldots, P_{3} of reference

To determine the vertex S of the cone, it is sufficient to set $x_{0}=0$ in (13) and $x_{1}=0$ in (12). This results in two identical formulas of the form $\lambda u_{2} x_{2}+\lambda u_{3} x_{3}=0$, and the coordinates of the vertex are

$$
S=\left(0: 0:-u_{3}: u_{2}\right)
$$

It is easy to see that these coordinates satisfy eq. (9) of the plane ψ. So, we have

Corollary 4 The vertex S of cone Φ is the common point of the line t and the given plane ψ.

2.5. Degeneration of the cone Φ

If plane ψ passes through the vertex $P_{3}=(0: 0: 0: 1)$ of the basis simplex, i.e., if we put $u_{3}=0$ in eq. (9), then equation (10) turns into the form

$$
\Phi\left(x_{0}, \ldots, x_{3}\right) \equiv\left(u_{0} x_{0}+u_{1} x_{1}+\lambda u_{2} x_{2}\right)^{2}=0, \quad x_{3} \text { arbitrary } .
$$

This is a certain twofold covered plane, and it passes through the vertex $P_{3}=(0: 0: 0: 1)$, too. If we assume that ψ passes through vertex $P_{2}=(0: 0: 1: 0)$, i.e., if $u_{2}=0$, then eq. (10) takes the form

$$
\Phi\left(x_{0}, \ldots, x_{3}\right) \equiv\left(u_{0} x_{0}+u_{1} x_{1}+\lambda u_{3} x_{3}\right)^{2}-u_{3}^{2}(\lambda-1)^{2} x_{0} x_{1}=0, \quad x_{2} \text { arbitrary }
$$

and this is still a cone of second order.

2.6. Image of a straight line q

Let us specify a straight line q by its parametric representation

$$
\begin{equation*}
\rho m_{i}=a_{i} t+b_{i}, \quad i=0, \ldots, 3 \tag{14}
\end{equation*}
$$

After substituting these coordinates $\left(m_{0}: \ldots: m_{3}\right)$ into the systems (7) and (8), we get the images of the straight line q described by the two systems

$$
\begin{array}{rlrl}
\rho x_{0}=\lambda\left(a_{0} t+b_{0}\right) & \rho x_{0}=\lambda\left(a_{0} t+b_{0}\right) \\
\rho x_{1}=\lambda\left(a_{1} t+b_{1}\right) & \rho x_{1}=\lambda\left(a_{1} t+b_{1}\right) \\
\rho x_{2}= & a_{2} t+b_{2} & \rho x_{2}=a_{2} t+b_{2} \tag{15}\\
\rho x_{3}= & (\lambda-1) \sqrt{\left(a_{0} t+b_{0}\right)\left(a_{1} t+b_{1}\right)}+ & \rho x_{3}=(1-\lambda) \sqrt{\left(a_{0} t+b_{0}\right)\left(a_{1} t+b_{1}\right)}+ \\
& +a_{3} t+b_{3}, & & +a_{3} t+b_{3} .
\end{array}
$$

These two systems describe two different arcs of the same conic s_{1}. Hence, we have
Theorem 2 The image of a straight line $q \subset \mathbb{P}^{3}$ under the Λ-transformation is in the generic case a single conic s_{1} defined by the systems (15) of parametric equations.

The two arcs meet each other when the parameter t is satisfying the condition $\left(a_{0} t+\right.$ $\left.b_{0}\right)\left(c_{1} t+b_{1}\right)=0$, i.e., for $t_{1}=-b_{0} / a_{0}$ or $t_{2}=-b_{1} / a_{1}$. Hence, the common points of the two arcs are

$$
\begin{aligned}
& T_{0}=\left(0: \lambda\left(b_{1} a_{0}-a b_{0}\right):\left(b_{2} a_{0}-a b_{0}\right):\left(b_{3} a_{0}-a_{3} b_{0}\right)\right) \text { and } \\
& T_{1}=\left(\lambda\left(b_{0} a_{1}-a_{1} b_{0}\right): 0:\left(b_{2} a_{1}-b_{1} a_{2}\right):\left(b_{3} a_{1}-a_{3} b_{1}\right)\right) .
\end{aligned}
$$

