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Abstract. The geometry of multiple images has been a standard topic in De-
scriptive Geometry and Photogrammetry (Remote Sensing) for more than 100
years. During the last twenty years great progress has been made within the field
of Computer Vision, a topic with the main goal to endow a computer with a sense
of vision. The previously graphical or mechanical methods of reconstruction have
been replaced by mathematical methods as offered by computer algebra systems.
This paper will explain to geometers how to reconstruct two digital images of
the same scene and how to recover metrical data of the depicted object — using
standard software only. Not the presented results are new, but the way how they
are deduced by geometric reasoning. The arguments are based on Linear Algebra
and classical Descriptive Geometry results.
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1. Introduction

1.1. Central perspectives

The basic term in this paper is the central projection with center c and image plane π (see
Fig. 1). This is the geometric idealization of the photographic mapping with c as the focal
point or focal center of the lenses and π as the plane carrying the film or the CCD sensor.
The pedal point of c with respect to π is called principal point h ; the distance d := ‖c − h‖
is the focal length. The image is called (central or linear) perspective.

Each central projection or photographic mapping defines a particular coordinate system
in space, the camera frame. Its origin is placed at the center c, the principal ray of the camera
is the z-axis. And the principal directions in the photosensitive plane serve as x- and y-axis.
These coordinate axes span the vanishing plane πv of this central projection.
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Figure 1: Central projection with center c, principal point h and camera frame x, y, z

When at the same time the principal point h is the origin of 2D-coordinates (x′, y′) in the
image plane, then the photographic mapping x 7→ x′ obeys the matrix equation

(
x′

y′

)
=

d

z

(
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y

)
.

It is appropriate to introduce homogeneous 2D-coordinates (x′
0 : x′

1 : x′
2) by

x′ =
x′

1

x′
0

, y′ =
x′

2

x′
0

.

In the same way we use homogeneous 3D-coordinates obeying

(x0 : x1 : x2 : x3) = (1 : x : y : z).

Then the central projection is expressed as a linear mapping1




x′
0

x′
1

x′
2


 =




0 0 0 1
0 d 0 0
0 0 d 0


 ·




x0

...
x3


 .

Now we bring this in a more general form: We replace the camera frame by arbitrary
world coordinates (x, y, z). And we admit that in the image plane π our particular frame is
modified by a translation and by scalings to the system of (x′, y′)-coordinates. In this way we
obtain the general form of mapping equations for central projections:




x′
0

x′
1

x′
2


 =




1 0 0
h′

x dfx 0
h′

y 0 dfy




︸ ︷︷ ︸
intrinsic calibration

parameters

·




0 0 0 1
0 1 0 0
0 0 1 0


·




1 0 0 0
zx

zy R

zz




︸ ︷︷ ︸
extrinsic calibration

parameters

·




x0

...
x3


 . (1)

1Throughout this paper coordinate vectors are seen as column vectors.
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On the right hand side there is a triple product of matrices. The first matrix contains beside
the focal distance d the new image coordinates (h′

x, h
′
y) of the principal point h and the two

scaling factors fx, fy which usually are set to 1 . These entries are called the intrinsic calibra-
tion parameters of the photo. If these parameters are known the photo is called calibrated. In
this case the image determines the bundle of rays c∨x up to a rigid spatial motion.

The last matrix in the triple product of eq. (1) contains the orthogonal (3×3)-matrix
R and the world coordinates (zx, zy, zz) of the center c . This defines the position of the
camera frame with respect to the world coordinates. The involved entries are called extrinsic
calibration parameters.
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Figure 2: Central projection into the negative plane

Fig. 2 reveals that it does not matter, whether the image plane π is located between the
center c and the scene (like in Fig. 1) or π is outside (like π in Fig. 2). The latter takes place
at the photographic mapping. As long as the distance d is the same and the principal rays
c∨h coincide, the images are congruent, provided, the image planes are seen from the correct
side.

