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Abstract. In this paper, we investigate motions of the 7-parameter group of
equiform transformations with the property that three points move on three cir-
cles with axes in one plane. We give an algorithm to find the corresponding
one-parametric motion. It can be displayed as a curve in the space of motion
parameters. As in general there seems to be no global parametrization of this
curve, we give a local one up to the second order. An example demonstrates the
effciency of the presented method.

Key Words: Parallel manipulator, equiform motion, flexible octahedra

MSC 2000: 53A17

1. Introduction

Stewart-Gough-platforms (SGP) are 6-leg-platforms with legs connecting points of a moving
and a fixed plane. An important special case is that of the so-called “Duffy-platform” [8].
Here the telescopic legs connect two triangles in the moving and the fixed plane, respectively.
If at a given position the leg lengths are fixed, this manipulator in general allows no continuous
motion. The two triangles and the legs of the platform form an octahedron. Therefore these
platforms are called octahedral platforms [13, 3]. It is well-know, that there exist snappy, shaky
and even moveable models [13, 14, 15, 16] of octahedra. In [8] a rigidity-rate was assigned
to the positions of an SGP. This was done by the observation, that such a polyhedron is
moveable within the 7-parametric group of Euclidean similarities (equiform motions). In this
paper we will investigate the equiform self-motions of such an octahedron. As the leg lengths
are kept constant, the vertices of the moving plate (triangle) have to move on circular paths.
These circles have axes in the edges of the fixed triangle.

An equiform displacement preserves angles, but all distances are multiplied with the so
called scaling factor [2], denoted by ρ. The kinematics corresponding to it will be called

ISSN 1433-8157/$ 2.50 c© 2004 Heldermann Verlag



34 F.M. Hamdoon, N.H. Abdel-All: An Investigation of an Octahedral Platform

equiform (similarity) kinematics. The group of equiform displacements is 7-parametric and
contains the 6-parametric group of Euclidean displacements as a subgroup. In the last years
special equiform Darboux-motions have for instance been used to construct overconstrained
(Euclidean) mechanisms (see [10, 11, 12]), which show that the study of equiform kinematics
is not a pure theoretical task. As in our case the space moves such that three points p1, p2, p3,
the vertices of a triangle, are compelled to remain on circles C1, C2, C3 with axes in the
[xy]-plane. In general, we will have a one-parametric equiform self-motion of this octahedral
platform.

1.1. Construction of the motion

We consider three non-collinear points pi, i = 1, 2, 3 ; each of them should move on a circle
Ci with axis in the [xy]-plane with radius Ri, center mi, and parametrized by

~Ci(ui) = ~mi +Ri~ai cosui +Ri~z sin ui, i = 1, 2, 3 with ui ∈ [0, 2π] (1)

where
~a2
i = 1 and ~ai ·~z = 0 with ~z = (0, 0, 1).

This guarantees, that the axis of the circle Ci is part of the [xy]-plane. The squared distance
between two points Ai and Aj on two different circles Ci and Cj is given by

−−−→
AiAj

2 = (~mj − ~mi)
2 +R2

j +R2
i − 2RiRj sin ui sinuj + 2Rj ~aj ·(~mj − ~mi) cosuj −

−2Ri~ai ·(~mj − ~mi) cosui − 2RiRj(~ai ·~aj) cosuj cosui .
(2)

But for our equiform motions, the distance between any two points of the moving space is
constant up to the scaling factor, thus we have

−−−→
AiAj

2 = d2
ijρ

2, (i, j) ∈
{

(1, 2), (2, 3), (3, 1)
}

, (3)

where dij is constant. This implies the following three equations

d2
12ρ

2 = (~m2 − ~m1)
2 +R2

2 +R2
1 − 2R1R2 sin u1 sin u2 + 2R2~a2 ·(~m2 − ~m1) cosu2 −

−2R1~a1 ·(~m2 − ~m1) cosu1 − 2R1R2(~a1 ·~a2) cosu2 cosu1 ,
(4)

