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Abstract. The splitters of a triangle are the lines that bisect its perimeter and
the equalizers are those lines that bisect both its perimeter and area. In recent
studies, it is proved that a triangle can have either one, two or three equalizers
that pass through its incenter. The studies, mainly, concentrate on the existence
of the equalizers. Our approach, in this article, is more elementary and algebraic
in terms of the side-lengths c ≥ a ≥ b of △ABC and it provides a comprehensive
overview on the equalizers of the triangle. It is based on the fact that a cevian
from a vertex and through the Nagel center is a splitter. So if, say AA′ is a Nagel
splitter, then a line joining two points, M of A′C and N of AC ′ is an equalizer if
and only if A′M = AN = x and 2x2 + (a + b − 3c)x − c(b − c) = 0. So, by finding
all possible solutions, we proved that every triangle can have either one, two or
three equalizers, their distribution and locations on the sides are determined, and
their geometric construction by compass and ruler is shown. A summary of these
results is given in the conclusions section and to make these results more feasible,
a visual diagram that predicts the number of equalizers according with the side-
length is drawn. For a scalene △ABC, we proved that there are no equalizers
that cut the smallest two sides, there is only one equalizer cutting the smallest
and largest sides, and a maximum of two equalizers that cut the largest two sides.

Key Words: Nagel center, splitter, Nagel splitter, cleaver, equalizer
MSC 2020: 51M04

1 Preliminaries

The problem of bisecting a triangle by a line into two polygons having equal areas or having
equal perimeters has been of interest by mathematicians for some time; see [2, 5–7]. So, a
splitter is a line that bisects the perimeter of a triangle, a Nagel splitter is a splitter through
the Nagel center, and a cleaver is a splitter that joins the midpoint of one side and the point
that bisects the broken chord of the other two sides. An equalizer is a splitter that bisects its
area.
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Figure 1: Construction of a general splitter

A well known special splitters are the three cleavers that are attributed to Archimedes in
his Broken Chord Theorem and each joins the midpoint of one side and the point that bisects
the broken chord of the other two sides. The three cleavers intersect at the incenter of the
medial triangle of △ABC, see [7].

Another known special splitters are the three Cevians AA′ BB′, and CC ′ that intersect
at the Nagel center where A′, B′, and C ′, are the points of contact of the three excircles of
△ABC with the sides BC, AC, and AB, respectively, see [7].

In what follows, let AA′, BB′, CC ′ be the Nagel splitters and let the side-lengths of
△ABC be c ≥ a ≥ b.

A more general type of splitters is obtained by taking a point M of, say A′C and let the
length of A′M = x. Then we construct by compass the line segment AN of the side AB
that has the same length x of A′M , as seen in Figure 1. Therefore MN is a splitter. Since
0 ≤ x ≤ A′C = s − b, s = c+a+b

2 , there are infinite number of splitters from A′C to AC ′. Note
that MN = AA′ when x = 0 and MN is a cleaver when M is the midpoint of BC.

2 Equalizers

Most recent studies on equalizers have proved that every equalizer of △ABC passes through
its incenter and that every triangle can have either one, two or three equalizers by using the
concept of an envelope( a curve tangent) to a family of lines that bisect the area of a triangle
and that the number of equalizers depends on the location of the incenter with respect to
the regions bounded by three hyperbolas and the three medians, see [4, 10], or to rotate a
line through the incenter from a normal to an angle bisector and to spot the positions for
which the line bisects the area of △ABC, see [8]. It is worth mentioning here that there is a
kind of similarity in these two studies; in one the three hyperbolas, three medians, and the
incenter played an essential role while in the second study the three angle bisectors, three
normal lines, and the incenter played a similar role to prove the existence of either one, two,
or three equalizers. We will see also in our study that the three Nagel spliters and the three
medians will play a basic role. Other approaches and generalizations appeared in [1, 3, 9].

Before proceeding with our search for equalizers of △ABC, let c ≥ a ≥ b denote its
side-lengths, r the inradius, and [∗] the area of any polygon. Let E, F , H be the midpoints
of BC, CA, AB, respectively, and AA′, BB′, CC ′ be the Nagel splitters of △ABC. Then it



S. Abu-Saymeh: The Splitters and Equalizers of Triangles 43

b

bb

b

b

b

R

B CM

N

A

A′

B′

C′

E

FH

x

x

s − c

Figure 2: Illustrating the proof of Lemma 1

is clear that
BA′ = AB′ = s − c, CB′ = BC ′ = s − a, and AC ′ = CA′ = s − b

where s = a + b + c

2 , A′ lies in BE, B′ in FA, C ′ in HB.
(1)

