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Abstract. This article is devoted to the surface which arises after reflecting
parallel rays along a planar section of a reflecting surface. The resulting “re-
flected rays surface” enables to decompose the congruence of the reflected rays
into a one-parametric set of reflected rays surfaces. Three director curves of the
reflected rays surfaces are determined: The given planar section, along which the
reflected rays surface is constructed, a double line, along which pairs of reflected
rays are intersecting, and a directing cone. By the use of the directing cone as the
third director curve of the reflected rays surface the law of reflection is realized.
There is a connection between the direction of incident rays, the directing cone
of the normal surface and the directing cone of the reflected rays surface. Pro-
posed algorithms based on the directing cone give us the possibility to describe
the reflected rays surfaces along planar sections of particular reflecting surfaces
analytically and synthetically.
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1. Introduction

Reflections play a central role in many applications of solar energy utilization, in illumination
by natural and artificial light and in architecture [4, 5, 6]. Properties of the reflection in
spheres, paraboloids of revolution, parabolic and circular cylinders are well investigated in
the case when the direction of incident rays is parallel to the axis of these surfaces. Otherwise
the reflected picture of rays changes and requires additional investigation. Also the reflecting
properties of many other families of surfaces need to be investigated.

The reflection in any surface along a planar section, when the normals of the planar
section coincide with the surface normals, is a planar task. In all other cases it is necessary
to consider the spatial situation, which is more complicated. Our strategy is to consider the
congruence of reflected rays as a one-parametric set of reflected rays surfaces [8]. Here the
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Figure 1: Reflected rays surface

term “reflected rays surface” stands for the ruled surface formed by incident parallel rays after
reflection along a planar section of the reflecting surface.

The reflected rays surface with a source of rays at infinity is a ruled surface with three
directing lines. In [1] it was proved, that such directing lines are

- the planar section C along which the reflected rays are constructed;

- a double line m, along which the rays are pairwise meeting;

- a directing cone T of the reflected rays surface.

An axonometric view of the reflected rays surface reveals concentrations of the reflected rays.
In Fig. 1 the reflected rays surface Ω along a circle C is displayed. In the case of a canal
surface or a surface of revolution the normal surface along C can be assumed as a right cone
with apex T . The given incident rays are parallel to the direction S.

2. Directing cone of the reflected rays surface

The surface Ω of the reflected rays along the planar section C of a reflecting surface as
displayed in Fig. 1 is a ruled surface with a straight double line m and the section C as
second directrix. In addition, the law of reflection must be fulfilled: the angle of incidence
equals that after reflection. To carry out this law, it is possible to use the cylinder of incident
rays that passes through the section C and the normal surface of the reflecting surface along
C.

It is known, that tangent planes to a second order surface along a planar section C2

envelope a second order cone. In articles [7, 2, 3] the surfaces of normals along planar sections
of second order surfaces are investigated.

Using a directing cone as the third directrix of the reflected rays surface Ω we realize the
law of reflection. There is a connection between the direction S of incident rays, the directing
cone Ψn of the normal surface and the directing cone Tn of the reflected rays surface. For
the construction of the reflected rays surface it is necessary to know the construction of these
two directing cones:

The form of the directing cone Tn depends on the form of the directing cone Ψn of the
normal surface along the planar section Cn. For the second order reflecting surfaces it is
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possible to separate the following three types of directing cones Ψn of the normal surfaces:

1. Elliptic cone (i.e., quadratic, non-degenerate and not a cone of revolution).

2. Right cone, i.e., cone of revolution.

3. Flat cone, i.e., all surface normals are parallel to a plane β.
In the sequel we confine ourselves to these three types of cones Ψn and study the corresponding
reflected rays surfaces.

2.1. Elliptic cone as directing cone of normals

Figure 2: Directing cone T4 of the reflected rays surface with the
elliptic cone Ψ2 as directing cone of normals

Theorem 1. When the directing cone of normals along a planar section of the reflecting surface
is elliptic, then the directing cone of the reflected rays surface Ω is of order four.

Proof: Let’s consider the directing cone Tn of the reflected rays surface Ω along a planar
section C2 of any surface in the case, that the directing cone Ψ2 of the normal surface is
elliptic (Fig. 2). The direction of the incident rays is given by line S passing through the apex
T of the cone Ψ2.

The generators of the directing cone of the reflected rays surface Ω are symmetric to the
incident ray S with respect to the generators of the directing cone of normals Ψ2 according
to the law of reflection.

