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Abstract. The paper deals with properties of pentagons in a plane which are
related to the area of a pentagon. First the formulas of Gauss and Monge holding
for any pentagon in a plane are studied. Both formulas are derived by the the-
ory of automated theorem proving. In the next part the area of cyclic pentagons
is investigated. On the base of the Nagy–Rédey theorem and other results, the
formula for the area of a cyclic pentagon which is given by its side lengths is re-
discovered. This is the analogue of well-known Heron and Brahmagupta formulas
for triangles and cyclic quadrilaterals. The method presented here could serve as
a tool for solving this problem for cyclic n-gons for a higher n.
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1. Introduction

In the paper we will study some properties of pentagons in a plane which are related to the
their areas. These properties of pentagons are generalizations of well-known relations holding
for triangles and quadrilaterals. First we will give some notions from geometry of polygons
that we need in our investigation.

Suppose that A1A2 . . . An is a polygon with vertices A1, A2, . . . , An and sides A1A2, A2A3,
. . . , AnA1. All indices are considered mod n, i.e., Aj+n = Aj for all j = 1, 2, . . . , n. Compu-
tation of the area of a polygon may be carried out in two basic ways.

The first way consists of computing the area of a polygon once knowing the coordinates
of its vertices in a given system of coordinates. Then the area of a polygon can be computed
by the following theorem [3]

Let Ai = [xi, yi], i = 1, 2, . . . , n, be coordinates of the vertices of an n-gon A1A2 . . . An

in a given Cartesian system of coordinates. Then for the area p of an n-gon A1A2 . . . An

p =
1

2

n
∑

i=1
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∣
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. (1)
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By (1) we compute the area of an n-gon as the sum of (signed) areas of individual trian-
gles. We can easily check that formula (1) does not depend on the choice of the system of
coordinates.

The second way of computing the area of a polygon is based on distances between the
vertices of a polygon. The area p of an n-gon A1A2 . . . An can be expressed in terms of all
(

n

2

)

mutual distances between its vertices. We will use the formula (2) which was published
by B.Sz. Nagy and L. Rédey [9]. The Nagy–Rédey theorem reads:

Let dij = |AiAj|
2 denote a square of the distance of the vertices Ai, Aj . Then the area

p of an n-gon A1A2 . . . An is given by

16p2 =

n
∑

i,j=1
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∣

. (2)

A special case of (2) for n = 4 is known as the formula of Staudt [16]

In a quadrilateral A1A2A3A4 with side lengths a = |A1A2|, b = |A2A3|, c = |A3A4|,
d = |A4A1| and diagonals e = |A1A3|, f = |A2A4|

16p2 = 4e2f 2 − (a2 − b2 + c2 − d2)2 (3)

holds.

To prove and discover all formulas in this paper we will use the theory of automated theorem
proving based on Gröbner bases computation in ideals. See [5, 11, 13] for details.

2. Gauss and Monge formulas

The following formula belongs to one of less known results of C.F. Gauss (1777–1855) [7, 19].
In accordance with [17] we will call it Gauss formula:

Let P = A1A2A3A4A5 be an arbitrary plane pentagon and let pi denotes the area of

a vertex triangle Ai−1AiAi+1, i = 1, . . . , 5. Then for the area f of a pentagon P the

following relation holds

f 2 − c1f + c2 = 0, (4)

where c1 =
∑

5

i=1
pi and c2 =

∑

5

i=1
pipi+1.

Let us show how to discover and prove the formula (4) by computer. Choose a Cartesian
coordinate system such that A1 = [0, 0], A2 = [a, 0], A3 = [x, y], A4 = [u, v], A5 = [w, z]
(Fig. 1).

For the areas pi, i = 1, 2, . . . , 5 , of the vertex triangles and the area f of the pentagon P
we get by Eq. (1)

p1 = area of A5A1A2 ⇔ h1 : az − 2p1 = 0,

p2 = area of A1A2A3 ⇔ h2 : ay − 2p2 = 0,

p3 = area of A2A3A4 ⇔ h3 : ay + xv − yu− av − 2p3 = 0,

p4 = area of A3A4A5 ⇔ h4 : xv − yu + uz − vw + wy − xz − 2p4 = 0,

p5 = area of A4A5A1 ⇔ h5 : uz − vw − 2p5 = 0,

f = area of A1A2A3A4A5 ⇔ h6 : ay + xv − yu + uz − vw − 2f = 0.
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Figure 1: Area of a pentagon A1A2A3A4A5