1.2. Linear images

We can generalize the central projection by a central axonometry (see, e.g., [13, 2, 12]). It maps
the 3-space by a (singular) collinear transformation into the image plane. Hence, collinearity
of points remains invariant and cross ratios are preserved. In homogeneous coordinates a
central axonometry can again be expressed by a linear mapping; in matrix form like in (1)
there is a (4×4)-matrix of rank 3. Therefore these images are called linear images.2 There
are several results on how to characterize central perspectives among linear images (see, e.g.,
[6, 13, 7, 11, 2, 12, 8]).

In the generic case linear images are uncalibrated. Such a linear image can, e.g., be
obtained by taking a photo of a given photo. It can be proved (cf. [13]) that a linear image
of a scene is always an affine transform of a central perspective of the same scene (compare
the two views in Fig. 3).

2For a coordinate-free definition of linear images see [1].
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Figure 3: Central perspective (left) versus linear image (right)

According to our definition, a photo is uncalibrated as soon as the exact position of the
center c of projection with respect to the photo is unknown. This is because replacing the
exact center by any other point means that the bundle of rays c∨ x connecting the center
with points of the scene is replaced by a collinear transform of the original bundle.
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Figure 4: Replacing the original center c by c acts like a collinear
transformation on the bundle of rays

1.3. Singular value decomposition

One technical tool from Linear Algebra, which will be used in the sequel, is the singular value
decomposition of any matrix. It decomposes the (m×n)-matrix A into the product

A = U · diag(λ1, . . . , λr, 0, . . . , 0) · V
T with λ1, . . . , λr > 0, r ≤ min{m,n},
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Figure 5: Singular value decomposition

of a diagonal (m×n)-matrix and two orthogonal matrices U, V , i.e., U−1 = UT and V −1 = V T .
The non-zero entries λ1, . . . , λr in the main diagonal of the central factor are called the singular
values of A. They are the positive square roots of the non-zero eigenvalues of the symmetric
matrix AT ·A and therefore uniquely determined.

There is an instructive geometric interpretation of this decomposition in dimension 2
which can easily be generalized to the Euclidean n-space: Matrix A represents an affine
transformation A → A′ (see Fig. 5) mapping the unit circle k onto an ellipse k′, which might
also be degenerated. There are pairwise orthogonal diameters g, h of the unit circle which are
mapped onto the axes of symmetry g′, h′ of the corresponding ellipse. These particular pairs
of diameters define the directions of principal distortions for this affine map.

The singular values of A equal the semiaxes of the ellipse. Therefore the singular values
are sometimes called the principal distortion ratios of this affine map. The orthogonal matrices
U and V T represent the coordinate transformations between the given frames and that of the
principal distortion directions.

2. The geometry of two images

The geometry of pairs of central views has been a classical topic in Descriptive Geometry.
Important results are, e.g., due to S. Finsterwalder, E. Kruppa [9], J. Krames, W.
Wunderlich, H. Brauner [1].

2.1. Uncalibrated case

Let two central projections be given with centers ci and image planes πi , i = 1, 2 . This
refers to the viewing situation in 3-space as displayed in Fig. 6. In addition, let κ1, κ2 be
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Figure 6: Epipolar constraint in a two-views-system

collinear transformations which map the images into π′
1 and π′′

2 , respectively. In this way we
have defined a general two-views-system consisting of two linear images. Any space point x

different from the two centers is represented by its two views x′,x′′. We call these two images
of x corresponding.

The basic geometric property of two-views-systems results from the fact that for space
points x which are not aligned with the two centers, the two rays of sight c1 ∨x and c2 ∨x

are coplanar (see Fig. 6). They are located in a plane δ
x

which in both linear images appears
in an edge view. In the viewing situation the images of the pencil of planes δ

x
constitute

two perspective line pencils. After applying the collinear transformations κ1, κ2 there remain
projective pencils of lines, the so-called epipolar lines. The centers c′

2 and c′′1 of these pencils
are called epipoles. As expressed in the notation, each epipole is the image of one center under
the other projection. The projectivity between the two pencils is called epipolar constraint.
We summarize:

Theorem 1 1. For any two linear images of a scene there is a projectivity between two
particular line pencils

c′2(δ
′
x
) ∧− c′′1(δ

′′
x
)

such that two points x′,x′′ are corresponding, i.e., images of the same space point, if
and only if they are located on corresponding epipolar lines.

