Journal for Geometry and Graphics Volume 22 (2018), No. 2, 245–251.

Packing Three Cubes in 8-Dimensional Space

Zuzana Sedliačková

Dept. of Applied Mathematics, Faculty of Mechanical Engineering, University of Žilina Univerzitná 1, 010 26 Žilina, Slovakia email: zuzana.sedliackova@fstroj.uniza.sk

Abstract. Let $V_n(d)$ denote the least number such that every system of n cubes with total volume 1 in the d-dimensional (Euclidean) space can be packed into some rectangular parallelepiped of volume $V_n(d)$. In this paper two new results can be found: $V_2(8)$ and $V_3(8)$.

Key Words: packing of cubes, extreme MSC 2010: 52C17

1. Introduction

Let $V_n(d)$ denote the least number such that every system of n cubes with total volume 1 in the *d*-dimensional (Euclidean) space can be packed into some rectangular parallelepiped of volume $V_n(d)$. All admitted cubes have their edges parallel to the coordinate axes. We want to determine $V_n(d)$ and also the maximum V(d) of the set of all $V_n(d)$ for n = 1, 2, 3, ...

Some results are known for $n \leq 8$ in the 2-dimensional space. There are also some estimates for V(2). See, for example, [4, 5, 7, 8, 9, 10]. $V_n(3)$ is known for n = 2, 3, 4, 5 (see [6, 11, 12, 13]).

There are results for two and for three cubes in the 4-dimensional space [2]: $V_2(4) \doteq 1.420319245$, $V_3(4) \doteq 1.63369662$, and in the 6-dimensional space [3]: $V_2(6) \doteq 1.534554558$, $V_3(6) \doteq 1.94449161$.

2. Main results

In this paper new results are provided for packings of two and three cubes in the 8-dimensional Euclidean space. We use the same method as [2] and [3].

Theorem 2.1. $V_2(8) \doteq 1.6074984.$

Proof. In the 8-dimensional space, let us take two cubes with edge lengths x, y such that $1 \ge x \ge y \ge 0$, with the total volume $x^8 + y^8 = 1$. These two cubes can be packed into some rectangle of volume $f(x, y) = x^7(x + y)$. So, we are looking for the maximum of the function

 $f(x,y)=x^7(x+y)$ under the condition $g(x,y)=x^8+y^8-1=0\,.$ We solve the system of equations

$$\frac{\partial f}{\partial x}\frac{\partial g}{\partial y} - \frac{\partial f}{\partial y}\frac{\partial g}{\partial x} = 0 \quad \text{and} \quad g(x, y) = 0,$$

which gives

$$8xy^7 + 7y^8 - x^8 = 0$$
 and $x^8 + y^8 - 1 = 0$.

We express y from the second equation and plug it into the first equation. The substitution $t := x^8$ yields $8^8t(1-t)^7 - (8t-7)^8 = 0$. It is obvious that $x^8 \ge \frac{1}{2}$, and therefore the solution of the equation is $t \doteq 0.948777458$. Thus we obtain $x \doteq 0.993448926$ and $y \doteq 0.689735597$, and the proof is complete.

Theorem 2.2. $V_3(8) \doteq 2.14930609.$

Proof. Consider in the 8-dimensional Euclidean space three cubes with edge lengths x, y, z, where $1 \ge x \ge y \ge z \ge 0$ and the total volume is $x^8 + y^8 + z^8 = 1$. It is sufficient to consider only the two cases of packing these three cubes as shown in Figure 1.

Figure 1: Two cases for packing three cubes

In the first case the volume $W_1 = x^7(x + y + z)$ is sufficient for packing, in the second case volume $W_2 = x^6 (x + y) (y + z)$ is sufficient. We need to find max min $\{W_1, W_2\}$ under the conditions $x^8 + y^8 + z^8 = 1$ and $1 \ge x \ge y \ge z \ge 0$.

There are three cubes with edge lengths $x \doteq 0.986333649$, $y \doteq 0.704812693$, $z \doteq 0.675488876$, for which a volume $W_1 = W_2 \doteq 2.14930609$ is necessary. And so, $V_3(8) \ge 2.14930609$.