d2
23ρ

2 = (~m3 − ~m2)
2 +R2

3 +R2
2 − 2R2R3 sin u2 sin u3 + 2R3~a3 ·(~m3 − ~m2) cosu3 −

−2R2~a2 ·(~m3 − ~m2) cosu2 − 2R2R3(~a2 ·~a3) cosu3 cosu2 ,
(5)

d2
31ρ

2 = (~m1 − ~m3)
2 +R2

1 +R2
3 − 2R3R1 sin u3 sin u1 + 2R1~a1 ·(~m1 − ~m3) cosu1 −

−2R3~a3 ·(~m1 − ~m3) cosu3 − 2R3R1(~a3 ·~a1) cosu1 cosu3 .
(6)

The equations (4)–(6) represent three surfaces in R4, the space of the variables ρ, u1, u2, and
u3. Their intersection in general will be a curve α, which we want to discuss now:

2. Representation of the intersection curve α

The two equations (5) and (6) are linear in sin u3 and cosu3, thus we can determine sinu3

and cosu3:

sin u3 =
1

4
[

K1

(

R1(~a1 ·~a3) cosu1 − ~a3 ·(~m3 − ~m2)
)

− K2

(

R2(~a2 ·~a3) cosu2 − ~a3 ·(~m3 − ~m2)
)]

cosu3 =
1

4
[

K2R2 sin u2 − K1R1 sinu1

]

(7)
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where

4 = R2 sin u2

[

~a3 ·(~m1 − ~m3) +R1(~a3 ·~a1) cosu1

]

−
−R1 sin u1

[

~a3 ·(~m2 − ~m3) +R2(~a3 ·~a2) cosu2

]

,

K1 =
−1
2R3

[

d2
23ρ

2 − (~m3 − ~m2)
2 − R2

3 − R2
2 + 2R2~a2 ·(~m3 − ~m2) cosu2

]

,

K2 =
−1
2R3

[

d2
31ρ

2 − (~m1 − ~m3)
2 − R2

1 − R2
3 + 2R1~a1 ·(~m3 − ~m1) cosu1

]

.

By using sinu2
3 + cosu

2
3 = 1, we gain

[

K1

(

R1(~a1 ·~a3) cosu1 − ~a3 ·(~m3 − ~m2)
)

− K2

(

R2(~a2 ·~a3) cosu2 − ~a3 ·(~m3 − ~m2)
)]2
+

+
[

K2R2 sin u2 − K1R1 sin u1

]2 − 42 = 0
(8)

Eq. (8) is quadratic in ρ2. Now we have two remaining equations (8) and (4) in ρ, u1 and
u2. In the 3-dimensional space of (ρ, u1, u2) they represent two surfaces, which intersect in a
curve. Its projection into the [u1u2]-plane is obtained by elimination of ρ.

From (4), one can find

ρ2 =
(

(~m2 − ~m1)
2 +R2

2 +R2
1 − 2R1R2 sin u1 sin u2 + 2R2~a2 ·(~m2 − ~m1) cosu2 −

−2R1~a1 ·(~m2 − ~m1) cosu1 − 2R1R2(~a1 ·~a2) cosu2 cosu1

)

/d2
12 .

Using the above equation and substituting in (8), we find the equation of this case. Making
use of a computer algebra system like Mathematica we can display the projection of this curve
in the [u1u2]-plane.

Theorem 1. The equiform motion of the moving triangle with respect to the fixed triangle
of an octahedral platform is determined by the three equations (4)–(6). They describe the
relations between the scaling factor ρ and the three angles u1, u2 and u3, which define the
positions of the vertices of the moving triangle on their circular paths.
In the 4-dimensional space of coordinates {ρ, u1, u2, u3} these three equations determine three
hypersurfaces, which generally intersect in a curve α. It can be seen as an image curve of the
equiform self-motion of the octahedral platform.

The equations of this intersection curve demonstrate, that this curve will not have an
explicit parametrization except in special cases. But according to the implicit function the-
orem we are able to give local parametrizations of this curve. As we are interested in local
properties of the corresponding equiform motions (obtained by the curve) we will give an
algorithm to generate a power series parametrization in the neighbourhood of any starting
position.