2. Using homogeneous coordinates, there is a matrix B = (bij) of rank 2 such that two
points x′ = (x′

0 : x′
1 : x′

2) and x′′ = (x′′
0 : x′′

1 : x′′
2) are corresponding if and only if

2∑

i,j=0

bij x′
i x

′′
j = x′T · B · x′′ = 0 . (2)
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Remark: This vanishing bilinear form defines a correlation which is singular because of the
rank deficiency of the so-called essential matrix B.

Proof: Using homogeneous line coordinates, the projectivity between the line pencils can be
expressed by

(u′
1λ1 + u′

2λ2)R 7→ (u′′
1λ1 + u′′

2λ2)R

for (λ1, λ2) ∈ R
2 \ {(0, 0)}, provided u′

1, . . . ,u
′′
2 are particularily normalized line coordinates

of two pairs of corresponding epipolar lines.
The points x′ and x′′ are corresponding, i.e., images of the same space point, iff there is a
nontrivial pair (λ1, λ2) such that

(u′
1λ1 + u′

2λ2)· x
′ = 0

(u′′
1λ1 + u′′

2λ2)· x
′′ = 0 .

These two linear homogeneous equations in the unknowns (λ1, λ2) have a nontrivial solution
if and only if the determinant vanishes. This gives the stated bilinear form

(u′
1 ·x

′)(u′′
2 ·x

′′) − (u′
2 ·x

′)(u′′
1 ·x

′′) = 0

or — in matrix form —

x′T · (u′
1 ·u

′′T
2 − u′

2 ·u
′′T
1 ) · x′′ = x′T · B · x′′ = 0 .

There are singular points of this correspondance: The epipole c′
2 corresponds to all x′′, i.e.,

c′T2 ·B ·x′′ = 0 for all x′′ ∈ R
3, therefore c′T2 ·B = 0 . Vice versa, all points x′ ∈ R

3 correspond
to c′′1, i.e., B ·c′′1 = 0 . As these homogeneous linear systems have a one-dimensional solution,
the essential (3×3)-matrix B has rank 2 .

2.2. Calibrated case

In the calibrated case we can express the essential matrix B in a particular form. For this
purpose it is necessary to specify the homogeneous coordinates used in the bilinear relation
(2): For each image point we take its 3D coordinates with respect to the camera frame as
homogeneous 2D coordinates (see Fig. 7).

Theorem 2 When in the calibrated case the camera frame coordinates serve as homogeneous
coordinates of the image points x′,x′′, then the essential matrix B is the product of a skew-
symmetric matrix and an orthogonal one, i.e.,

B = S · R with ST = −S and R−1 = RT . (3)

Then the two singular values of B are equal.

Proof: According to Fig. 7, the three vectors

c′ := c2 − c1 , x′ and x′′

are coplanar. Therefore their triple product vanishes. However, we have to pay attention to
the fact that x′ and x′′ are given in two different camera frames. Let

x1 = c′ + R·x2 (4)
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Figure 7: Epipolar constraints for calibrated images

be the coordinate transformation from the second camera frame into the first one with an
orthogonal matrix R. Now the complanarity is equivalent to

0 = det(x′, c′, R·x′′) = x′ · (c′×R·x′′).

We may replace the cross product by the product of x′′ with a skew-symmetric matrix, i.e.,

c′×R·x′′ = S · R · x′′

and

S =




0 −z′
z z′y

z′z 0 −z′
x

−z′y z′x 0


 , (5)

provided (z′
x, z

′
y, z

′
z) are the coordinates of c2 with respect to the first camera frame. It is

noteworthy that according to (4) the two factors S and R together define the relative position
between the two camera frames uniquely.
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The singular values of B = S ·R can either be computed straight forward as the positive
squareroots of eigenvalues of BT ·B, i.e., of ST ·S = −S ·S. But we can also proceed in a
more geometric way by understanding B as matrix of an affine transformation in 3-space (see
Fig. 8): The cross product c′ × x is orthogonal to the plane spanned by c′ and x , and it
has the length

‖c′ × x‖ = ‖c′‖ ‖x‖ sin ϕ = ‖c′‖ ‖xn‖

where xn is the orthogonal projection of x in direction of c′ . So, the mapping x 7→ S·x is the
composition of an orthogonal projection, of a 90◦-rotation, and a scaling with factor ‖c′‖. As
the singular values (= principal distortion ratios) of an orthogonal projection are (1, 1) (note
Fig. 5), the singular values of S are (‖c′‖, ‖c′‖).