The polynomials h1, h2, . . . , h6 in the variables a, x, y, u, v, w, z, f, p1, p2, p3, p4, p5 generate an
ideal I = (h1, h2, . . . , h6). In the ideal I we eliminate the independent variables a, x, y, u, v, w, z
to obtain the elimination ideal which contains polynomials in variables f, p1, p2, p3, p4, p5. In
CoCoA1 we enter

Use R::=Q[axyuvwzfp[1..5]];

I:=Ideal(ay+xv-yu+uz-vw-2f,az-2p[1],ay-2p[2],ay+xv-yu-av-2p[3],

xv-yu+uz-vw+yw-xz-2p[4],uz-vw-2p[5]);

Elim(a..z,I);

and get the polynomial which leads to the equation

f 2 − f(p1 + p2 + p3 + p4 + p5) + (p1p2 + p2p3 + p3p4 + p4p5 + p1p5) = 0

which is the desired Gauss formula (4). The theorem is proved (and rediscovered).

The Gauss formula (4) is closely connected with the following Monge formula [2, 17]

Let A1A2A3A4A5 be a pentagon. Denote the area of a triangle AiAjAk by pijk. Then

p123p145 + p125p134 = p124p135 (5)

holds.

Let us prove (5) by computer (Fig. 1). We have:

p123 = area of A1A2A3 ⇔ g1 : ay − 2p123 = 0,

p145 = area of A1A4A5 ⇔ g2 : uz − vw − 2p145 = 0,

p125 = area of A1A2A5 ⇔ g3 : az − 2p125 = 0,

p134 = area of A1A3A4 ⇔ g4 : xv − yu− 2p134 = 0,

p124 = area of A1A2A4 ⇔ g5 : av − 2p124 = 0,

p135 = area of A1A3A5 ⇔ g6 : xz − yw − 2p135 = 0.

1Software CoCoA is freely distributed at the address http://cocoa.dima.unige.it
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In the ideal J = (g1, g2, . . . , g6) we eliminate the independent variables a, x, y, u, v, w, z. En-
tering the polynomials g1, . . . , g6 into CoCoA

Use R::=Q[axyuvwzp[123..345]];

J:=Ideal(ay-2p[123],uz-vw-2p[145],az-2p[125],xv-yu-2p[134],av-2p[124],

xz-yw-2p[135]);

Elim(a..z,J);

we obtain the elimination ideal which is generated by the polynomial

p123p145 + p125p134 − p124p135.

The Monge formula (5) is proved (and rediscovered).

Remark 1: Note that the Monge formula (5) involves the areas of those triangles of a
pentagon A1A2A3A4A5 which have a common vertex A1.

Remark 2: The Monge formula (5) holds for arbitrary pentagons, i.e., even for those which
intersect itself. This follows from the proof above where we used signed areas of triangles.

Another proof of the Monge formula (5), which can be found in [17], is based on the
following algebraic identity (Fig. 2)

Let A1, A2, A3, A4 be four points on a line in this order. Then

|A1A2| · |A3A4| + |A2A3| · |A1A4| − |A1A3| · |A2A4| = 0. (6)

To prove (6) realize that |A1A3| = |A1A2| + |A2A3|, |A2A4| = |A2A3| + |A3A4| and |A1A4| =
|A1A2|+ |A2A3|+ |A3A4|. The formula (6) is a special case of the Ptolemy formula for cyclic
quadrilaterals.

Figure 2: Visualizing Eq. (6)

It is easy to prove that Gauss, Monge and Ptolemy formulas are equivalent. For instance
to show that the Monge formula implies Gauss formula it suffices to put obvious relations

p134 = f − p2 − p5, p124 = f − p3 − p5, p135 = f − p2 − p4

into the Monge formula (5) using the notation p2 = p123, p3 = p234, p4 = p345, p5 = p451. See
[17], where various generalizations of the theorems above are given.

3. Nagy–Rédey formula for a pentagon

Now we will derive by computer the Nagy–Rédey formula (2) for n = 5. We will need it in
the next section to find the formula for the area of a cyclic pentagon.

Given a pentagon A1A2A3A4A5 in a plane, denote the side and diagonal lengths by a =
|A1A2|, b = |A2A3|, c = |A3A4|, d = |A4A5|, e = |A5A1|, i1 = |A1A3|, i2 = |A1A4|, i3 = |A2A4|,
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i4 = |A2A5|, i5 = |A3A5|. Choose a Cartesian system of coordinates so that A1 = [0, 0],
A2 = [a, 0], A3 = [x, y], A4 = [u, v], A5 = [w, z] (Fig. 1).