From $y^8 \leq z^8 + y^8 = 1 - x^8$ and therefore $y \leq \sqrt[8]{1 - x^8}$ follows $y + z \leq 2y \leq 2\sqrt[8]{1 - x^8}$. For $x \geq \frac{2}{\sqrt[8]{257}}$ we get $y + z \leq 2\sqrt[8]{1 - x^8} \leq \frac{2}{\sqrt[8]{257}} \leq x$. If $y + z \leq x$ then we can pack the cubes as in the second case and the volume $V_2(8)$ is sufficient. It is obvious that $x^8 \geq \frac{1}{3}$, hence $x \geq \frac{1}{\sqrt[8]{3}}$. This implies that we can consider only $x \in \left\langle \frac{1}{\sqrt[8]{3}}, \frac{2}{\sqrt[8]{257}} \right\rangle$, i.e., $0.8716 \leq x \leq 0.9996$. Equality $W_1 = W_2$ holds if $x^2 = y^2 + yz$. Then $z = \frac{x^2 - y^2}{y}$ and $W_1 = W_2 = x^8 + \frac{x^9}{y}$. When we substitute $z = \frac{x^2 - y^2}{y}$ into $x^8 + y^8 + z^8 = 1$, we get the curve

$$C: x^8 y^8 + y^{16} - y^8 + (x^2 - y^2)^8 = 0$$

(see Figure 2).

The interval for x can be reduced. If we choose $x \in \langle a, b \rangle$ for 0 < a < b < 1, then $1 - b^8 \le 1 - x^8 \le 1 - a^8$. If y = z, then $1 - x^8 = y^8 + z^8 = 2y^8$ and therefore $y = \sqrt[8]{\frac{1 - x^8}{2}}$.

246

The function $W_1 = x^7(x+y+z)$ takes its greatest value if y = z, i.e., $y = \sqrt[8]{\frac{1-x^8}{2}}$. For $x \in \langle a, b \rangle$, we get

$$W_1 \leq x^7(x+2y) \leq W_1(a,b) := b^7 \left(b+2\sqrt[8]{\frac{1-a^8}{2}}\right).$$

For the following intervals holds $W_1(a, b) < 2.1493$:

$x \in \langle 0.8716, 0.9673 \rangle,$	$x \in \langle 0.9673, 0.9782 \rangle,$	$x \in \langle 0.9782, 0.9819 \rangle,$
$x \in \langle 0.9819, 0.9836 \rangle,$	$x \in \langle 0.9836, 0.9845 \rangle,$	$x \in \langle 0.9845, 0.9850 \rangle,$
$x \in \langle 0.9850, 0.9853 \rangle,$	$x \in \langle 0.9853, 0.9855 \rangle$.	

For the asked maximum we have $x \ge 0.9855$.

Next we define the algorithm, which for a suitably chosen interval $x \in \langle a, b \rangle$ assigns step by step the numbers $y_0 = \sqrt[8]{1-a^8}$, $z_0 = \frac{2.1493}{b^6(b+y_0)} - y_0$, and if $z_i \leq y_i$, then

$$y_{i+1} = \sqrt[8]{1 - a^8 - z_i^8}, \quad z_{i+1} = \frac{2.1493}{b^6 (b + y_{i+1})} - y_{i+1}$$

The clarification of the algorithm is as follows.

For every $x \in \langle a, b \rangle$ is $y \leq \sqrt[8]{1-x^8} \leq \sqrt[8]{1-a^8}$. If we denote $y_0 = \sqrt[8]{1-a^8}$, then $W_2 = x^6(x+y)(y+z) \leq b^6(b+y_0)(y_0+z)$. For every $z \geq 0$ such that $z < \frac{2.1493}{b^6(b+y_0)} - y_0 = z_0$, we get $W_2 \leq b^6(b+y_0)(y_0+z) < 2.1493$. So, for $z < z_0$ the asked maximum cannot be achieved.

Let $z \ge z_0$, then $y^8 = 1 - x^8 - z^8 \le 1 - a^8 - z_0^8$ and therefore $y \le \sqrt[8]{1 - a^8 - z_0^8}$. We set $y_1 := \sqrt[8]{1 - a^8 - z_0^8}$. Then $W_2 \le b^6(b + y_1)(y_1 + z)$ and for every $z < z_1 := \frac{2.1493}{b^6(b + y_1)} - y_1$ is $W_2 < 2.1493$. So, for $z < z_1$ the asked maximum cannot be achieved.