So, let MN be a general splitter of △ABC from A′C to AC ′ such that A′C = AC ′ = x as
shown in Figure 2. Then it follows from (1) that the midpoints E, H lie on the segments A′C,
AC ′, respectively. Since AE and CH are medians and they bisect [△ABC], it follows that
the splitter MN is an equalizer if and only if M is a point of EC, N is a point of AH, and
[△BMN ] = [△BAE]. Thus MN is an equalizer if and only if AM ∥ NE. But AM ∥ NE if
and only if BN

AN
= BE

ME
and since BN = c−x, BE = a

2 , BM = s−c+x and EM = BM −BE,
we have EM = 2x+b−c

2 . Therefore a splitter

MN is an equalizer ⇐⇒ 2x2 + (a + b − 3c)x − c(b − c) = 0, 0 < x < s − b.

Next, we show that a splitter MN is an equalizer if and only if MN passes through the incenter
of △ABC. So let an angle bisector, say BR meet MN at R, the distances from R to BA, BC
be h and from R to AC be k. Then [△ABC] = 2[△BMN ] = (BN + BM)h = (a+b+c)h

2 . But
also, [△ABC] = [△RAB] + [△RBC] + [△RCA] = (c+a)h

2 + bk
2 . Therefore (a+b+c)h

2 = (a+c)h+bk
2

and hence h = k and R is the incenter of △ABC.
Also, conversely let MN be a splitter of △ABC that passes through the incenter R. Then

[△ABC] = (a + b + c)r
2 and [△BMN ] = (BM + BN)r

2 . But BM + BN = (a + b + c)
2 .

Therefore [△BMN ] = (a + b + c)r
4 and [△ABC] = 2[△BMN ]. Thus MN is an equalizer.

Thus we have proved:

Lemma 1. Let E, F , H be the midpoints of the sides BC, AC, AB of △ABC, respectively
and let MN be a general splitter of the △ABC that joins, say M of EC, N of AH, and let
c ≥ a ≥ b, A′M = x = AN . Then

(i) MN is an equalizer of △ABC if and only if

AM ∥ NE ⇐⇒ CN ∥ MH ⇐⇒ 2x2 +(a+b−3c)x−c(b−c) = 0, 0 < x ≤ s−b (2)
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(ii) MN is an equalizer ⇐⇒ MN passes through the incenter R of △ABC. (3)

Next, by using this basic Lemma, we proceed searching for the number of equalizers of a
scalene △ABC and their distribution and exact locations on its sides.

2.1 Searching for Equalizers of Scalene Triangles
Let △ABC be a scalene triangle such that c > a > b > 0 and E, F , H be the midpoints of
BC, AC, AB, respectively. Then it follows from (1) that

BA′ − BE = s − c − a

2 = b − c

2 , CB′ − CF = s − a − b

2 = c − a

2 and

AC ′ − AH = s − b − c

2 = a − b

2 .

(4)

(i) First, we show that there is only one equalizer cutting the largest and smallest sides.
So, referring to Figure 3(a), let MN be an equalizer of △ABC from the point M of the
segment C ′B to the point N of the segment CF such that C ′M = CN = x < CF = b

2 . Then
by (2) of Lemma 1 and the permutation (a, c, b), we have

2x2 + (c + a − 3b)x − b(a − b) = 0 and 0 < x <
b

2. Hence

x =
(3b − c − a) ∓

√
(3b − c − a)2 + 8b(a − b)

4 . But a > b; so,√
(3b − c − a)2 + 8b(a − b) > |3b − c − a|,

and hence

x > 0 ⇐⇒ x =
(3b − c − a) +

√
(3b − c − a)2 + 8b(a − b)

4 and

x <
b

2 ⇐⇒ (3b − c − a)2 + 8b(a − b) < (2b − (3b − c − a))2

⇐⇒ 8b(a − b) < (c + a − b)2 − (3b − c − a)2 = 4b(a + c − 2b)
⇐⇒ a + c − 2b − 2a + 2b = c − a > 0.

But c > a. Thus we conclude that: There is only one equalizer MN cutting the largest and
smallest sides AB, AC such that

x = C ′M = CN =
(3b − c − a) +

√
(3b − c − a)2 + 8b(a − b)

4 < s − a, and NH ∥ CM

(5)
as required.