These points T_{0} and T_{1} are the common points of the conic s_{1} with the faces $x_{0}=0$ and $x_{1}=0$. So, we get

Corollary 5 The conic s_{1} touches the faces $x_{0}=0$ and $x_{1}=0$ of the basis simplex at the points T_{0} and T_{1}, respectively.

Finally, let us determine equation of the plane passing through the conic s_{1} :
If we choose any three arbitrary and distinct points on the conic, e.g., T_{0}, T_{1} and (for $t=0$) point $R=\left(\lambda b_{0}: \lambda b_{1}: b_{2}:\left(b_{3}-(\lambda-1) \sqrt{b_{0} b_{1}}\right)\right)$, then one can express the equation of the plane in the form

$$
\operatorname{det}\left[\begin{array}{cccc}
x_{0} & x_{1} & x_{2} & x_{3} \\
0 & \lambda\left(b_{1} a_{0}-a_{1} b_{0}\right) & b_{2} a_{0}-a_{2} b_{0} & b_{3} a_{0}-a_{3} b_{0} \\
\lambda\left(b_{0} a_{1}-b_{1} a_{0}\right) & 0 & b_{2} a_{1}-a_{2} b_{1} & b_{3} a_{1}-a_{3} b_{1} \\
\lambda b_{0} & \lambda b_{1} & b_{2} & b_{3}-(\lambda-1) \sqrt{b_{0} b_{1}}
\end{array}\right]=0
$$

or after the evaluation

$$
\begin{equation*}
\left(b_{2} a_{1}-a_{2} b_{1}\right) x_{0}-\left(b_{2} a_{0}-a_{2} b_{0}\right) x_{1}-\lambda\left(b_{0} a_{1}-a_{0} b_{1}\right) x_{2}=0, \quad x_{3} \text { arbitrary } \tag{16}
\end{equation*}
$$

In this way we obtain
Corollary 6 The plane of the conic s_{1} depends on λ, a_{i} and $b_{i}, i=0, \ldots, 3$, and passes through the point $P_{3}=(0: 0: 0: 1)$.

3. Part II

It is known that an irreducible spatial curve C^{3} of third order does not possess any singular point. If such a point exists, then the curve C^{3} must break up into a certain conic and a straight line cutting the conic at a single point, and this is the case we are investigating now.

3.1. Definition of the Λ-transformation

Let a curve C^{3} with a double point be given (Fig. 6). Like in Part I we can prove that the set of all bisecants of such a curve C^{3} forms a congruence $K[2,2]$ of second order and second class.

Without loss of generality we may specify the simplex P_{0}, \ldots, P_{3} in such a way that the conic s passes through vertices P_{0}, P_{1}, P_{3}, and line t is the edge $P_{2} P_{3}$ of the simplex. If we assume that the point $E=(1: 1: 0: 1)$ lies on conic s (Fig 7), then the pencil of conics passing through the four points P_{0}, P_{1}, P_{3}, E can be written in the form

$$
x_{2}=0, \quad k x_{0} x_{1}+x_{0} x_{3}-(k+1) x_{1} x_{3}=0, \quad k \in \mathbb{R} .
$$

We select the conic with $k=1$. Hence the equations of s read

$$
\begin{equation*}
s: \quad x_{2}=0, \quad x_{0} x_{1}+x_{0} x_{3}-2 x_{1} x_{3}=0 . \tag{17}
\end{equation*}
$$

As in Part I, line t is defined by the system (3) of equations.