3. Local parametrization of the intersection curve

In this section we present a local study of our intersection curve. We use Taylor’s expansion
to get a power series representation in the parameter t for the parameters ui, i = 1, 2, 3, and
ρ at t = 0. We set

ui = ui0 + ui1t+
1
2
ui2t

2 + . . . , i = 1, 2, 3,

ρ = 1 + ρ1t+
1
2
ρ2t

2 + . . .
(9)
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where ui0 is the intial value of ui and uik =
(dkui
dtk

)

t=0
, k = 1, 2. Thus we have

sin ui = sinui0 + ui1 cosui0t+
1
2

[

ui2 cosui0 − u2
i1 sinui0

]

t2 + . . .

cosui = cosui0 − ui1 sin ui0t − 1
2

[

ui2 sinui0 + u2
i1 cosui0

]

t2 + . . .
(10)

We substitute eqs. (9) and (10) in (4)–(6) and compare the coefficients of t up to the second
order. This results in

[t0] : d2
ij = (~mj − ~mi)

2 +R2
j +R2

i − 2RiRj sin ui0 sinuj0 + 2Rj~aj ·(~mj − ~mi) cosuj0 −
− 2Ri~ai ·(~mj − ~mi) cosui0 − 2RiRj(~ai ·~aj) cosuj0 cosui0, (11)

[t1] : d2
ijρ1 + Fijui1 + Fjiuj1 = 0, (12)

[t2] : d2
ijρ

2
1 + d2

ijρ2 +Qijui1uj1 + Liju
2
i1 + Ljiu

2
j1 + Fijui2 + Fjiuj2 = 0, (13)

where Fij , Qij and Lij are constants and given by the initial values

Fij = Ri

[

− sin ui0
(

Rj(~aj ·~ai) cosuj0 + (~mj − ~mi)·~ai
)

+Rj cosui0 sin uj0
]

,

Qij = 2RiRj[cosui0 cosuj0 + (~aj ·~ai) sin ui0 sin uj0],
Lij = Ri

[

− cosui0
(

Rj(~aj ·~ai) cosuj0 + (~mj − ~mi)·~ai
)

− Rj sin ui0 sin uj0
]

.

The eqs. (11) are satisfied from the initial conditions. For the first order t1 we gain the three
linear and homogenous equations (12) for the unknowns ρ1, u11, u21, u31. It is straightforword
to get

ρ1 = −(F12F23F31 + F21F32F13)v,

u21 = (d2
12F32F13 − d2

31F12F32 + d2
23F12F31)v

u31 = (d2
31F23F12 + d2

23F21F13 − d2
12F23F13)v,

(14)

where
v =

u11

d2
12F31F23 + d2

31F21F32 − d2
23F21F31

with arbitrary u11 .
In an anologous way we use the equations (13) from the quadratic terms in t and get

ρ2 =
(T12F31F23 + T31F21F32 − T23F21F31)v + ρ1u12

u11

,

u22 =
(T12(d

2
31F32 − d2

23F31) + T23d
2
12F31 − T31d

2
12F32)v + u21u12

u11

,

u32 =
(T31(d

2
12F23 − d2

23F21) + T32d
2
31F21 − T12d

2
31F23)v + u31u12

u11

,

(15)

where Tij are given by

Tij = −[d2
ijρ

2
1 +Qijui1uj1 + Liju

2
i1 + Ljiu

2
j1]

for arbitrarily chosen u12.

Remark 1: The behaviour of the problem does not change, if we go for higher powers in t.

Remark 2: The result in (14) and (15) allows to rate the instantaneous rigidity of the platform
up to the 2nd order. So, ρ1 = 0 will characterize a singular or shaky position [13]. If
additionally ρ2 = 0, the position is singular of order 2.