Then

|A2A3| = b ⇔ h1 : (x − a)2 + y2 − b2 = 0,
|A3A4| = c ⇔ h2h1 : (u − x)2 + (v − y)2 − c2 = 0,
|A4A5| = d ⇔ h3h1 : (w − u)2 + (z − v)2 − d2 = 0,
|A5A1| = e ⇔ h4h1 : w2 + z2 − e2 = 0,
|A1A3| = i1 ⇔ h5h1 : x2 + y2 − i21 = 0,
|A1A4| = i2 ⇔ h6h1 : u2 + v2 − i22 = 0,
|A2A4| = i3 ⇔ h7h1 : (u − a)2 + v2 − i23 = 0,
|A2A5| = i4 ⇔ h8h1 : (w − a)2 + z2 − i24 = 0,
|A3A5| = i5 ⇔ h9h1 : (x − w)2 + (y − z)2 − i25 = 0.
Area of A1A2A3A4A5 = p ⇔ h10 : p − 1

2
(ay + xv − yu + uz − vw) = 0.

Elimination of x, y, u, v, w, z in the ideal I = (h1, h2, . . . , h10) gives

16p2 = −(a4 + b4 + c4 + d4 + e4) + 2(a2b2 + b2c2 + c2d2 + d2e2 + e2a2)
+ 2(i21i

2
3 + i22i

2
4 + i23i

2
5 + i24i

2
1 + i25i

2
2) − 2(a2i25 + b2i22 + c2i24 + d2i21 + e2i23)

(7)

which is indeed the Nagy–Rédey formula (2) in case of n = 5.

4. Area of a cyclic pentagon

In this section we will investigate cyclic pentagons, i.e., those pentagons in a plane which can
be inscribed into a circle. The problem is related to the formula of Heron for triangles, and the
formula of Brahmagupta for cyclic quadrilaterals. The formula of Heron was likely known to
Archimedes, 287–212 B.C., whereas the formula of Brahmagupta comes from sixth century
(Brahmagupta — Indian mathematician, 598–c. 665 A.D.). Since that time, despite a great
effort of mathematicians, no formula for the area of a cyclic pentagon has appeared until 1994
when American D.P. Robbins published his results [14]. Almost 1400 years the formula for
the area of a cyclic pentagon was missing. The main reason for the long time elapse is a big
complexity of such formulas. See the latest results [4, 6, 8, 10].

Suppose that P = A1A2A3A4A5 is a cyclic pentagon with side lengths a = |A1A2|,
b = |A2A3|, c = |A3A4|, d = |A4A5|, e = |A5A1| (Fig. 3).

We will express the area p of a cyclic pentagon P in terms of its side lengths a, b, c, d, e.
To simplify the expressions we use elementary symmetric functions of squares of side lengths
a, b, c, d, e:

k =
∑

a2 = a2 + b2 + c2 + d2 + e2,

l =
∑

a2b2 = a2b2 + a2c2 + · · · + d2e2,

m =
∑

a2b2c2 = a2b2c2 + a2b2d2 + · · · + c2d2e2,

n =
∑

a2b2c2d2 = a2b2c2d2 + a2b2c2e2 + a2b2d2e2 + a2c2d2e2 + b2c2d2e2,

o = a2b2c2d2e2.

(8)

Further denote q = 16p2. The following lemma holds:
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Figure 3: Area of a cyclic pentagon — convex case

Lemma 1 Let P = A1A2A3A4A5 be a convex cyclic pentagon. Then, with the notation as

above,

k2 − 4l + q = 4(abci2 + bcdi4 + cdei1 + deai3 + eabi5). (9)

Proof: The statement (9) follows immediately from (7). Applying Ptolemy’s theorem to
cyclic quadrilaterals A1A2A3A4, A2A3A4A5, A3A4A5A1, A4A5A1A2, A5A1A2A3, we get

i1i3 = ac + bi2, i3i5 = bd + ci4, i5i2 = ce + di1, i2i4 = da + ei3, i4i1 = eb + ai5. (10)

Substitution of (10) into the Nagy–Rédey formula (7) gives (9).