To construct the directing cone of the reflected rays surface Ω lets take a point K on the
ray S and construct the mirror of K after reflection in any generator of the directing cone of
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normals. The feet of perpendiculars drawn from K onto lines through T are placed on the
sphere Q with diameter KT . The feet of perpendiculars onto generators of the directing cone
of normals belong to a curve s which is the line of intersection between the sphere Q and the
cone T2. Thus in general a curve s of the fourth order is obtained.1

Points symmetrical to K with respect to generators of the directing cone of normals lie
on a curve q . It is obtained from s by a dilation with center K and factor 2. The order of
the curve q is also four.

The generators of the directing cone of the reflected rays surface Ω pass through the apex
T of the cone Ψ2 and meet the curve q of fourth order. The above mentioned dilation maps
T onto a point T ′ and the cone Ψ2 onto a cone Ψ2′ which is translatory congruent to Ψ2 and
has the apex T ′. The sphere Q is transformed into a sphere Q′ with center T and radius KT .
Hence curve q is the intersection of the cone Ψ2′ with the sphere Q′.

The directing cone T2 of the reflected rays surface Ω connecting the apex T with the
fourth order curve q is in general of order 4 — except in the case mentioned in Footnote 1
which results in a right cone.

We summarize: The directing cone of the reflected rays surface Ω is constructed by the
following algorithm:

1. On the incident ray S passing through the apex T of the cone Ψ2 of normals specify
any point K and draw the sphere Q′ with center T and radius KT .

2. The directing cone Ψ2 of normals is translated into the cone with apex T ′ which is the
mirror of K with respect to T .

3. Curve q is the line of intersection between the sphere Q′ and the translated cone.

4. The directing cone of the reflected rays surface Ω has the apex T and passes through
the curve q .

2.2. Right cone as directing cone of normals

Theorem 2. When the directing cone of normals along a planar section of the reflecting surface
is a cone Ψ2 of revolution, then the directing cone of the reflected rays surface Ω has order
four.

Proof: Let’s consider the directing cone Tn of the reflected rays surface Ω along a planar
section of any surface (surface of rotation, canal surface) for the case, when the directing cone
of the normal surface is a right cone Ψ2 (Fig. 3).

In this case the directing cone of the reflected rays surface Ω is constructed with the
following algorithm:

1. The unit sphere Q with the center at point T is constructed.

2. The right cone of normals Ψ2 is translated in direction of the incident rays into a cone
with the apex T ′ on the sphere Q.

3. The curve q of intersection between the sphere Q and the translated cone is obtained.

4. The directing cone of the reflected rays surface Ω has the apex T and passes through
curve q .

1The only exception shows up when the sections of Ψ2 perpendicular to the ray S are circles, because then
s is a circle on Q. This is related to the stereographic projection of Q with center T .
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We control this analytically: The equation of a cone of revolution with the apex at the
origin and the generator z = − tanα · x is

x2

1
+

y2

1
− z2

tan2 α
= 0 . (1)

The translated cone with apex at the point T ′ can be represented as

(x + m)2

1
+

y2

1
− (z + p)2

k2
= 0 (2)

with k = − tan α . The equation of the unit sphere is

x2 + y2 + z2 = 1 . (3)

Figure 3: Directing cone T4 of the reflected rays surface with the
cone Ψ2 of revolution as directing cone of the normal surface

The common solution of (2) and (3) will give the equation of a spatial curve q of order
four. Projected on the plane ZOX it is the curve

z2(k2 + 1) + 2zp − 2kmx − k2 − k2m2 + p2 = 0 . (4)

This is a parabola. The projection onto the plane ZOY gives an ellipse. The same holds for
the plane XOY . Projection from the center T gives a cone of order 4 — like in Theorem 1.
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2.3. The directing cone of normals is flat

Theorem 3. When the directing cone of the normal surface is flat (Fig. 4) the directing cone
of the reflected rays surface Ω is a cone T2 of revolution.

Proof: According to the proof of Theorem 1 we apply the following algorithm:

1. On the incident ray S passing through the apex T of the directing cone of normals,
which in this case is located in a plane β, a point K is chosen and furthermore the
sphere Q with center T and radius TK is constructed.

2. The circle s is the line of intersection between the sphere Q and the plane β.

3. The dilation with center K and factor 2 transforms the circle s into the circle q.

4. The directing cone T2 of the reflected rays surface Ω has the apex T and passes through
the curve q. This gives a right cone, as stated.