Figure 6: Definition of the Λ-transformation $M \mapsto X$ under $s \cap t \neq \emptyset$ (Part II)

Figure 7: The simplex $P_{0} \ldots, P_{3}$ of reference in Part II

In order to determine a line $p_{j} \in K[2,2]$, passing through an arbitrary point $M\left(m_{0}: \ldots\right.$: m_{3}), where $M \neq P_{i}, i=0, \ldots, 3$, and $M \notin t$, we take the plane $\delta=M P_{2} P_{3}$ (Fig. 8). Its equation is

$$
\begin{equation*}
m_{1} x_{0}-m_{0} x_{1}=0, \quad x_{2}, x_{3} \text { arbitrary } . \tag{18}
\end{equation*}
$$

We define line p as the common line of δ and the face $P_{1} P_{2} P_{3}$ of the basis simplex. Hence, line p is determined by the two equations

$$
m_{1} x_{0}-m_{0} x_{1}=x_{2}=0, \quad x_{3} \text { arbitrary }
$$

From the first equation we have $x_{0}=m_{0} x_{1} / m_{1}, m_{1} \neq 0$. Substituting this expression in the equation (17) of s, we obtain the coordinates of the common points of plane δ and conic s. They satisfy the system

$$
x_{1}\left(m_{0} x_{1}+m_{0} x_{3}-2 m_{1} x_{3}\right)=x_{2}=0 .
$$

For $x_{1}=0$ we get the following solution: $x_{0}=x_{1}=x_{2}=0, x_{3}$ arbitrary. In other words, we get the point $A_{1}=P_{3}=(0: 0: 0: 1)$, the first common point of conic s and plane δ.

The equations $m_{0} x_{1}+m_{0} x_{3}-2 m_{1} x_{3}=0$ and $x_{2}=0$ result in

$$
\frac{x_{1}}{x_{3}}=\frac{2 m_{1}-m_{0}}{m_{0}}
$$

and finally we get the second common point

$$
A_{2}=\left(m_{0}\left(2 m_{1}-m_{0}\right): m_{1}\left(2 m_{1}-m_{0}\right): 0: m_{0} m_{1}\right)
$$

In this way we obtain the two bisecants $p_{1}, p_{2} \in K[2,2]$ passing through the arbitrary point M, i.e., the lines $M A_{1}$ and $M A_{2}$. In the sequel we use line $M A_{2}$ only. We will return to line $M A_{1}$ later.

Figure 8: Construction of lines $p_{1}, p_{2} \in K[2,2]$ through point M
Now we compute point \bar{A}_{2}, the common point of the lines t and $M A_{2}$: This point on $M A_{2}$ can be written as a linear combination of the coordinates of M and A_{2}. Hence

$$
\begin{aligned}
\rho x_{0} & =p_{1} m_{0}+p_{2} m_{0}\left(2 m_{1}-m_{0}\right) \\
\rho x_{1} & =p_{1} m_{1}+p_{2} m_{1}\left(2 m_{1}-m_{0}\right) \\
\rho x_{2} & =p_{1} m_{2}+p_{2} 0 \\
\rho x_{3} & =p_{1} m_{3}+p_{2} m_{0} m_{1} .
\end{aligned}
$$

Line t is defined by the system (3). So the coordinates of point \bar{A}_{2} must fulfil the following conditions:

$$
0=p_{1} m_{0}+p_{2} m_{0}\left(2 m_{1}-m_{0}\right)=p_{1} m_{1}+p_{2} m_{1}\left(2 m_{1}-m_{0}\right),
$$

i.e., $0=p_{1}+p_{2}\left(2 m_{1}-m_{0}\right)$ and finally $p_{1}=-2 m_{1}+m_{0}, p_{2}=1$. Substituting the last expressions in the system of equations, we get the coordinates of point \bar{A}_{2}

$$
\begin{equation*}
\bar{A}_{2}=\left(0: 0:\left(2 m_{1}-m_{0}\right) m_{2}:\left(2 m_{1}-m_{0}\right) m_{3}-m_{0} m_{1}\right) . \tag{19}
\end{equation*}
$$