We repeat this process until we reach $y_i < z_i$. If it succeeds we get $W_2 < 2.1493$ for $x \in \langle a, b \rangle$. And so, for $x \in \langle a, b \rangle$ the asked maximum cannot be achieved.

Take $x \in \langle 0.9950, 0.9996 \rangle$. Then the algorithm generates the sequence $y_0 \doteq 0.667281$, $z_0 \doteq 0.625232$, $y_1 \doteq 0.596157$, $z_1 \doteq 0.753964$. So the asked maximum cannot be achieved for $x \in \langle 0.9950, 0.9996 \rangle$.

If we take $x \in (0.9920, 0.9950)$, then the algorithm generates the sequence $y_0 \doteq 0.706733$, $z_0 \doteq 0.594835$, $y_1 \doteq 0.681561$, $z_1 \doteq 0.639550$, $y_2 \doteq 0.655885$, $z_2 \doteq 0.685773$. So the asked maximum cannot be achieved for $x \in (0.9920, 0.9950)$.

Similarly using the algorithm we can exclude these intervals:

$x \in \langle 0.990, 0.992 \rangle,$	$x \in \langle 0.989, 0.990 \rangle,$	$x \in \langle 0.988, 0.989 \rangle,$
$x \in \langle 0.9875, 0.9880 \rangle,$	$x \in \langle 0.9873, 0.9875 \rangle,$	$x \in \langle 0.9871, 0.9873 \rangle,$
$x \in \langle 0.9870, 0.9871 \rangle,$	$x \in \langle 0.9869, 0.9870 \rangle,$	$x \in \langle 0.9868, 0.9869 \rangle.$

So, we have shown that the asked maximum max min $\{W_1, W_2\}$ will be attained for $x \in \langle 0.9855, 0.9868 \rangle$.

Consider the closed region M determined by inequalities

$$0.9855 \le x \le 0.9868$$
, $x^8 + y^8 \le 1$, $x^8 + 2y^8 \ge 1$.

The curve C divides the region M into three open regions C_1, C_2, C_3 (Figure 3).

We are looking for max min $\{W_1, W_2\}$, when $W_1 = x^7 (x+y+z)$, $W_2 = x^6 (x+y) (y+z)$. From the condition $x^8 + y^8 + z^8 = 1$ we get

$$W_1 = W_1(x, y) = x^7 \left(x + y + \sqrt[8]{1 - x^8 - y^8} \right), \qquad (2.1)$$

$$W_2 = W_2(x, y) = x^6 (x+y) \left(y + \sqrt[8]{1-x^8-y^8} \right).$$
(2.2)

Let \overline{C}_i denote the closure of the set C_i . The functions W_1 , W_2 are continuous on M, and the equality $W_1 = W_2$ holds just in the point of the curve C.

Take the point $A_1 = (0.9862, 0.72) \in C_1$. Since $W_1(A_1) < W_2(A_1)$, the inequality $W_1(X) < W_2(X)$ holds in every point $X \in C_1$. So, for the asked maximum holds $\max_{X \in \overline{C}_1} \min\{W_1(X), W_2(X)\} = \max_{X \in \overline{C}_1}\{W_1(X)\}.$

Take the point $A_2 = (0.9862, 0.75) \in C_2$. Since $W_1(A_2) > W_2(A_2)$, the inequality $W_1(X) > W_2(X)$ holds in every point $X \in C_2$. So, for the asked maximum holds $\max_{X \in \overline{C}_2} \min\{W_1(X), W_2(X)\} = \max_{X \in \overline{C}_2} \{W_2(X)\}.$

Take the point $A_3 = (0.9862, 0.70) \in C_3$. Since $W_1(A_3) > W_2(A_3)$, the inequality $W_1(X) > W_2(X)$ holds in every point $X \in C_3$. So, for the asked maximum holds $\max_{X \in \overline{C}_3} \min\{W_1(X), W_2(X)\} = \max_{X \in \overline{C}_3}\{W_2(X)\}.$

(1) On the compact set \overline{C}_1 the function (2.1) achieves its maximum in some point B. It holds $\frac{\partial W_1}{\partial y} = x^7 \left(1 - \frac{y^7}{\sqrt[8]{(1-x^8-y^8)^7}}\right)$. The equality $\frac{\partial W_1}{\partial y} = 0$ holds if $x^8 + 2y^8 - 1 = 0$. But the points of the curve $x^8 + 2y^8 - 1 = 0$ do not belong to the region \overline{C}_1 . For every point $X \in C_1$ holds $\frac{\partial W_1}{\partial y} < 0$. And so, the point B must lie on the curve C.