The equation of the directing cone T2 can be obtained as follows: The direction of incident
rays is given by S(m, n, p). As the direction S is parallel to the plane ZOY , we have n = 0,
and the equation of a generator of the cone T2 (compare Fig. 4) is

z =
p

m
· x . (5)

The cone is generated by rotation of the generator (5). Instead of x we substitute
√

x2 + y2

and obtain

z2 =
p2

m2

(

x2 + y2
)

. (6)

After transformations the equation of a directing cone of the reflected rays surface is

x2

m2
+

y2

m2
− z2

p2
= 0 . (7)

For z = −p we obtain the cone basis

x2 + y2 = m2. (8)

The described directing cone formalizes the law of reflection and it is one of three di-
rectrices of the reflected rays surface along a planar section of the reflecting surface. The
algorithms for obtaining the directing cones of the reflected rays along planar sections of
reflecting surfaces are thus presented for three cases of normal surfaces.

3. Reflected rays surface along planar sections with a flat directing

cone of normals

Let’s consider concentrators of solar installations with cylinders of revolution and canal sur-
faces. For the investigation of the flow density of the reflected solar rays (line congruence)
it is necessary to know properties of the reflected rays surfaces along planar sections of the
reflecting surface that have a flat directing cone of normals.

For a reflecting surface Φ2 as the cylinder of revolution or canal surfaces the offered
algorithm is appropriate. All normals along the planar sections are parallel to a plane, and
by Theorem 3 the directing cone of the reflected rays surface is a cone of revolution.
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Figure 4: Directing cone Tn of the reflected
rays surface with flat directing cone of normals

Figure 5: The reflected rays surface Ω along
the planar section C2 of a cylinder of revo-
lution

In Fig. 5 the right cylinder Φ2 as reflecting surface is represented. All normals of this
reflecting surface Φ2 are parallel to the plane β with center O. Any point K on a ray which
passes through O determines the sphere of radius KO. The pedal points of the perpendiculars
constructed from K to each ray of the flat pencil in β lie on a circle s. This circle is the line
of intersection between the sphere Q and the plane β.

The directing curve q of the directing cone Tn of the reflected rays surface is obtained by
the dilatation from the center K with factor 2.

Theorem 4. For a right cylinder or a canal surface as reflecting surface the curve q is a circle
and the directing cone of the reflected rays surface along a planar section C2 is a right cone
T2.

Let’s describe the reflected rays surface along any planar section C2 of the right cylinder
Φ2 (Fig. 5): The director lines of this surface Ω are a curve of the second order C2, a straight
double-line m and directing cone T2.

The equation of a planar section C2 of the right cylinder Φ2 with the axis OZ is

{

x2 + y2 = R2

x

a
+

z

b
= 1 .

(9)
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The direction S of incident rays is
x

m
=

y

l
=

z

p
. (10)

The equation of the directrix m of the reflected rays surface is

x

m
=

z − b

p
. (11)

The direction S is specified parallel to the plane XOY (l = 0). Let the apex of the directing
cone T2 coincide with the origin. One of its two contour generators coincides with the direction
S. The equation of the directing cone T2 will be

x2

m2
+

y2

m2
− z2

p2
= 0 . (12)

The relationship between a point A on the planar section C2 of the reflecting cylinder and
point A′ on the base of the directing cone T2 is the following (Fig. 5):

From the point A the generator is drawn down to point B on the base circle of the cylinder.
Points A and B lie on the same vertical, hence

x

xB

=
y

yB

; x2

B + y2

B = R2. (13)

As a result of substitutions and transformations the equation of the ray OB will be

y = kx with k =
yB

√

R2 − y2

B

. (14)

The equation of the ray passing through a point K ′ and perpendicular to the straight line
OB is

y = −1

k
x + b . (15)

And taking into account that the point K ′ has coordinates x = R and y = 0, we obtain

y = −1

k
x +

R

k
. (16)

The coordinates of the point A′ from the equation of the cylinder’s basis circle are substituted
in the equation (16)

xA′ = −
√

R2 − y2

A′ , (17)

and we obtain

yA′ =
1

k

√

R2 − y2

A′ +
R

k
. (18)

After substitutions and transformations we end up with

y2

A′

(

1 +
1

k

)

− 2yA′

R

k
= 0 . (19)

At the first solution x = 0 and y = R the straight line meets the circle at the point K ′. The
second solution corresponds to the point A′ and is

xA′ =
R(1 − k2)

1 + k2
, yA′ =

2Rk

1 + k2
with k =

yB
√

R2 − y2

B

. (20)
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In a point A′ the equation of the directing cone generating T2 is the following:

x

xA′

=
y

yA′

=
z

zA′

with zA′ = R
m

p
. (21)

After substitutions and tranformations the equation of the directing cone T2 reads:

z =
m · (1 + k2)

p · (1 − k2)
· x , z =

m · (1 + k2)

2k · p · y . (22)

The generator of the reflected rays surface will pass through the point A and be parallel to
the directing cone generator at the point A′, and its equation will be:

z − zA = a(x − xA), z − zA = b(y − yA) with a =
m · (1 + k2)

p · (1 − k2)
; b =

m · (1 + k2)

2k · p . (23)

If the reflecting surface is a sphere, torus or canal surface, the algorithm is applicable for the
description of the reflected rays surface along a circle on any listed surface.