Remark 3. Similarly, for a cyclic quadrilateral with side lengths a, b, c, d, in accordance with
the Staudt formula (3), we get

k2 − 4l + q = 8abcd (11)

in the convex case, and
k2 − 4l + q = −8abcd (12)

in the non-convex case, where k, l, m, n are respective elementary symmetric functions of
a2, b2, c2, d2 and q = 16p2. Relations (11), (12) can be written in a compact form as

(k2 − 4l + q)2 − 64n = 0. (13)

If we denote the left side of (9) as
k2 − 4l + q = s (14)

then (9) is of the form

s = 4(abci2 + bcdi4 + cdei1 + deai3 + eabi5). (15)

Note that s does not depend on the diagonal lengths i1, i2, i3, i4, i5. It turns out that to express
an (unknown) relation between the area of a cyclic pentagon and its side lengths it suffices
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to find a relation between s and a, b, c, d, e, where s is given by (15). To do this we need to
eliminate variables i1, i2, i3, i4, i5 from (15). This elimination requires besides the Ptolemy’s
conditions (10) another conditions.

As we are working with planar pentagons we have to ensure that the cyclic pentagon P =
A1A2A3A4A5 is planar. This is equivalent to the planarity of cyclic quadrilaterals A1A2A3A4,
A2A3A4A5, . . . , A5A1A2A3. We will use the well-known Cayley–Menger determinant which
expresses the volume Vn of a simplex A1A2 . . . An+1 in En in terms of all mutual distances
between its vertices [1].

Let |AiAj | = aij be the distances between vertices of a simplex A1A2 . . . An+1 in

En. Abbreviating a2
ij by dij we get for the volume Vn of a simplex A1A2 . . . An+1 the

expression

(−1)n+12n(n!)2V 2

n = Dn =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 1 1 1 . . . 1
1 0 d12 d13 . . . d1,n+1

1 d21 0 d23 . . . d2,n+1

. . . . . . . . . . . . . . . . . .

1 dn+1,1 dn+1,2 . . . . . . 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (16)

The determinant Dn on the right of (16) is called Cayley–Menger determinant.

For a simplex A1A2A3A4 we get by (16)

288V 2

1234 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 1 1 1 1
1 0 a2 i21 i22
1 a2 0 b2 i23
1 i21 b2 0 c2

1 i22 i23 c2 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (17)

Now we are to eliminate the variables i1, i2, i3, i4, i5 in the system of algebraic equations
which consists of the Ptolemy conditions (10), the equation (15) and the Cayley–Menger
conditions V1234 = V2345 = V3451 = V4512 = V5123 = 0 which express the planarity of individual
quadrilaterals A1A2A3A4, A2A3A4A5, . . . , A5A1A2A3. In this case the elimination failed
because of the complexity of Cayley–Menger conditions given by the determinant on the
right of (17) and its analogies. Instead of it we express the relation (17) in the form [15, 18]

Q2 + 144V 2 = P · K, (18)

where
P = ac + bi2 − i1i3, (19)

Q = i3(bc + ai2) − i1(ab + ci2),
2 (20)

and

K = ac(−a2−c2+b2+i22+i21+i23)+bd(a2+c2−b2−i22+i21+i23)−i1i3(a
2+c2+b2+i22−i21−i23). (21)

The quadrilateral A1A2A3A4 is assumed to be planar and cyclic, hence V = 0 and P = 0.
From (18) we see that instead of the condition V = 0 we can consider the simpler condition

2In a convex quadrilateral the condition Q = 0 is equivalent to P = 0, see [12, 15].
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Q = 0. Thus applying (18) to quadrilaterals A1A2A3A4, A2A3A4A5, . . . , A5A1A2A3 we obtain
the conditions

i1(ab + ci2) = i3(bc + ai2), i3(bc + di4) = i5(cd + bi4), i5(cd + ei1) = i2(de + ci1),
i2(de + ai3) = i4(ea + di3), i4(ea + bi5) = i1(ab + ei5).

(22)

Now the elimination of variables i1, i2, i3, i4, i5 in the system (10), (15), (22) is feasible. In
CoCoA we enter

Use R::=Q[abcdei[1..5]s];

I:=Ideal(ac+bi[2]-i[1]i[3],bd+ci[4]-i[3]i[5],ce+di[1]-i[5]i[2],

da+ei[3]-i[2]i[4],eb+ai[5]-i[4]i[1],i[1](ab+ci[2])-i[3](bc+ai[2]),

i[3](bc+di[4])-i[5](cd+bi[4]),i[5](cd+ei[1])-i[2](de+ci[1]),i[2](de+ai[3])

-i[4](ea+di[3]),i[4](ea+bi[5])-i[1](ab+ei[5]),

4(abci[2]+bcdi[4]+cdei[1]+deai[3]+eabi[5])-s);

Elim(i[1]..i[5],I);

In 1m and 22 s (on Intel Core Duo E8500 3.16GHz/3.5GB RAM) we get the polynomial in
variables a, b, c, d, e, s with 827 terms. This polynomial is symmetric in variables a2, b2, c2, d2, e2.
The use of the elementary symmetric functions (8) and the following elimination of a, b, c, d, e
gives a polynomial H in k, l, m, n, o, s with 37 terms which leads to the equation H = 0. The
polynomial H , ordered by the variable o, is as follows:

H := −442368(k2 − 4l − s)2o2+
256(ks + 8m)(k2s2 − 576k2n − 128kms − 36ls2 − 9s3 − 512m2 + 2304ln + 576ns)o
+ (s2 − 64n)2(64k2n + 16kms + 4ls2 + s3 + 64m2 − 256ln − 64ns) = 0 .