For every point $X = (x, y), x \in \langle a, b \rangle, y \in \langle c, d \rangle$ the inequality $z \leq \sqrt[8]{1 - a^8 - c^8}$ holds, and so

$$W_1 = x^7 (x + y + z) \le b^7 (b + d + \sqrt[8]{1 - a^8 - c^8}),$$

$$W_2 = x^6 (x + y)(y + z) \le b^6 (b + d) (d + \sqrt[8]{1 - a^8 - c^8}).$$

Figure 4: Exclusion of the region C_2

Denote

$$W_{11}(a, b, c, d) := b^7 \left(b + d + \sqrt[8]{1 - a^8 - c^8} \right),$$

$$W_{22}(a, b, c, d) := b^6 \left(b + d \right) \left(d + \sqrt[8]{1 - a^8 - c^8} \right).$$

(2) We examine the region C_2 :

$$\begin{array}{l} x \in \langle 0.9855, \, 0.9858 \rangle, \, y \in \langle 0.745, \, 0.76 \rangle \quad \text{is} \quad W_{11} < 2.1493. \\ x \in \langle 0.9858, \, 0.9861 \rangle, \, y \in \langle 0.74, \, 0.76 \rangle \quad \text{is} \quad W_{11} < 2.1493. \\ x \in \langle 0.9861, \, 0.9864 \rangle, \, y \in \langle 0.74, \, 0.76 \rangle \quad \text{is} \quad W_{11} < 2.1493. \\ x \in \langle 0.9864, \, 0.9866 \rangle, \, y \in \langle 0.74, \, 0.76 \rangle \quad \text{is} \quad W_{11} < 2.1493. \\ x \in \langle 0.9866, \, 0.9868 \rangle, \, y \in \langle 0.73, \, 0.74 \rangle \quad \text{is} \quad W_{11} < 2.1493. \\ x \in \langle 0.9866, \, 0.9868 \rangle, \, y \in \langle 0.74, \, 0.75 \rangle \quad \text{is} \quad W_{11} < 2.1493. \\ x \in \langle 0.9866, \, 0.9868 \rangle, \, y \in \langle 0.74, \, 0.75 \rangle \quad \text{is} \quad W_{11} < 2.1493. \\ x \in \langle 0.9866, \, 0.9868 \rangle, \, y \in \langle 0.75, \, 0.76 \rangle \quad \text{is} \quad W_{11} < 2.1493, \, \text{also} \, W_{22} < 2.1493. \end{array}$$

This implies that the asked maximum cannot be achieved on the region \overline{C}_2 (Figure 4).

(3) We examine the region C_3 :

For $x \in \langle 0.9855, 0.9856 \rangle$ and, step by step, for $y \in \langle 0.695, 0.696 \rangle$, $\langle 0.696, 0.697 \rangle$, $\langle 0.697, 0.698 \rangle$, $\langle 0.698, 0.699 \rangle$, or $\langle 0.699, 0.700 \rangle$ is always $W_{11} < 2.1493$.

For $x \in (0.9856, 0.9858)$ and, step by step, for $y \in (0.694, 0.695)$ or (0.695, 0.696) is always $W_{22} < 2.1493$.

We do not exclude the area $x \in \langle 0.9856, 0.9858 \rangle$, $y \in \langle 0.696, 0.701 \rangle$ by this way. Maybe, we should have to divide the intervals into smaller intervals and it is not effective.

For $x \in \langle 0.9858, 0.9860 \rangle$ and, step by step, for $y \in \langle 0.693, 0.694 \rangle$, $\langle 0.694, 0.695 \rangle$, $\langle 0.695, 0.696 \rangle$, or $\langle 0.696, 0.697 \rangle$ is always $W_{22} < 2.1493$.

We do not exclude the area $x \in (0.9858, 0.9860), y \in (0.697, 0.702)$ by this way.

For $x \in \langle 0.9860, 0.9862 \rangle$ and, step by step, for $y \in \langle 0.691, 0.692 \rangle$, $\langle 0.692, 0.693 \rangle$, $\langle 0.602, 0.694 \rangle = \langle 0.605 \rangle = \langle 0.605 \rangle = x \langle 0.606 \rangle = x \langle 0.607 \rangle$ is always $W_{-} < 2.1402$

(0.693, 0.694), (0.694, 0.695), (0.695, 0.696), or (0.696, 0.697) is always $W_{22} < 2.1493.$

We do not exclude the area $x \in (0.9860, 0.9862), y \in (0.697, 0.704)$ by this way.