3. The fundamental theorems

What means ‘reconstruction’ from two images ? The photos have been taken in particular
positions of the camera. These poses will be called viewing situation. But afterwards we have
only the two images, and we know nothing about how the camera frames where mutually
placed in 3-space. Hence, any reconstruction includes both, recovering the viewing situation
and recovering the depicted scene.

The problem of recovering a scene from two or more images is a basic problem in Computer
Vision (see, e.g., [3, 4, 5, 15]). It is remarkable, that sometimes in the cited books the authors
actually acknowledge results which have already been achieved in Descriptive Geometry (note,
e.g., the high estimation of E. Kruppa’s results [9] in [15]). However, Computer Vision
focuses on numerical solutions, and the use of computers brought new insight and progress in
this problem. Since measuring pixels in any image can be carried out with standard software,
it has become possible to recover an object with high precision from two digital images just
by using a laptop.

Theorem 3 From two uncalibrated images with given projectivity between epipolar lines
the depicted object can be reconstructed up to a collinear transformation.

Sketch of the proof: The two images can be placed in space such that pairs of epipolar lines
are intersecting. For this purpose we start with a position where the two images are coplanar
and two corresponding lines are aligned. Then the two pencils of epipolar lines are perspective
with respect to an axis a . Now we rotate one of the image planes about this axis a . The
corresponding epipolar lines are still intersecting on a . Then we specify arbitrary centers c1 ,
c2 on the baseline c which connects the two epipoles. This gives rise to a reconstructed 3D
object.

Now it remains to prove in detail that any other choice of a viewing situation — with
intersecting pairs of epipolar lines but different centers — results in a recovered object which
is a collinear transform of the previous one.

Theorem 4 [S. Finsterwalder, 1899] From two calibrated images with given projectivity
of epipolar lines the depicted object can be reconstructed up to a similarity.

Sketch of the proof: For the two projections the pencils of epipolar planes δ
x

need to be
congruent. There is a rigid motion from one camera frame to the other such that any two
corresponding epipolar planes become coincident. Then for any choice of c2 relative to c1 on
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the carrier line c of the unified pencil of planes there exists a reconstructed 3D object. Now
it is obvious that any other choice of c2 on line c gives a similar 3D object.

In this sense the problem of recovering a scene is reduced to the determination of epipoles.
This problem is equivalent to a classical problem of Projective Geometry, the ‘Problem of
Projectivity’ (see Fig. 9):
Given: 7 pairs of corresponding points (x′

1,x
′′
1), . . . , (x′

7,x
′′
7).

Wanted: A pair of points (s′, s′′) (= epipoles) such that for i = 1, . . . , 7 the connecting lines
s′∨x′

i and s′′∨x′′
i are corresponding under a projectivity, i.e.,

s′(s′∨x′
i) ∧− s′′(s′′∨x′′

i ), i = 1, . . . , 7 .
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Figure 9: The Problem of Projectivity

The Problem of Projectivity is a cubic problem. This follows from the following reasoning:
Due to eq. (2) the 7 given pairs of corresponding points give n = 7 linear homogeneous
equations

x′T
i · B · x′′

i = 0, i = 1, . . . , n , (6)

for the 9 entries in the essential (3×3)-matrix B = (bij). The condition rk(B) = 2 gives the
additional cubic equation det B = 0 which fixes all bij up to a common factor.