(23)

Substitution of k2 − 4l − s = −q, s2 − 64n = A, ks + 8m = B and 128o = C into (23) leads
to the more compact formula [14]

qA3 + A2B2 − 18qABC − 16B3C − 27q2C2 = 0. (24)

The formula (24), which expresses the area of cyclic pentagon in terms of it side lengths, can
be considered as the generalization of the Heron and Brahmagupta formulas.

Thus, almost 1400 years elapsed since Brahmagupta formula appeared. The reasons, why
it lasted so long, are obvious — a big complexity of such a formula. It is difficult to imagine
to discover (24) without the use of computers.

Remark 4. Consider that o = 0 in (23), i.e., at least one of the side lengths a, b, c, d, e of
a pentagon equals 0. Putting this into (23) we get the equation (s2 − 64n)2 = 0 which is in
accordance with the relation (13) for the area of a cyclic quadrilateral.

Remark 5. The polynomial on the left hand side in (23) and others which express the area
of a cyclic polygon in terms of its side lengths are called Heron polynomials [8, 6, 10].

Remark 6. The polynomial H in (23) is of 7th degree in q = 16p2 which means that there
exist at most seven cyclic pentagons with given side lengths and different circumradii.

In the previous part we supposed that a cyclic pentagon is convex. Now we will show,
that the formula (24) holds also in a non-convex case.

Let us suppose that a cyclic pentagon is of the form as in Fig. 4. Then instead of (10)
and (22) we have (Fig. 4)

i1i3 = ac − bi2, i3i5 = −bd + ci4, i5i2 = ce + di1, i2i4 = da + ei3, i4i1 = −eb + ai5, (25)
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Figure 4: Area of a cyclic pentagon — non-convex case

and

a(i1b + i2i3) = c(i3b + i1i2), c(i3b + di5) = i4(i3d + bi5), i2(i1c + de) = i5(i1e + cd),
i2(i3a + de3) = i4(i3d + ce), a(i1b + i4e) = i5(i1e + bi4).

(26)

The formula (15) changes into

s = 4(−abci2 − bcdi4 + cdei1 + deai3 − eabi5). (27)

We see that conditions (25), (26), (27) differ from (10), (22), (15) only in the sign of the
variable b. If we write −b in (25), (26), (27) instead of b then we get (10), (22), (15). This
means that after the elimination of variables i1, i2, i3, i4, i5 in the ideal which is generated by
the polynomials from the conditions (25), (26), (27) we get the same polynomial H as in (23)
taking into account that in H only b2 and its various powers occur.

Similarly we proceed in another cases.

Conclusion

Gauss and Monge formulas together with the formula for the area of a cyclic pentagon were
presented. To describe and simplify the geometric situation we used besides Ptolemy condi-
tions another conditions which come from the formula (18). After the translation geometric
properties into the system of algebraic equations we used elimination based on Gröbner bases
computation.

Up to date the formula for the area of a cyclic heptagon and octagon appeared [8]. These
formulas are very complex. For instance the expansion of the formula for a cyclic heptagon
in terms of its symmetric functions has almost one million coefficients.

The technique which was used in [8] differs from the technique used here. Perhaps the
method presented in this paper could serve as a possible tool for solving the problem for cyclic
n-gons for n > 8.
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[9] B.Sz. Nagy, L. Rédey: Eine Verallgemeinerung der Inhaltsformel von Heron. Publ.
Math. Debrecen 1, 42–50 (1949).

[10] I. Pak: The area of cyclic polygons: Recent progress on Robbins’ Conjectures.
arXiv:math.MG/0408104 (2004).

[11] P. Pech: Selected topics in geometry with classical vs. computer proving. World Scientific
Publishing, New Jersey London Singapore 2007.

[12] M.A. Rashid, A.O. Ajibade: Two conditions for a quadrilateral to be cyclic expressed

in terms of the lengths of its sides. Int. J. Math. Educ. Sci. Techn. 34, 739–742 (2003).
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