For three distinct points M, A_{2}, \bar{A}_{2} on a line a local system of projective coordinates on this line can be introduced [2] such that $A_{2}=(1: 0), \bar{A}_{2}=(0: 1), M=(1: 1)$. In our case the coordinates of any fourth point X on line $M A_{2} \bar{A}_{2}$ can be written in the form

$$
\begin{aligned}
\rho x_{0} & =\mu_{0} m_{0}\left(2 m_{1}-m_{0}\right)+\mu_{1} 0 \\
\rho x_{1} & =\mu_{0} m_{1}\left(2 m_{1}-m_{0}\right)+\mu_{1} 0 \\
\rho x_{2} & =\mu_{0} 0+\mu_{1} m_{2}\left(2 m_{1}-m_{0}\right) \\
\rho x_{3} & =\mu_{0} m_{0} m_{1}+\mu_{1}\left[m_{3}\left(2 m_{1}-m_{0}\right)-m_{0} m_{1}\right] .
\end{aligned}
$$

According to condition (1) we have $\mu_{0} / \mu_{1}=\lambda$. Finally the equations of the Λ-transformation in Part II are

$$
\begin{align*}
& \rho x_{0}=\lambda m_{0}\left(2 m_{1}-m_{0}\right) \\
& \rho x_{1}=\lambda m_{1}\left(2 m_{1}-m_{0}\right) \\
& \rho x_{2}=m_{2}\left(2 m_{1}-m_{0}\right) \tag{20}\\
& \rho x_{3}=(\lambda-1) m_{0} m_{1}+m_{3}\left(2 m_{1}-m_{0}\right) .
\end{align*}
$$

Now, it is the right place to return to point A_{1}. It is clear (Fig. 9) that $A_{1}=P_{3}=\bar{A}_{1}$ for any position of point M. From the properties of a cross-ratio [2] we know that if $A_{1}=\bar{A}_{1}$ then $\left(A_{1} \bar{A}_{1} M X\right)=1$, and this contradicts the assumption in Definition 1. This implies that we can omit in our investigations the line $M A_{1}$ and use the line $M A_{2}$ only.

3.2. Properties of the Λ-transformation

It is important to observe that the transformation defined by the system (20) is a birational Cremona transformation [4], more exactly, a special kind of a quadratic transformation. Let us start with the determination of the fixed points of the transformation:
We write the system (20) in the form

$$
\begin{aligned}
\rho x_{0} & =\lambda m_{0} \\
\rho x_{1} & =\lambda m_{1} \\
\rho x_{2} & =m_{2} \\
\rho x_{3} & =\frac{(\lambda-1) m_{0} m_{1}}{2 m_{1}-m_{0}}+m_{3} .
\end{aligned}
$$

and note that for any point $D \in t$ we have

$$
D=(0: 0: a: b) \mapsto D^{\prime}=(0: 0: a: b),
$$

and for any $B \in s$

$$
B=(c: d: 0:-c d /(c-2 d)) \mapsto B^{\prime}=(c: d: 0:-c d /(c-2 d)) .
$$

Corollary 7 The line t and the conic s are pointwise fixed under the Λ-transformation.
The main problem of this chapter is to give an answer to the question: What is the locus of points X when point M varies in a plane ψ ?
If we assume that the equation of plane ψ is again in the form (9), then after adding to the system (20) the condition that point $M=\left(m_{0}: \ldots: m_{3}\right)$ lies in the plane ψ, we get

$$
\begin{aligned}
\rho x_{0} & =\lambda m_{0}\left(2 m_{1}-m_{0}\right) \\
\rho x_{1} & =\lambda m_{1}\left(2 m_{1}-m_{0}\right) \\
\rho x_{2} & =m_{2}\left(2 m_{1}-m_{0}\right) \\
\rho x_{3} & =(\lambda-1) m_{0} m_{1}+m_{3}\left(2 m_{1}-m_{0}\right) \\
0 & =u_{0} m_{0}+u_{1} m_{1}+u_{2} m_{2}+u_{3} m_{3} .
\end{aligned}
$$