Theorem 2. The intersection curve α of Theorem 1 generally will have no simple representa-
tion. Beginning with a starting position (t = 0) the equations (14)–(15) determine the Taylor
expansion of a representation of α near t = 0 up to the second order.
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4. Example
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Figure 1: The platform and the three path circles at the intial position

In this section we give a numeric example to show how the theory can be applied. Consider
the three points moving on three circles in the fixed space with centers ~m1 = (0, 0, 0), ~m2 =

(1, 0, 0), ~m3 = (
1
2
, 1, 0), axes ~a1 =

(

1√
2
, 1√

2
, 0
)

, ~a2 = (1, 0, 0), ~a3 = (0, 1, 0), radii R1 =
√
2,

R2 = 1, R3 = 1 and angles at the intial point u10 =
π
2
, u20 = 0, u30 = 0. Fig. 1 displays this

platform.
For this platform, one can find

d12 =
√
6, d23 = 5/2 , d31 = 5/2 .

The equations (4)–(6) give now

3ρ2 + cosu1 − cosu2 + cosu1 cosu2 +
√
2 sin u1 sin u2 − 2 = 0,

25ρ2 − 4 cosu2 − 8 cosu3 + 8 sinu2 sin u3 − 13 = 0,

25ρ2 + 12 cosu1 − 8 cosu3 + 8 cosu1 cosu3 + 8
√
2 sin u1 sin u3 − 17 = 0.

(16)

We eliminate u3 from the second and third equation of (16), and get
[

sin u2(25σ + 12 cosu1 − 17)−
√
2 sin u1(25σ − 4 cosu2 − 13)

]2
+

[

(cosu1 − 1)(25σ − 4 cosu2 − 13) + 25σ + 12 cosu1 − 17)
]2
=

= 64
[

(1− cosu1) sin u2 −
√
2 sin u1

]2

(17)

where σ = ρ2, and from the first equation of (16) we have

σ = (cosu2 − cosu1 − cosu1 cosu2 −
√
2 sinu1 sinu2 + 2)/3 .



38 F.M. Hamdoon, N.H. Abdel-All: An Investigation of an Octahedral Platform

Substituting the above relation in (17), we find a relation between u1 and u2. We can use the
Mathematica program and find the contourplot of this relation with contour {0} (see Fig. 2).
It displays the projection of the intersection curve α onto the [u1u2]-plane.

Figure 2: The projection of the curve α into the [u1u2]-plane

Now, we find the scaling factor up to the second order. In this case we have u10 = π/2,
u20 = 0 and u30 = 0, using (9), (10) and substituting in (16), one can find that

−4u11 + 2
√
2u21 + 12ρ1 = 0, 25ρ1 = 0, −10u11 + 4

√
2u31 + 25ρ1 = 0

and
−2u12 + u2

21 +
√
2u22 + 6ρ

2
1 + 6ρ2 = 0,

2u2
21 + 8u21u31 + 4u

2
31 + 25ρ

2
1 + 25ρ2 = 0,

−10u12 + 4u
2
31 + 4

√
2u32 + 25ρ

2
1 + 25ρ2 = 0.

By solving the first three equations, we find that

ρ1 = 0, u21 =
√
2u11, u31 =

5
√
2

4
u11 ,

and by solving the other three equations, we get

ρ2 = −73
50

u2
11 , u22 =

√
2
(169

50
u2

11 + u12

)

, u32 =
√
2
(

3u2
11 +

5

4
u12

)

.

Remark 3: The octahedral platform of this example is shaky of order one, but not of order
two, because ρ2 6= 0 at our starting position.
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[12] O. Röschel: Möbius mechanisms. In: J. Lenarcic, M.M. Stanisic (eds): Advances
in Robot kinematics, Kluwer Academic publishers, Dodrecht 2000, pp. 375–382.

[13] H. Stachel: Higher-order flexibility of octahedra. Period. Math. Hung. 39, (1-3), 227–
242 (1999).

[14] W. Wunderlich: Starre, kippende, wackelige und bewegliche Achtflache. Elem. Math.
20, no. 2, 25–32 (1965).

[15] W. Wunderlich: Snapping and shaky antiprisms. Math. magazine 52, no. 4, 235–236
(1979).

[16] W. Wunderlich: Kipp-Ikosaeder I,II. Elem. Math. 36, 153–158 (1981) and 37, 84–89
(1982).

Received September 23, 2002; final form December 10, 2003