4. Computing the best fitting essential matrix

For noisy image points it is recommended to use n > 7 pairs of corresponding points, so-
called reference points (see Fig. 11), and to apply methods of least squares approximation for
obtaining the ‘best fitting’ essential matrix B. This is done in two steps:

Step 1: Let A denote the (n×9) coefficient matrix in the linear system (6) of homogeneous

equations for the entries of B. Then the ‘least square fit’ B̃, i.e., the ‘best’ solution, is an
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Figure 10: Given photos: Historical ‘Stadtbahn’ station Karlsplatz
in Vienna (Otto Wagner, 1897)
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Figure 11: Identifying 20 reference points

eigenvector to the smallest eigenvalue of the symmetric matrix AT ·A which minimizes the
quadratic form

yT · AT ·A · y = ‖A·y‖2

under the side condition ‖y‖ = 1 .3

Step 2: Any essential matrix has rank 2, and in particular for the calibrated case the two
singular values must be equal. In order to obtain such a ‘best fitting’ essential matrix B for
our obtained B̃, we use what sometimes is called the ’projection into the essential space’:
This is based on the singular value decomposition of B̃, which has been presented in Section 1.
We factorize B̃ into a matrix product

B̃ = U · D · V T , D = diag(λ1, λ2, λ3) with λ1 ≥ λ2 ≥ λ3 ≥ 0 (7)

and with orthogonal U, V .

3In the sense of Fig. 5 the requested eigenvector spans a diameter of the unit sphere (k) which is mapped
onto the diameter carrying the shortest semi-axis of the corresponding ellipsoid (k′). This diameter is orthog-
onal to the best fitting hyperplane.
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Theorem 5 Let B̃ = U · diag(λ1, λ2, λ3) · V
T by (7) be the singular value decomposition of

the best solution B̃ obeying the homogeneous linear system of equations (6). Then
1. in the uncalibrated case the matrix

B = U · diag(λ1, λ2, 0) · V
T (8)

is best in the sense of the Frobenius norm, i.e., ‖B̃ − B‖f = λ3 is minimal, provided
λ3 < λ2 ≤ λ1. Otherwise the minimum is not unique. For the sake of completeness we
add:

2. If λ3 is a twofold singular value of B̃, then all B = U · A · V T with

A =




λ1 0 0
0 λ3(1 − n2

2) −λ3n2n3

0 −λ3n2n3 λ3(1 − n2
3)


 and n2

2 + n2
3 = 1

reach the minimal norm ‖B̃−B‖f = λ3. If the singular value λ3 has multiplicity 3 then
even all

A = λ3(I3 − n · nT ), n ∈ R
3 with ‖n‖ = 1 and the unit matrix I3 ,

are minimal. Here A represents the product of an orthogonal projection in direction of
n and a scaling.

3. In the calibrated case with the particular homogeneous coordinates according to Theorem 2
the best matrix is

B = U · diag(λ, λ, 0) · V T with λ =
λ1+λ2

2
. (9)

Proof: For the square matrix A = (aij) the Frobenius norm ‖A‖f =
√∑

i,j a2
ij equals the

trace of AT ·A and therefore the square sum of the singular values of A (see, e.g., [10, 15]). In
the uncalibrated case the product B by (8) gives

‖B̃ − B‖f = ‖U ·[ diag(λ1, λ2, λ3) − diag(λ1, λ2, 0)]·V
T‖f = ‖diag(0, 0, λ3)‖f = λ3 .

In order to figure out which B = U ·A·V T gives the minimal norm ‖B̃−B‖f among all rank 2
matrices, we use Lagrange’s method for obtaining the minimum of the objective function

ζ(A) := ‖B̃ − B‖2
f =

3∑

j=1

(ajj − λj)
2 +

∑

i6=j

a2
ij

under the side condition det A = 0 . According to this the ten equations

∂

∂aij

[ζ(A) + λ det A] = 0, i, j = 1, 2, 3, and det A = 0

give necessary conditions for the nine entries of A and the multiplier λ.
We rewrite these equations in vector form. For this purpose let (e1, e2, e3) denote the

standard basis and let aj, j = 1, 2, 3, be the column vectors of A. Furthermore we set

nk = ai × aj for (i, j, k) = (1, 2, 3), (2, 3, 1), (3, 1, 2).
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Now det A = 0 is equivalent to the linear dependence of {a1, a2, a3}. Hence there is a unit
vector n such that

nk = ai × aj = 2µkn, ‖n‖ = 1 .