We eliminate from this system the coordinates m_{0}, \ldots, m_{3} of the varying point M and obtain

$$
\begin{equation*}
\Phi\left(x_{0}, \ldots, x_{3}\right): \equiv\left(2 x_{1}-x_{0}\right)\left(u_{0} x_{0}+u_{1} x_{1}+\lambda u_{2} x_{2}+\lambda u_{3} x_{3}\right)-(\lambda-1) u_{3} x_{0} x_{1}=0 . \tag{21}
\end{equation*}
$$

This equation describes the locus of points X. Hence, we got
Corollary 8 In the generic case the image of a plane ψ (eq. (9)) under the Λ-transformation is the quadric Φ with equation (21).

3.3. Investigation of the quadric Φ

As we remember from Part I, line t does not belong to the quadric. Now, we have quite a different situation: It is easy to observe that any point with coordinates ($0: 0: a: b$) on this line satisfies the equation (21). This means

Corollary 9 Line t lies on the quadric Φ, i.e., the quadric Φ is a ruled quadric.
In a similar way as in Part I we get
Corollary 10 The conic s does not lie on the quadric Φ.
Following the way of reasoning from Part I, let us investigate the character of the quadric Φ : The two matrices V_{Φ} and W_{Φ} are of the form

$$
\begin{gathered}
V_{\Phi}=\left[\begin{array}{cccc}
u_{0} & -\frac{1}{2}\left(2 u_{0}-u_{1}-(\lambda-1) u_{3}\right) & \frac{1}{2} \lambda u_{2} & \frac{1}{2} \lambda u_{3} \\
-\frac{1}{2}\left(2 u_{0}-u_{1}-(\lambda-1) u_{3}\right) & -2 u_{1} & -\lambda u_{2} & -\lambda u_{3} \\
\frac{1}{2} \lambda u_{2} & -\lambda u_{2} & 0 & 0 \\
\frac{1}{2} \lambda u_{3} & -\lambda u_{3} & 0 & 0
\end{array}\right], \\
W_{\Phi}=\left[\begin{array}{ccc}
u_{0} & -\frac{1}{2}\left(2 u_{0}-u_{1}-(\lambda-1) u_{3}\right) & \frac{1}{2} \lambda u_{2} \\
-\frac{1}{2}\left(2 u_{0}-u_{1}-(\lambda-1) u_{3}\right) & -2 u_{1} & -\lambda u_{2} \\
\frac{1}{2} \lambda u_{2} & -\lambda u_{2} & 0
\end{array}\right] .
\end{gathered}
$$

After some calculations we get $\operatorname{Rank} V_{\Phi}=\operatorname{Rank} W_{\Phi}=3$. By virtue of [3] and remembering that the space \mathbb{P}^{3} is over the field of real numbers, we obtain

Theorem 3 In the generic case the quadric Φ with equation (21) is a cone of the second order (Fig. 9)

3.4. Location of the quadric Φ

As we have proved above, line t is one of the generators of the cone Φ. Let us intersect the cone with the faces $P_{0} P_{2} P_{3}$, and $P_{1} P_{2} P_{3}$ of the simplex. It means that we must set in eq. (21) either $x_{1}=0$ or $x_{0}=0$. Hence, we get $x_{0}\left(u_{0} x_{0}+\lambda u_{2} x_{2}+\lambda u_{3} x_{3}\right)=0$ and $x_{1}\left(u_{1} x_{1}+\lambda u_{2} x_{2}+\lambda u_{3} x_{3}\right)=0$, respectively. In both cases we get the line t and two generators $t_{1}: u_{0} x_{0}+\lambda u_{2} x_{2}+\lambda u_{3} x_{3}=0$ and $t_{2}: u_{1} x_{1}+\lambda u_{2} x_{2}+\lambda u_{3} x_{3}=0$ of the cone.

