Packing Three Cubes in 8-Dimensional Space

Zuzana Sedliačková
Dept. of Applied Mathematics, Faculty of Mechanical Engineering, University of Žilina
Univerzitná 1, 01026 Žilina, Slovakia
email: zuzana.sedliackova@fstroj.uniza.sk

Abstract

Let $V_{n}(d)$ denote the least number such that every system of n cubes with total volume 1 in the d-dimensional (Euclidean) space can be packed into some rectangular parallelepiped of volume $V_{n}(d)$. In this paper two new results can be found: $V_{2}(8)$ and $V_{3}(8)$.

Key Words: packing of cubes, extreme
MSC 2010: 52C17

1. Introduction

Let $V_{n}(d)$ denote the least number such that every system of n cubes with total volume 1 in the d-dimensional (Euclidean) space can be packed into some rectangular parallelepiped of volume $V_{n}(d)$. All admitted cubes have their edges parallel to the coordinate axes. We want to determine $V_{n}(d)$ and also the maximum $V(d)$ of the set of all $V_{n}(d)$ for $n=1,2,3, \ldots$

Some results are known for $n \leq 8$ in the 2-dimensional space. There are also some estimates for $V(2)$. See, for example, $[4,5,7,8,9,10] . V_{n}(3)$ is known for $n=2,3,4,5$ (see [$6,11,12,13])$.

There are results for two and for three cubes in the 4-dimensional space [2]: $V_{2}(4) \doteq$ $1.420319245, V_{3}(4) \doteq 1.63369662$, and in the 6 -dimensional space $[3]: V_{2}(6) \doteq 1.534554558$, $V_{3}(6) \doteq 1.94449161$.

2. Main results

In this paper new results are provided for packings of two and three cubes in the 8-dimensional Euclidean space. We use the same method as [2] and [3].

Theorem 2.1. $\quad V_{2}(8) \doteq 1.6074984$.
Proof. In the 8-dimensional space, let us take two cubes with edge lengths x, y such that $1 \geq x \geq y \geq 0$, with the total volume $x^{8}+y^{8}=1$. These two cubes can be packed into some rectangle of volume $f(x, y)=x^{7}(x+y)$. So, we are looking for the maximum of the function
$f(x, y)=x^{7}(x+y)$ under the condition $g(x, y)=x^{8}+y^{8}-1=0$. We solve the system of equations

$$
\frac{\partial f}{\partial x} \frac{\partial g}{\partial y}-\frac{\partial f}{\partial y} \frac{\partial g}{\partial x}=0 \quad \text { and } \quad g(x, y)=0
$$

which gives

$$
8 x y^{7}+7 y^{8}-x^{8}=0 \quad \text { and } \quad x^{8}+y^{8}-1=0 .
$$

We express y from the second equation and plug it into the first equation. The substitution $t:=x^{8}$ yields $8^{8} t(1-t)^{7}-(8 t-7)^{8}=0$. It is obvious that $x^{8} \geq \frac{1}{2}$, and therefore the solution of the equation is $t \doteq 0.948777458$. Thus we obtain $x \doteq 0.993448926$ and $y \doteq 0.689735597$, and the proof is complete.

Theorem 2.2. $\quad V_{3}(8) \doteq 2.14930609$.
Proof. Consider in the 8 -dimensional Euclidean space three cubes with edge lengths x, y, z, where $1 \geq x \geq y \geq z \geq 0$ and the total volume is $x^{8}+y^{8}+z^{8}=1$. It is sufficient to consider only the two cases of packing these three cubes as shown in Figure 1.

Figure 1: Two cases for packing three cubes
In the first case the volume $W_{1}=x^{7}(x+y+z)$ is sufficient for packing, in the second case volume $W_{2}=x^{6}(x+y)(y+z)$ is sufficient. We need to find max min $\left\{W_{1}, W_{2}\right\}$ under the conditions $x^{8}+y^{8}+z^{8}=1$ and $1 \geq x \geq y \geq z \geq 0$.

There are three cubes with edge lengths $x \doteq 0.986333649, y \doteq 0.704812693, z \doteq$ 0.675488876 , for which a volume $W_{1}=W_{2} \doteq 2.14930609$ is necessary. And so, $V_{3}(8) \geq$ 2.14930609 .