2.2 Geometric Construction of MN in (i) by Compass and Ruler
Since

AM − AN = (s − b + x) − (b − x) = a + c − b + 2x − 2b + 2x

2

= a + c − 3b + 4x

2 =

√
(3b − c − a)2 + 8b(a − b)

2 > 0,
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Figure 3: Construction of MN

we have AM > AN . Thus by angle bisector theorem we get that RM > RN . So, by
reflecting the △ANM about the angle bisector AR, we get △ALD ∼= △ANM . Therefore
[△ANM ] = [△ALD] = 1

2 [△ABC]. But we just proved that there is only one equalizer that
cuts internally AB and AC. So, LD intersects AC produced at D as shown in Figure 3(a) and
it is clear that RM > RN = RL < RD, ∠LDN = ∠NML < 90◦ and hence the quadrilateral
NLMD is cyclic,

AN = AL, ND = LM = AM − AN =

√
(3b − c − a)2 + 8b(a − b)

2
and the perpendicular bisectors QO and KO of LM, ND, respectively meet the angle bisector
AR produced at the center O of the circle Ω that passes through N , D, M , L. But

AK = AQ = AN + ND

2 = b − x +

√
(3b − c − a)2 + 8b(a − b)

4 = 4b − (3b − c − a)
4 = s

2 .

Therefore Q is constructed as the midpoint of AB produced by the length of BA′ and then QO
is constructed as the perpendicular to AB at Q and meets AR produced at center O. Since
RD = RM, OD = OM , we have ∠ODR = ∠OMR. But ON = OM . So, ∠OMR = ∠ONR
and hence ∠ODR = ∠ONR and the quadrilateral ODNR is cyclic and by symmetry OMLR
is cyclic. So, by applying Euclid’s proposition 36 of Book III, on the cyclic quadrilaterals
LMDN and ROML we get (AT )2 = (AM)(AL) = (AO)(AR). But (AT )2 = (AO)2 −(OT )2.
Therefore (OT )2 = (AO)2 − (AO)(AR) = (OA)(OR) and hence A and R are inverse points
with respect to the inversion circle Ω. Since ∠ATO = 90◦ and (OT )2 = (OA)(OR), it follows
by the inverse of Euclid’s proposition 36 of Book III that OT is tangent to the circumcircle
of △ART and hence ∠OTR = ∠TAR by the alternate segment theorem. Thus RT ⊥ AO.
So, the radius of Ω is constructed by drawing a semicircle with diameter AO and then a
perpendicular RT to AO that meet the semicircle at T . Thus the circle Ω with center O and
radius OT will intersect the sides AB and AC at the endpoints M, N of the equalizer MN .

So, the geometric construction of MN by compass and ruler is complete.
(ii) Next, we show that there are no equalizers cutting the smallest two sides CA, CB.

So, referring to Figure 3(b), let M be any point of the segment B′A and N be a point of the
segment BA′ such that B′M = BN = x. We claim that NF ∦ BM . For CF = b

2 , FM =
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FB′ + x, CN = a
2 + EN , and NB = x. Therefore CF

F M
= b/2

F B′+x
and CN

NB
= a/2+EN

x
. But

b
2 < a

2 < a
2 + EN and FB′ + x > x. Thus CF

F M
< CN

NB
and hence NF ∦ BM for every

0 < x < s − c. So, we conclude that:

There are no equalizers cutting the smallest two sides AC and BC. (6)

(iii) Finally, we show that there are either no equalizers, one equalizer, or two equalizers
cutting the largest two sides AB, BC and we show how these equalizers can be geometrically
constructed by compass and ruler. So, referring to Figure 4, let MN be an equalizer of
△ABC joining M from the segment EC to N from the segment AH. Then it follows from
(2) of Lemma 1 that

2x2 + (a + b − 3c)x − c(b − c) = 0 and 0 < x < s − b = c + a − b

2 .

Hence

x =
(3c − a − b) ∓

√
(3c − a − b)2 − 8c(c − b)

4 .

Since c > a > b, we have 3c − a − b > 0. So,

x > 0 ⇐⇒ (3c − a − b)2 − 8c(c − b) ≥ 0 ⇐⇒ there exists an a such that

0 < c − b < a ≤ minimum of (3c − b −
√

8c(c − b), c).

But

c − b < 3c − b −
√

8c(c − b) ⇐⇒ 8c(c − b) − 4c2 = 4c(c − 2b) < 0 ⇐⇒ 2b > c,

and

3c − b −
√

8c(c − b) ≥ c ⇐⇒ (2c − b)2 − 8c(c − b) = b2 + 4bc − 4c2 ≥ 0
⇐⇒ b ≥ 2(

√
2 − 1)c.

Thus

x > 0 when c

2 < b < 2(
√

2 − 1)c and b < a ≤ 3c − b −
√

8c(c − b) < c

or when 2(
√

2 − 1)c ≤ b < a < c.