In order to determine the vertex of the cone, we compute the common point of the three lines t, t_{1} and t_{2}. This common point is $S=\left(0: 0:-u_{3}: u_{2}\right)$, and its coordinates satisfy the equation (9) of the plane ψ. So, we get

Corollary 11 The vertex S of the cone Φ is the common point of plane ψ and line t.

Figure 9: The image Φ of a plane ψ under the Λ-transformation

We proved above that in the generic case the image of a plane is a cone Φ, and the line t is one of its generators. An interesting question arises: Do all cones, images of different planes, simply pass through line t or touch each other along this line?

When an algebraic surface with equation $\Omega\left(x_{0}, \ldots, x_{3}\right)=0$ is given, then the plane tangent to this surface at its point $\left(z_{0}, \ldots, z_{3}\right)$ has the equation

$$
\frac{\partial \Omega}{\partial x_{0}}\left(z_{0}, \ldots, z_{3}\right) x_{0}+\ldots+\frac{\partial \Omega}{\partial x_{3}}\left(z_{0}, \ldots, z_{3}\right) x_{3}=0
$$

Let us determine the plane tangent to our cone Φ at the point $P_{3}=(0: 0: 0: 1)$. The derivatives are

$$
\begin{aligned}
\frac{\partial \Omega}{\partial x_{0}}\left(x_{0}, \ldots, x_{3}\right) & =2 u_{0} x_{0}+\left[u_{1}+(\lambda-1) u_{3}-2 u_{0}\right] x_{1}+\lambda u_{2} x_{2}+\lambda u_{3} x_{3} \\
\frac{\partial \Omega}{\partial x_{1}}\left(x_{0}, \ldots, x_{3}\right) & =\left[u_{1}+(\lambda-1) u_{3}-2 u_{0}\right] x_{0}-4 u_{1} x_{1}-2 \lambda u_{2} x_{2}-2 \lambda u_{3} x_{3} \\
\frac{\partial \Omega}{\partial x_{2}}\left(x_{0}, \ldots, x_{3}\right) & =\lambda u_{2}\left(x_{0}-2 x_{1}\right) \\
\frac{\partial \Omega}{\partial x_{3}}\left(x_{0}, \ldots, x_{3}\right) & =\lambda u_{3}\left(x_{0}-2 x\right) .
\end{aligned}
$$

Finally, the equation of the plane tangent to the cone Φ at P_{3} is

$$
\begin{equation*}
x_{0}-2 x_{1}=0 . \tag{22}
\end{equation*}
$$

This equation is independent from the coefficients $u_{i}, i=0, \ldots, 3$. So we have
Corollary 12 All cones which are images of planes under the Λ-transformation touch each other along the line t.

3.5. Degeneration of the cone Φ

Similarly to Part I it follows from eq. (21) that if $u_{3}=0$, i.e., if plane ψ passes through point $P_{3}=(0: 0: 0: 1)$, the cone breaks up into two planes

$$
\begin{gathered}
2 x_{1}-x_{0}=0, \quad x_{2}, x_{3} \text { arbitrary, and } \\
u_{0} x_{0}+u_{1} x_{1}+\lambda u_{2} x_{2}=0, \quad x_{3} \text { arbitrary }
\end{gathered}
$$

Hence we got
Corollary 13 If the plane ψ passes through the vertex $P_{3}=(0: 0: 0: 1)$, then its image consists of the two planes $2 x_{1}-x_{0}=0$ and $u_{0} x_{0}+u_{1} x_{1}+\lambda u_{2} x_{2}=0$.
The first plane is independent from the coefficients of the plane ψ and passes through the line t. The second plane passes through the vertex $P_{3}=(0: 0: 0: 1)$.