From $y^{8} \leq z^{8}+y^{8}=1-x^{8}$ and therefore $y \leq \sqrt[8]{1-x^{8}}$ follows $y+z \leq 2 y \leq 2 \sqrt[8]{1-x^{8}}$. For $x \geq \frac{2}{\sqrt[8]{257}}$ we get $y+z \leq 2 \sqrt[8]{1-x^{8}} \leq \frac{2}{\sqrt[8]{257}} \leq x$. If $y+z \leq x$ then we can pack the cubes as in the second case and the volume $V_{2}(8)$ is sufficient. It is obvious that $x^{8} \geq \frac{1}{3}$, hence $x \geq \frac{1}{\sqrt[8]{3}}$. This implies that we can consider only $x \in\left\langle\frac{1}{\sqrt[8]{3}}, \frac{2}{\sqrt[8]{257}}\right\rangle$, i.e., $0.8716 \leq x \leq 0.9996$.

Equality $W_{1}=W_{2}$ holds if $x^{2}=y^{2}+y z$. Then $z=\frac{x^{2}-y^{2}}{y}$ and $W_{1}=W_{2}=x^{8}+\frac{x^{9}}{y}$. When we substitute $z=\frac{x^{2}-y^{2}}{y}$ into $x^{8}+y^{8}+z^{8}=1$, we get the curve

$$
C: x^{8} y^{8}+y^{16}-y^{8}+\left(x^{2}-y^{2}\right)^{8}=0
$$

(see Figure 2).
The interval for x can be reduced. If we choose $x \in\langle a, b\rangle$ for $0<a<b<1$, then $1-b^{8} \leq 1-x^{8} \leq 1-a^{8}$. If $y=z$, then $1-x^{8}=y^{8}+z^{8}=2 y^{8}$ and therefore $y=\sqrt[8]{\frac{1-x^{8}}{2}}$.

Figure 2: The curve C

Figure 3: The regions C_{1}, C_{2} and C_{3}

The function $W_{1}=x^{7}(x+y+z)$ takes its greatest value if $y=z$, i.e., $y=\sqrt[8]{\frac{1-x^{8}}{2}}$. For $x \in\langle a, b\rangle$, we get

$$
W_{1} \leq x^{7}(x+2 y) \leq W_{1}(a, b):=b^{7}\left(b+2 \sqrt[8]{\frac{1-a^{8}}{2}}\right)
$$

For the following intervals holds $W_{1}(a, b)<2.1493$:

$$
\begin{array}{lll}
x \in\langle 0.8716,0.9673\rangle, & x \in\langle 0.9673,0.9782\rangle, & x \in\langle 0.9782,0.9819\rangle, \\
x \in\langle 0.9819,0.9836\rangle, & x \in\langle 0.9836,0.9845\rangle, & x \in\langle 0.9845,0.9850\rangle, \\
x \in\langle 0.9850,0.9853\rangle, & x \in\langle 0.9853,0.9855\rangle . &
\end{array}
$$

For the asked maximum we have $x \geq 0.9855$.
Next we define the algorithm, which for a suitably chosen interval $x \in\langle a, b\rangle$ assigns step by step the numbers $y_{0}=\sqrt[8]{1-a^{8}}, z_{0}=\frac{2.1493}{b^{6}\left(b+y_{0}\right)}-y_{0}$, and if $z_{i} \leq y_{i}$, then

$$
y_{i+1}=\sqrt[8]{1-a^{8}-z_{i}^{8}}, \quad z_{i+1}=\frac{2.1493}{b^{6}\left(b+y_{i+1}\right)}-y_{i+1}
$$

The clarification of the algorithm is as follows.
For every $x \in\langle a, b\rangle$ is $y \leq \sqrt[8]{1-x^{8}} \leq \sqrt[8]{1-a^{8}}$. If we denote $y_{0}=\sqrt[8]{1-a^{8}}$, then $W_{2}=x^{6}(x+y)(y+z) \leq b^{6}\left(b+y_{0}\right)\left(y_{0}+z\right)$. For every $z \geq 0$ such that $z<\frac{2.1493}{b^{6}\left(b+y_{0}\right)}-y_{0}=z_{0}$, we get $W_{2} \leq b^{6}\left(b+y_{0}\right)\left(y_{0}+z\right)<2.1493$. So, for $z<z_{0}$ the asked maximum cannot be achieved.

Let $z \geq z_{0}$, then $y^{8}=1-x^{8}-z^{8} \leq 1-a^{8}-z_{0}^{8}$ and therefore $y \leq \sqrt[8]{1-a^{8}-z_{0}^{8}}$. We set $y_{1}:=\sqrt[8]{1-a^{8}-z_{0}^{8}}$. Then $W_{2} \leq b^{6}\left(b+y_{1}\right)\left(y_{1}+z\right)$ and for every $z<z_{1}:=\frac{2.1493}{b^{6}\left(b+y_{1}\right)}-y_{1}$ is $W_{2}<2.1493$. So, for $z<z_{1}$ the asked maximum cannot be achieved.