On the other hand we have det A = aj · nj for each j, and the vanishing partial derivatives
of our objective function ζ(A) are

for diagonal entries 2(ajj − λj) + λ(nj · ej) = 0
and otherwise (i 6= j) 2aij + λ(nj · ei) = 0 .

They can be combined in

2(aj − λjej) = −λnj = −2λµjn .

For the Lagrange multiplier we conclude λ 6= 0 as otherwise the column vectors aj = λjej

would be linearly independent. So, our ten equations are solved by

aj = λjej − λµjn , (10)

provided the unknowns µ1, µ2, µ3, λ and the coordinates of the unit vector n obey nk = ai×aj

for all even permutations (i, j, k). We substitute (10) and obtain

2µkn = λλiµj(n × ei) − λλjµi(n × ej) + λiλjek . (11)

Expressed in coordinates (n1, n2, n3) of n obeying n2
1 + n2

2 + n2
3 = 1 we get

2µkni = λλjµink and 2µknj = λλiµjnk , i.e., 2µink = λλjµkni , (12)

and
λλjµini + λλiµjnj + 2µknk = 2λiλj . (13)

In a lengthy case analysis we have to distinguish whether for any j the pairs of homoge-
neous equations (12) for µink and µkni are linearly dependent, i.e., λ2λ2

j = 4 , or there is only
the trivial solution

µ1n2 = µ2n1 = µ2n3 = µ3n2 = µ3n1 = µ1n3 = 0.

We skip the first case which leads to infinite solutions as listed in 2.; this first case is only
possible when the multiplicity of the smallest singular value is > 1 . In the latter case we may
first assume n3 6= 0 which implies

µ1 = µ2 = 0, µ3 6= 0, n = e3 , µ3 =
λ1λ2

2
, λ =

2λ3

λ1λ2

.

From (10) we obtain

a1 = λ1e1 , a2 = λ2e2 , a3 = λ3e3 − λ3e3 = 0.

This gives by (10) the minimal

‖B̃ − B‖2
f =

3∑

j=1

(aj − λjej)
2 = λ2

3∑

j=1

µ2
j = λ2

3 .
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The alternative assumptions n1 6= 0 or n2 6= 0 result in larger values ‖B̃ − B‖f = λ1 or λ2 .

Ad 3.: In the calibrated case we follow the proof given in [15, p. 119–120]: For any B = U ·A·V T

and A = U ′ · diag(λ, λ, 0) · V ′T with U ′ = (u′
ij), V ′ = (v′

ij) we obtain

‖B̃ − B‖2
f = tr

(
MT · M

)
with M := diag(λ1, λ2, λ3) − U ′ · diag(λ, λ, 0) · V ′T .

By straightforward computation we get

tr
(
MT · M

)
= (λ2

1 + λ2
2 + λ2

3) + 2λ2 − 2 tr
[
diag(λ1, λ2, λ3) · U

′ · diag(λ, λ, 0) · V ′T
]

=
= (λ2

1 + λ2
2 + λ2

3) + 2λ2 − 2λ [λ1(u
′
11v

′
11 + u′

12v
′
12) + λ2(u

′
21v

′
21 + u′

22v
′
22)] .

This norm is minimal when the last term in brackets is maximal. We pay attention to
λ1, λ2 > 0. As U and V are orthogonal, we have

(u′
11v

′
11 + u′

12v
′
12) ≤ 1 and (u′

21v
′
21 + u′

22v
′
22) ≤ 1 ,

because each sum can be seen as the scalar product of the top views of the i-th row vectors u′
i

of U ′ and v′
i of V ′, i = 1, 2. These sums are maximal if these top views are still unit vectors

and u′
i = v′

i . This implies

U ′ = V ′ =




cos ϕ − sin ϕ 0
sin ϕ cos ϕ 0

0 0 1




and
A = U ′ · diag(λ, λ, 0) · V ′T = diag(λ, λ, 0).