3.6. Image of a straight line p

Let the line p be given by its parametric representation

$$
\rho m_{i}=a_{i} t+b_{i}, \quad i=0, \ldots, 3
$$

identical to (14). Under the Λ-transformation (20) we obtain the conic

$$
\begin{align*}
& \rho x_{0}=\lambda\left(a_{0} t+b_{0}\right)\left[2\left(a_{1} t+b_{1}\right)-a_{0} t-b_{0}\right] \\
& \rho x_{1}=\lambda\left(a_{1} t+b_{1}\right)\left[2\left(a_{1} t+b_{1}\right)-a_{0} t-b_{0}\right] \tag{23}\\
& \rho x_{2}=\lambda\left(a_{2} t+b_{2}\right)\left[2\left(a_{1}+b_{1}\right)-a_{0} t-b_{0}\right] \\
& \rho x_{3}=(\lambda-1)\left(a_{0} t+b_{0}\right)\left(a_{1} t+b_{1}\right)+\left(a_{3} t+b_{3}\right)\left[2\left(a_{1} t+b_{1}\right)-a_{0} t-b_{0}\right] .
\end{align*}
$$

Hence, we can formulate
Theorem 4 The image of a straight line p is a conic section s_{2} with the parametric representation (23).

Let us intersect the conic s_{2} with the face $x_{0}=0$. The condition

$$
\left(a_{0} t+b_{0}\right)\left[2\left(a_{1} t+b_{1}\right)-a_{0} t-b_{0}\right]=0
$$

results in $\left(a_{0} t+b_{0}\right)=0$. Hence, $t_{1}=-b_{0} / a_{0}, a_{0} \neq 0$, or $2\left(a_{1} t+b_{1}\right)-a_{0} t-b_{0}=0$, $t_{2}=\left(b_{0}-2 b_{1}\right) /\left(2 a_{1}-a_{0}\right)$. The points corresponding to these values of t are

$$
T_{1}=\left(0: \lambda\left(a_{0} b_{1}-a_{1} b_{0}\right):\left(a_{0} b_{2}-a_{2} b_{0}\right):\left(a_{0} b_{3}-a_{3} b_{0}\right) \quad \text { and } \quad T_{2}=(0: 0: 0: 1)=P_{3} .\right.
$$

Further, we find the common points of the conic s_{2} and the face $x_{1}=0$:
Setting $x_{1}=0$ in (23) we get $t_{3}=-b_{1} / a_{1}$ and $t_{4}=\left(b_{0}-2 b_{1}\right) /\left(2 a_{1}-a_{0}\right)$. Because of $t_{2}=t_{4}$ we obtain $T_{2}=T_{4}=P_{3}$. Point T_{3} has the coordinates

$$
T_{3}=\left(\lambda\left(a_{1} b_{0}-a_{0} b_{1}\right): 0:\left(a_{1} b_{2}-a_{2} b_{1}\right):\left(a_{1} b_{3}-a_{3} b_{1}\right)\right) .
$$

So, we can formulate the last
Corollary 14 All conics, which are images of straight lines, intersect the line t at point P_{3}.
Finally, using the three points T_{1}, T_{3}, P_{3}, one can compute the equation of the plane in which the conic s_{2} is located. We get

$$
\left(b_{2} a_{1}-a_{2} b_{1}\right) x_{0}-\left(b_{2} a_{0}-a_{2} b_{0}\right) x_{1}-\lambda\left(b_{0} a_{1}-a_{0} b_{1}\right) x_{2}=0, \quad x_{3} \text { arbitrary }
$$

Note that this equation is identical with equation (16).

References

[1] J. Fellmann: On Some Transformation Respectively a Spatial Curve of the Third Order [Polish]. Z. N. Politechniki Poznańskiej "Geometria"; Poznań 1978.
[2] G. Grosche: Projektive Geometrie I, II. Teubner Verlag, Leipzig 1957.
[3] W. Blaschke: Analytische Geometrie. Birkhäuser Verlag, Basel-Stuttgart 1954.
[4] H. Hudson: Cremona Transformation in Plane and Space. Cambridge, at the University Press, 1927.

Received February 11, 2002; final form October 3, 2002