Figure 6: Visualization of the reflected rays surface Ω along a meridian circle of a torus

4. Reflected rays surface along planar sections of a right cone

Let’s consider the construction of the reflected rays surface Ω along a planar section C2 of
a right cone (Fig. 7). In this case the directing cone of normals is also a cone of revolution.
The reflected rays surface Ω along C2 is constructed by the following algorithm:

1. For determining the relationship between the point A on the section C2 and the point
A′ on the curve q the generator of the reflected rays surface Ω is constructed through
the point A and corresponding to the generator l on the cone of normals Ψ2.

2. The generator l′ on the cone T′ is parallel to the generator l of cone Ψ2, and the point A′

of intersection between the generator l′ and the curve q on the sphere Q is constructed.

3. Thus the generator TA′ on the directing cone of the reflected rays surface Ω is deter-
mined. The generator of the reflected rays surface Ω passing through point A is parallel
to TA′. This generator meets the curve C2 and is parallel to the directing cone T4.
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Figure 7: The reflected rays surface Ω along
a planar section C2 of the directing cone

Figure 8: The relationship between the
point A on the reflecting surface and the
point A′ on the directing cone of surface Ω.

To determine the relationship between the point A on the reflecting surface, a right cone,
and the point A′ on the directing of the reflected rays surface Ω we can use as a parameter
the angle γ of the generator l varying on the reflecting surface and simultaneously of the
generator l′ on the directing cone of normals (Fig. 8).

The generator l′ belongs to the plane y = tan γ(x + m) which passes through the axis of
the cone T′

(x + m)2

1
+

y2

1
− (z + p)2

k2
= 0 (24)

and cuts the cone along two generators

(x + m) · k = (z + p) · cos γ ,

(x + m) · k = −(z + p) · cos γ .
(25)

Lets consider one of the two generators

z =
x + m) · k

cos γ
− p (26)

and put it into equation of the unit sphere

x2 + y2 + z2 = 1 (27)
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and taking into account the equation of the plane. After transformation the coordinates of
the point A′ of intersection between the cone generator l′ and the sphere are:

xA′ =
−B ±

√
B2 − 4AC

2A
with

A = cos γ + cos γ · tan2 γ + k

B = 2 cos γ · tan2 γ · m + 2m · k − 2p · k
C = cos γ · m · (tan2 γ − m) + k · (m − 2p)

(28)

and m2 + p2 = 1 . Then from Eq. (26)

zA′ =
(xA′ + m) · k

cos γ
− p . (29)

The equation of the generator TA′ of the directing cone T2 of the reflected rays that passes
through the origin and the point A′ is

x =
xA′

zA′

· z . (30)

The equation of the generator of the reflected rays surface Ω that is parallel to the generator
TA′ of the directing cone T2 is

x − xA =
xA′

zA′

(z − zA). (31)

Coordinates of the reflecting point A are computed by intersecting the section C2 with the
plane with parameter γ . The equation of the reflecting cone is

x2

k2
+

y2

k2
− (z − a)2

1
= 0 with k = tanα . (32)

The equation of the axial plane is
y = tan γ · x ; (33)

that of the section plane is
z = x · tanα + h. (34)

The common solution of three last equations gives the coordinates of the reflecting point A.

Figure 9: The reflected rays surface Ω along a parallel circle C of any surface of revolution
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5. Conclusion and future work

The proposed algorithms using the directing cone give us the possibility to describe the
reflected rays surfaces along planar section of the reflecting surfaces analytically and syn-
thetically. It was proved that the reflected rays surface along planar section of the reflecting
surface is a surface with three directrices:

• Cn, the section of the reflecting surface;

• Tn, the directing cone;

• m, a double curve.

Two main tasks for application of the reflection remain for future work:
- Determining zones with maximum concentration of the reflected. The search of a zone

with greatest concentration of the rays, reflected by the surface, is of practical interest
and can be used in designing solar installations for converting solar energy into thermal
or electrical energy as well as for the design of reflecting surfaces of lamps. That is why
the quasifocal line theory will be proposed.

- Determining zones where the reflected flow is absent at all. The ways of constructing
carst zones where there are no reflected rays at all will be proposed.
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