We repeat this process until we reach $y_{i}<z_{i}$. If it succeeds we get $W_{2}<2.1493$ for $x \in\langle a, b\rangle$. And so, for $x \in\langle a, b\rangle$ the asked maximum cannot be achieved.

Take $x \in\langle 0.9950,0.9996\rangle$. Then the algorithm generates the sequence $y_{0} \doteq 0.667281$, $z_{0} \doteq 0.625232, y_{1} \doteq 0.596157, z_{1} \doteq 0.753964$. So the asked maximum cannot be achieved for $x \in\langle 0.9950,0.9996\rangle$.

If we take $x \in\langle 0.9920,0.9950\rangle$, then the algorithm generates the sequence $y_{0} \doteq 0.706733$, $z_{0} \doteq 0.594835, y_{1} \doteq 0.681561, z_{1} \doteq 0.639550, y_{2} \doteq 0.655885, z_{2} \doteq 0.685773$. So the asked maximum cannot be achieved for $x \in\langle 0.9920,0.9950\rangle$.

Similarly using the algorithm we can exclude these intervals:

$$
\begin{array}{lll}
x \in\langle 0.990,0.992\rangle, & x \in\langle 0.989,0.990\rangle, & x \in\langle 0.988,0.989\rangle, \\
x \in\langle 0.9875,0.9880\rangle, & x \in\langle 0.9873,0.9875\rangle, & x \in\langle 0.9871,0.9873\rangle, \\
x \in\langle 0.9870,0.9871\rangle, & x \in\langle 0.9869,0.9870\rangle, & x \in\langle 0.9868,0.9869\rangle .
\end{array}
$$

So, we have shown that the asked maximum $\max \min \left\{W_{1}, W_{2}\right\}$ will be attained for $x \in$ $\langle 0.9855,0.9868\rangle$.

Consider the closed region M determined by inequalities

$$
0.9855 \leq x \leq 0.9868, \quad x^{8}+y^{8} \leq 1, \quad x^{8}+2 y^{8} \geq 1
$$

The curve C divides the region M into three open regions C_{1}, C_{2}, C_{3} (Figure 3).
We are looking for max $\min \left\{W_{1}, W_{2}\right\}$, when $W_{1}=x^{7}(x+y+z), W_{2}=x^{6}(x+y)(y+z)$. From the condition $x^{8}+y^{8}+z^{8}=1$ we get

$$
\begin{align*}
& W_{1}=W_{1}(x, y)=x^{7}\left(x+y+\sqrt[8]{1-x^{8}-y^{8}}\right) \tag{2.1}\\
& W_{2}=W_{2}(x, y)=x^{6}(x+y)\left(y+\sqrt[8]{1-x^{8}-y^{8}}\right) \tag{2.2}
\end{align*}
$$

Let \bar{C}_{i} denote the closure of the set C_{i}. The functions W_{1}, W_{2} are continuous on M, and the equality $W_{1}=W_{2}$ holds just in the point of the curve C.

Take the point $A_{1}=(0.9862,0.72) \in C_{1}$. Since $W_{1}\left(A_{1}\right)<W_{2}\left(A_{1}\right)$, the inequality $W_{1}(X)<W_{2}(X)$ holds in every point $X \in C_{1}$. So, for the asked maximum holds $\max _{X \in \bar{C}_{1}} \min \left\{W_{1}(X), W_{2}(X)\right\}=\max _{X \in \bar{C}_{1}}\left\{W_{1}(X)\right\}$.

Take the point $A_{2}=(0.9862,0.75) \in C_{2}$. Since $W_{1}\left(A_{2}\right)>W_{2}\left(A_{2}\right)$, the inequality $W_{1}(X)>W_{2}(X)$ holds in every point $X \in C_{2}$. So, for the asked maximum holds $\max _{X \in \bar{C}_{2}} \min \left\{W_{1}(X), W_{2}(X)\right\}=\max _{X \in \bar{C}_{2}}\left\{W_{2}(X)\right\}$.