For $x \in \langle 0.9862, 0.9864 \rangle$ and, step by step, for $y \in \langle 0.690, 0.691 \rangle$, $\langle 0.691, 0.692 \rangle$, $\langle 0.692, 0.693 \rangle$, $\langle 0.693, 0.694 \rangle$, $\langle 0.694, 0.695 \rangle$, $\langle 0.695, 0.696 \rangle$, $\langle 0.696, 0.697 \rangle$, or $\langle 0.697, 0.698 \rangle$ is always $W_{22} < 2.1493$.

We do not exclude the area $x \in (0.9862, 0.9864), y \in (0.698, 0.706)$ by this way.

For $x \in \langle 0.9864, 0.9866 \rangle$ and, step by step, for $y \in \langle 0.689, 0.690 \rangle$, $\langle 0.690, 0.691 \rangle$, $\langle 0.691, 0.692 \rangle$, $\langle 0.692, 0.693 \rangle$, $\langle 0.693, 0.694 \rangle$, $\langle 0.694, 0.695 \rangle$, $\langle 0.695, 0.696 \rangle$, $\langle 0.696, 0.697 \rangle$, $\langle 0.697, 0.698 \rangle$, or $\langle 0.698, 0.699 \rangle$ is always $W_{22} < 2.1493$.

We do not exclude the area $x \in (0.9864, 0.9866), y \in (0.699, 0.709)$ by this way.

For $x \in \langle 0.9866, 0.9868 \rangle$ and, step by step, for $y \in \langle 0.688, 0.689 \rangle$, $\langle 0.689, 0.690 \rangle$, $\langle 0.690, 0.691 \rangle$, $\langle 0.691, 0.692 \rangle$, $\langle 0.692, 0.693 \rangle$, $\langle 0.693, 0.694 \rangle$, $\langle 0.694, 0.695 \rangle$, $\langle 0.695, 0.696 \rangle$, $\langle 0.696, 0.697 \rangle$, $\langle 0.697, 0.698 \rangle$, $\langle 0.698, 0.699 \rangle$, $\langle 0.699, 0.700 \rangle$, or $\langle 0.700, 0.701 \rangle$ is always $W_{22} < 2.1493$.

We do not exclude the area $x \in (0.9866, 0.9868), y \in (0.701, 0.711)$ by this way.

Now let us look at the areas which we could not exclude by using the previous method. From (2.2) we have

$$\frac{\partial W_2}{\partial x} = \frac{x^5}{\sqrt[8]{(1-x^8-y^8)^7}} \left[(7x+6y) \left(y \sqrt[8]{(1-x^8-y^8)^7} + 1 - y^8 \right) - 8x^9 - 7x^8 y \right]$$

and $\frac{x^5}{\sqrt[8]{(1-x^8-y^8)^7}} > 0$.

For every point $X = (x, y), x \in \langle a, b \rangle, y \in \langle c, d \rangle$ the inequality holds

$$(7x+6y)\left(y\sqrt[8]{(1-x^8-y^8)^7}+1-y^8\right)-x^8(8x+7y)$$

$$\leq (7b+6d)\left(d\sqrt[8]{(1-a^8-c^8)^7}+1-c^8\right)-a^8(8a+7c).$$

Let us denote $DW2(a, b, c, d) := (7b + 6d) \left(d \sqrt[8]{(1 - a^8 - c^8)^7} + 1 - c^8 \right) - a^8(8a + 7c)$. Then for the following areas

 $\begin{array}{ll} x \in \langle 0.9856, \, 0.9858 \rangle, \; y \in \langle 0.696, \, 0.701 \rangle, & x \in \langle 0.9858, \, 0.9860 \rangle, \; y \in \langle 0.697, \, 0.702 \rangle, \\ x \in \langle 0.9860, \, 0.9862 \rangle, \; y \in \langle 0.697, \, 0.704 \rangle, & x \in \langle 0.9862, \, 0.9864 \rangle, \; y \in \langle 0.698, \, 0.706 \rangle, \\ x \in \langle 0.9864, \, 0.9866 \rangle, \; y \in \langle 0.699, \, 0.709 \rangle, & x \in \langle 0.9866, \, 0.9868 \rangle, \; y \in \langle 0.701, \, 0.711 \rangle \end{array}$

is DW2(a, b, c, d) < 0 and therefore $\frac{\partial W_2}{\partial x} < 0$. This implies that the asked maximum cannot be achieved on the region C_3 (Figure 5.)