Hence

‖B̃ − B‖2
f = (λ2

1 + λ2
2 + λ2

3) + 2λ2 − 2λ(λ1 + λ2) = (λ1 − λ)2 + (λ2 − λ)2 + λ2
3 ,

and this is minimal for the arithmetic mean λ = 1
2
(λ1 + λ2) of the greatest two values.

The factorization B = S·R according to Theorem 2 reveals already the relative position
of the two camera frames. Therefore we need

Theorem 6 The factorization of the essential matrix B = U ·D ·V T , D = diag(λ, λ, 0), into
the skew-symmetric matrix S and the orthogonal matrix R reads:

S = ±U · R+ · D · UT , R = ±U · RT
+ · V T where R+ =




0 −1 0
1 0 0
0 0 1


. (14)

Proof: It is sufficient to factorize the product of the first two matrices of B = U ·D·V T by

U · D = S · R′,

because this implies immediately

B = S · (R′ ·V T ), i.e., R = R′ ·V T .

We again focus on the affine 3D transformations which are represented by the involved ma-
trices:
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Figure 12: Epipolar lines. The two epipoles are defined by the row- and the
column-nullspace of the essential matrix B

Any skew-symmetric matrix S represents the commutative product of an orthogonal pro-
jection with a 90◦-rotation and a scaling (see Fig. 8). On the other hand, U ·D represents the
product of the orthogonal projection parallel to the z-axis, the scaling with factor λ and the
isometry U which brings the x y-plane into the image space of U ·D.

Let R+ be the matrix representing the 90◦-rotation about the z-axis. Then R+ is of the
form given in Theorem 6, and the product R+ ·D = D ·R+ is skew-symmetric. This skew-
symmetry is preserved under transformation with U while the x y-image-plane is transformed
into the correct position. This gives the solutions

S = ±U ·R+ ·D · UT and R′ = ±U ·RT
+ with S ·R′ = U ·D.

For the following reason there are not more than two different factorizations of the required
type: As matrix B = U ·D·V T represents a scaled orthogonal axonometry, the column vectors
are the images of an orthonormal frame. We know from Descriptive Geometry that apart
from translations parallel to the rays of sight there are exactly two different triples of pairwise
orthogonal axes with images in direction of the given column vectors. The two triples are
mirror images from each other. So, Theorem 6 gives all possible factorizations.

There are critical configurations where the specified reference points do not determine the
epipoles uniquely. This is happens, e.g., when only coplanar 3D points are chosen as reference
points, because their images x′

i 7→ x′′
i determine a collinear transformation κ : π′ → π′′, and

any pair of corresponding points s′, s′′ would serve as epipoles (compare Fig. 9). Besides,
there are also critical cases related to quadrics. For details see, e.g., [14, 15, 5]).

5. The algorithm

We summarize: The numerical reconstruction of two calibrated images with the aid of any
computer algebra system (e.g., Maple) consists of the following six steps:

(1) Specify n > 7 pairs (x′
i,x

′′
i ), i = 1, . . . , n, of corresponding points (cf. Fig. 11) under

avoidance of critical configurations.

(2) Set up the homogeneous linear system of equations (6) for the unknown essential matrix

B. The optimal solution B̃ is an eigenvector of the smallest eigenvalue of AT ·A, when
A denotes the coefficient matrix of this system.
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(3) Based on the singular value decomposition of B̃ compute the closest rank 2 matrix B

with two equal singular values according to Theorem 5. This defines the projectivity
between epipolar lines (Fig. 12).

(4) Factorize B into the product S ·R of a skew-symmetric matrix S and an orthogonal R

according to Theorem 6. This determines the relative position of the two camera frames
— up to the scale.

(5) In one of the camera frames compute the approximate point si of intersection between
corresponding rays c1 ∨x′

i and c2 ∨x′′
i , i = 1, 2, . . . (Fig. 13).

(6) Transform the recovered point coordinates into any world coordinate frame.

Figs. 10, 11 and 12 show an example with the computed epipolar lines and epipoles. The
recovered object is displayed in Fig. 14.
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Figure 13: Approximating the point of intersection between corresponding rays
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Figure 14: The result of the reconstruction — in top view and front view
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