Take the point $A_{3}=(0.9862,0.70) \in C_{3}$. Since $W_{1}\left(A_{3}\right)>W_{2}\left(A_{3}\right)$, the inequality $W_{1}(X)>W_{2}(X)$ holds in every point $X \in C_{3}$. So, for the asked maximum holds $\max _{X \in \bar{C}_{3}} \min \left\{W_{1}(X), W_{2}(X)\right\}=\max _{X \in \bar{C}_{3}}\left\{W_{2}(X)\right\}$.
(1) On the compact set \bar{C}_{1} the function (2.1) achieves its maximum in some point B. It holds $\frac{\partial W_{1}}{\partial y}=x^{7}\left(1-\frac{y^{7}}{\sqrt[8]{\left(1-x^{8}-y^{8}\right)^{7}}}\right)$. The equality $\frac{\partial W_{1}}{\partial y}=0$ holds if $x^{8}+2 y^{8}-1=0$. But the points of the curve $x^{8}+2 y^{8}-1=0$ do not belong to the region \bar{C}_{1}. For every point $X \in C_{1}$ holds $\frac{\partial W_{1}}{\partial y}<0$. And so, the point B must lie on the curve C.

For every point $X=(x, y), x \in\langle a, b\rangle, y \in\langle c, d\rangle$ the inequality $z \leq \sqrt[8]{1-a^{8}-c^{8}}$ holds, and so

$$
\begin{aligned}
& W_{1}=x^{7}(x+y+z) \leq b^{7}\left(b+d+\sqrt[8]{1-a^{8}-c^{8}}\right) \\
& W_{2}=x^{6}(x+y)(y+z) \leq b^{6}(b+d)\left(d+\sqrt[8]{1-a^{8}-c^{8}}\right)
\end{aligned}
$$

Figure 4: Exclusion of the region C_{2}

Figure 5: Exclusion of the region C_{3}

Denote

$$
\begin{aligned}
& W_{11}(a, b, c, d):=b^{7}\left(b+d+\sqrt[8]{1-a^{8}-c^{8}}\right) \\
& W_{22}(a, b, c, d):=b^{6}(b+d)\left(d+\sqrt[8]{1-a^{8}-c^{8}}\right)
\end{aligned}
$$

(2) We examine the region C_{2} :

For $\begin{cases}x \in\langle 0.9855,0.9858\rangle, y \in\langle 0.745,0.76\rangle & \text { is } \quad W_{11}<2.1493 . \\ x \in\langle 0.9858,0.9861\rangle, y \in\langle 0.74,0.76\rangle & \text { is } W_{11}<2.1493 . \\ x \in\langle 0.9861,0.9864\rangle, y \in\langle 0.74,0.76\rangle & \text { is } W_{11}<2.1493 . \\ x \in\langle 0.9864,0.9866\rangle, y \in\langle 0.74,0.76\rangle & \text { is } W_{11}<2.1493 . \\ x \in\langle 0.9866,0.9868\rangle, y \in\langle 0.73,0.74\rangle & \text { is } W_{11}<2.1493 . \\ x \in\langle 0.9866,0.9868\rangle, y \in\langle 0.74,0.75\rangle & \text { is } W_{11}<2.1493, \text { also } W_{22}<2.1493 . \\ x \in\langle 0.9866,0.9868\rangle, y \in\langle 0.75,0.76\rangle & \text { is } W_{11}<2.1493, \text { also } W_{22}<2.1493 .\end{cases}$
This implies that the asked maximum cannot be achieved on the region \bar{C}_{2} (Figure 4).
(3) We examine the region C_{3} :

For $x \in\langle 0.9855,0.9856\rangle$ and, step by step, for $y \in\langle 0.695,0.696\rangle,\langle 0.696,0.697\rangle$, $\langle 0.697,0.698\rangle,\langle 0.698,0.699\rangle$, or $\langle 0.699,0.700\rangle$ is always $W_{11}<2.1493$.

For $x \in\langle 0.9856,0.9858\rangle$ and, step by step, for $y \in\langle 0.694,0.695\rangle$ or $\langle 0.695,0.696\rangle$ is always $W_{22}<2.1493$.

We do not exclude the area $x \in\langle 0.9856,0.9858\rangle, y \in\langle 0.696,0.701\rangle$ by this way. Maybe, we should have to divide the intervals into smaller intervals and it is not effective.

For $x \in\langle 0.9858,0.9860\rangle$ and, step by step, for $y \in\langle 0.693,0.694\rangle,\langle 0.694,0.695\rangle$, $\langle 0.695,0.696\rangle$, or $\langle 0.696,0.697\rangle$ is always $W_{22}<2.1493$.