Now we determine the constrained maximum of the function

$$W(x,y) = x^8 + \frac{x^9}{y}$$
(2.3)

on the curve

$$C(x,y) = x^8 y^8 + y^{16} - y^8 + (x^2 - y^2)^8 = 0$$
(2.4)

for $x \in \langle 0.9855, 0.9868 \rangle$. The system of equations $\frac{\partial W}{\partial x} \frac{\partial C}{\partial y} - \frac{\partial W}{\partial y} \frac{\partial C}{\partial x} = 0$ and C(x, y) = 0 has the form

$$\begin{split} 10x^9y^8 + 18xy^{16} - 9xy^8 + 8x^8y^9 + 16y^{17} - 8y^9 + (x^2 - y^2)^7(2x^3 - 16y^3 - 18xy^2) &= 0\,, \\ x^8y^8 + y^{16} - y^8 + (x^2 - y^2)^8 &= 0. \end{split}$$

The solution is $x \doteq 0.986333649$, $y \doteq 0.704812693$, and $z \doteq 0.675488876$. The proof is complete.

3. Conclusions

Conjecture 3.1. $V_4(d) = V(d)$ for d = 2, 3, 4.

Our conjecture indicates that the case n = 4 is crucial for $d \leq 4$. The complexity of the problem greatly increases with increasing n and d. The conjecture is not true for higher dimensions because $\lim_{d\to\infty} V_n(d) = n$ for $n = 2, 3, 4, \ldots$ The statement $\lim_{d\to\infty} V_n(d) = n$ has been proved for $n = 5, 6, 7, \ldots$ in [1], but this theorem is true for all $n \geq 2$.

References

- P. ADAMKO, V. BÁLINT: Universal asymptotical results on packing of cubes. Studies of the University of Žilina, Mathematical Series, vol. 28, 1-4 (2016).
- [2] V. BÁLINT, P. ADAMKO: Minimalizácia objemu kvádra pre uloženie troch kociek v dimenzii 4 [in Slovak]. G: slovenský časopis pre geometriu a grafiku 12, 5–16 (2015).
- [3] V. BÁLINT, P. ADAMKO: Minimization of the parallelepiped for packing of three cubes in dimension 6. In Aplimat: 15th Conference on Applied Mathematics 2016, pp. 44–55.
- [4] S. HOUGARDY: On packing squares into a rectangle. Comput. Geom. 44, 456–463 (2011).
- [5] D.J. KLEITMAN, M.M. KRIEGER: An optimal bound for two dimensional bin packing. In 16th Annual Symposium on Foundations of Computer Science, 1975, pp. 163–168.
- [6] A. MEIR, L. MOSER: On packing of squares and cubes. J. Combin. Theory 5, 126–134 (1968).
- [7] P. NOVOTNÝ: A note on a packing of squares. Studies of the University of Transport and Communications in Žilina, Math.-Phys. Series 10, 35–39 (1995).
- [8] P. NOVOTNÝ: On packing of squares into a rectangle. Arch. Math. (Brno) 32, 75–83 (1996).
- [9] P. NOVOTNÝ: On packing of four and five squares into a rectangle. Note Mat. 19, 199– 206 (1999).
- [10] P. NOVOTNÝ: Využitie počítača pri riešení ukladacieho problému [in Slovak]. In Proceedings of Symposium on Computational Geometry 2002, pp. 60–62.
- [11] P. NOVOTNÝ: Pakovanie troch kociek [in Slovak]. In Proceedings of Symposium on Computational Geometry 2006, pp. 117–119.
- [12] P. NOVOTNÝ: Najhoršie pakovateľné štyri kocky [in Slovak]. In Proceedings of Symposium on Computational Geometry 2007, pp. 78–81.
- [13] P. NOVOTNÝ: Ukladanie kociek do kvádra [in Slovak]. In Proceedings of Symposium on Computational Geometry 2011, pp. 100–103.

Received February 16, 2018; final form August 3, 2018