We do not exclude the area $x \in\langle 0.9858,0.9860\rangle, y \in\langle 0.697,0.702\rangle$ by this way.
For $x \in\langle 0.9860,0.9862\rangle$ and, step by step, for $y \in\langle 0.691,0.692\rangle,\langle 0.692,0.693\rangle$, $\langle 0.693,0.694\rangle,\langle 0.694,0.695\rangle,\langle 0.695,0.696\rangle$, or $\langle 0.696,0.697\rangle$ is always $W_{22}<2.1493$.

We do not exclude the area $x \in\langle 0.9860,0.9862\rangle, y \in\langle 0.697,0.704\rangle$ by this way.
For $x \in\langle 0.9862,0.9864\rangle$ and, step by step, for $y \in\langle 0.690,0.691\rangle,\langle 0.691,0.692\rangle$, $\langle 0.692,0.693\rangle,\langle 0.693,0.694\rangle,\langle 0.694,0.695\rangle,\langle 0.695,0.696\rangle,\langle 0.696,0.697\rangle$, or $\langle 0.697,0.698\rangle$ is always $W_{22}<2.1493$.

We do not exclude the area $x \in\langle 0.9862,0.9864\rangle, y \in\langle 0.698,0.706\rangle$ by this way.

For $x \in\langle 0.9864,0.9866\rangle$ and, step by step, for $y \in\langle 0.689,0.690\rangle,\langle 0.690,0.691\rangle$, $\langle 0.691,0.692\rangle,\langle 0.692,0.693\rangle,\langle 0.693,0.694\rangle,\langle 0.694,0.695\rangle,\langle 0.695,0.696\rangle,\langle 0.696,0.697\rangle$, $\langle 0.697,0.698\rangle$, or $\langle 0.698,0.699\rangle$ is always $W_{22}<2.1493$.

We do not exclude the area $x \in\langle 0.9864,0.9866\rangle, y \in\langle 0.699,0.709\rangle$ by this way.
For $x \in\langle 0.9866,0.9868\rangle$ and, step by step, for $y \in\langle 0.688,0.689\rangle,\langle 0.689,0.690\rangle$, $\langle 0.690,0.691\rangle,\langle 0.691,0.692\rangle,\langle 0.692,0.693\rangle,\langle 0.693,0.694\rangle,\langle 0.694,0.695\rangle,\langle 0.695,0.696\rangle$, $\langle 0.696,0.697\rangle,\langle 0.697,0.698\rangle,\langle 0.698,0.699\rangle,\langle 0.699,0.700\rangle$, or $\langle 0.700,0.701\rangle$ is always $W_{22}<2.1493$.

We do not exclude the area $x \in\langle 0.9866,0.9868\rangle, y \in\langle 0.701,0.711\rangle$ by this way.
Now let us look at the areas which we could not exclude by using the previous method. From (2.2) we have

$$
\frac{\partial W_{2}}{\partial x}=\frac{x^{5}}{\sqrt[8]{\left(1-x^{8}-y^{8}\right)^{7}}}\left[(7 x+6 y)\left(y \sqrt[8]{\left(1-x^{8}-y^{8}\right)^{7}}+1-y^{8}\right)-8 x^{9}-7 x^{8} y\right]
$$

and $\frac{x^{5}}{\sqrt[8]{\left(1-x^{8}-y^{8}\right)^{7}}}>0$.
For every point $X=(x, y), x \in\langle a, b\rangle, y \in\langle c, d\rangle$ the inequality holds

$$
\begin{aligned}
& (7 x+6 y)\left(y \sqrt[8]{\left(1-x^{8}-y^{8}\right)^{7}}+1-y^{8}\right)-x^{8}(8 x+7 y) \\
\leq & (7 b+6 d)\left(d \sqrt[8]{\left(1-a^{8}-c^{8}\right)^{7}}+1-c^{8}\right)-a^{8}(8 a+7 c)
\end{aligned}
$$

Let us denote $D W 2(a, b, c, d):=(7 b+6 d)\left(d \sqrt[8]{\left(1-a^{8}-c^{8}\right)^{7}}+1-c^{8}\right)-a^{8}(8 a+7 c)$. Then for the following areas

$$
\begin{array}{ll}
x \in\langle 0.9856,0.9858\rangle, & y \in\langle 0.696,0.701\rangle, \\
x \in\langle 0.9860,0.9862\rangle, y \in\langle 0.697,0.704\rangle, & x \in\langle 0.9858,0.9860\rangle, y \in\langle 0.697,0.702\rangle, \\
x \in\langle 0.9864,0.9866\rangle, y \in\langle 0.699,0.709\rangle, & x \in\langle 0.9866,0.964\rangle, y \in\langle 0.698,0.706\rangle, \\
x, y \in\langle 0.701,0.711\rangle
\end{array}
$$

is $D W 2(a, b, c, d)<0$ and therefore $\frac{\partial W_{2}}{\partial x}<0$. This implies that the asked maximum cannot be achieved on the region C_{3} (Figure 5.)

Now we determine the constrained maximum of the function

$$
\begin{equation*}
W(x, y)=x^{8}+\frac{x^{9}}{y} \tag{2.3}
\end{equation*}
$$

on the curve

$$
\begin{equation*}
C(x, y)=x^{8} y^{8}+y^{16}-y^{8}+\left(x^{2}-y^{2}\right)^{8}=0 \tag{2.4}
\end{equation*}
$$

for $x \in\langle 0.9855,0.9868\rangle$. The system of equations $\frac{\partial W}{\partial x} \frac{\partial C}{\partial y}-\frac{\partial W}{\partial y} \frac{\partial C}{\partial x}=0$ and $C(x, y)=0$ has the form

$$
\begin{gathered}
10 x^{9} y^{8}+18 x y^{16}-9 x y^{8}+8 x^{8} y^{9}+16 y^{17}-8 y^{9}+\left(x^{2}-y^{2}\right)^{7}\left(2 x^{3}-16 y^{3}-18 x y^{2}\right)=0, \\
x^{8} y^{8}+y^{16}-y^{8}+\left(x^{2}-y^{2}\right)^{8}=0 .
\end{gathered}
$$

The solution is $x \doteq 0.986333649, y \doteq 0.704812693$, and $z \doteq 0.675488876$. The proof is complete.

3. Conclusions

Conjecture 3.1. $\quad V_{4}(d)=V(d)$ for $d=2,3,4$.
Our conjecture indicates that the case $n=4$ is crucial for $d \leq 4$. The complexity of the problem greatly increases with increasing n and d. The conjecture is not true for higher dimensions because $\lim _{d \rightarrow \infty} V_{n}(d)=n$ for $n=2,3,4, \ldots$ The statement $\lim _{d \rightarrow \infty} V_{n}(d)=n$ has been proved for $n=5,6,7, \ldots$ in [1], but this theorem is true for all $n \geq 2$.

References

[1] P. Adamko, V. Bálint: Universal asymptotical results on packing of cubes. Studies of the University of Žilina, Mathematical Series, vol. 28, 1-4 (2016).
[2] V. BÁLint, P. AdAMKo: Minimalizácia objemu kvádra pre uloženie troch kociek v dimenzii 4 [in Slovak]. G: slovenský časopis pre geometriu a grafiku 12, 5-16 (2015).
[3] V. Bálint, P. Adamko: Minimization of the parallelepiped for packing of three cubes in dimension 6. In Aplimat: 15th Conference on Applied Mathematics 2016, pp. 44-55.
[4] S. Hougardy: On packing squares into a rectangle. Comput. Geom. 44, 456-463 (2011).
[5] D.J. Kleitman, M.M. Krieger: An optimal bound for two dimensional bin packing. In 16th Annual Symposium on Foundations of Computer Science, 1975, pp. 163-168.
[6] A. Meir, L. Moser: On packing of squares and cubes. J. Combin. Theory 5, 126-134 (1968).
[7] P. Novotný: A note on a packing of squares. Studies of the University of Transport and Communications in Žilina, Math.-Phys. Series 10, 35-39 (1995).
[8] P. Novotný: On packing of squares into a rectangle. Arch. Math. (Brno) 32, 75-83 (1996).
[9] P. Novotný: On packing of four and five squares into a rectangle. Note Mat. 19, 199206 (1999).
[10] P. NovotnÝ: Využitie počítača pri riešení ukladacieho problému [in Slovak]. In Proceedings of Symposium on Computational Geometry 2002, pp. 60-62.
[11] P. Novotnチ́: Pakovanie troch kociek [in Slovak]. In Proceedings of Symposium on Computational Geometry 2006, pp. 117-119.
[12] P. Novotný: Najhoršie pakovatelné štyri kocky [in Slovak]. In Proceedings of Symposium on Computational Geometry 2007, pp. 78-81.
[13] P. Novotný: Ukladanie kociek do kvádra [in Slovak]. In Proceedings of Symposium on Computational Geometry 2011, pp. 100-103.

Received February 16, 2018; final form August 3, 2018