So, let

x1 =
(3c − a − b) −

√
(3c − a − b)2 − 8c(c − b)

4 ,

x2 =
(3c − a − b) +

√
(3c − a − b)2 − 8c(c − b)

4 .

Then 0 < x1 ≤ x2 for every c > a > b such that c
2 < b < 2(

√
2 − 1)c and b < a ≤

3c − b −
√

8c(c − b) < c or when 2(
√

2 − 1)c ≤ b < a < c. Next, we show that

s − b − x2 = 2(a + c − b)
4 −

(3c − a − b) +
√

(3c − a − b)2 − 8c(c − b)
4 > 0.
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Figure 4: Illustrating the proof of (iii-2)

Since a > b > c
2 , it follows that 2(a + c − b) − (3c − a − b) = 3a − b − c > 0. Therefore,

(3a − b − c))2 − (3c − a − b)2 + 8c(c − b) = 8(a + c − b)(a − c) + 8c(c − b) = 8a(a − b) > 0,

and hence x1 ≤ x2 < s − b.
Thus we conclude that:

(iii-1) There is one equalizer MN cutting the largest two sides when x = x1 = x2, b < a =
3c − b −

√
8c(c − b) < c, c

2 < b < (2
√

2 − 2)c, A′M = AN = x =
√

c(c−b)
2 ,

(iii-2) There are two equalizers M1N1, M2N2, when A′M1 = x1 < x2 = A′M2, b < a <

3c − b −
√

8c(c − b) < c, c
2 < b < (2

√
2 − 2)c, or when 2(

√
2 − 1)c ≤ b < a < c where

x1, x2 =
(3c − a − b) ∓

√
(3c − a − b)2 − 8c(c − b)

4 ,

(iii-3) There are no equalizers cutting the largest two sides when b ≤ c
2 , or c

2 < b < (2
√

2 − 2)c
and c > a > 3c − b −

√
8c(c − b) > b.

2.3 Geometric Construction of Equalizers by Compass and Ruler
(1) Since the one equalizer MN in (iii-1) passes through the incenter R and

BM = BA′ + A′M = s − c + x = a + b − c

2 +
√

c(c − b)
2

and a = 3c − b −
√

8c(c − b), it follows that

BM = c −
√

c(c − b)
2 = c − x = BN

and MN ⊥ BR. Thus MN is constructed by drawing the perpendicular to the angle
bisector BR at the incenter R.
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(2) Construction of the two equalizers in (iii-2). Since BM1 = s − c + x1, BN2 = c − x2,
x1 +x2 = 3c−a−b

2 , we have BM1 −BN2 = s+x1 +x2 −2c = 0. Thus BM1 = BN2 < BN1
and similarly BN1 = BM2. But M1N1 and M2N2 intersect at the incenter R. Thus
M2N2 is the reflection of N1M1 with respect to the angle bisector BR of ∠B. Therefore

RM1 = RN2, RN1 = RM2, △RM2M1 ∼= △RN1N2, ∠M1N1N2 = ∠N2M2M1.
(7)

Since ∠M1N1N2 = ∠N2M2M1, it follows that the quadrilateral M1M2N1N2 is cyclic.
Let Ω be the circle passing through M1, M2, N1, N2. Next, we show that the center
O of Ω lies on BR produced and the circle can be constructed. Since BM1 < BN1, it
follows by the angle bisector theorem that RM1 < RN1. But RM1 = RN2, RN1 = RM2
by (7). So, RM1 < RM2, RN2 < RN1 and hence the angles RM2M1 and RN1N2 are
equal and acute. Thus the perpendicular bisectors of the segments M1M2, N1N2 meet
BR produced at the center O of Ω, as seen in Figure 4. Let Q, K be the midpoints of
M1M2, N1N2, respectively. Then

M1M2 = x2−x1, BM1 = s−c+x1, BQ = BK = s−c+x1+x2 − x1

2 = s−c+x2 + x1

2 .

Thus BQ = BK = c+a+b
4 . So, the center O of Ω can be constructed, by compass and

ruler, by producing BA by the length of AB′ to get a length s whose midpoint is K.
Then the perpendicular KO to BK meets BR produced at the center O of Ω. Next,
we show also that its radius can be constructed. Note that OM1 = ON2 = OM2. Thus
∠OM1R = ∠ON2R = ∠OM2R and hence the quadrilateral OM2M1R is cyclic and
similarly ON1N2R is also cyclic. Let BT be a tangent to the circle Ω. Then

(BT )2 = (BM1)(BM2) = (BR)(BO) = (BN2)(BN1) and (BT )2 = (OB)2 − (OT )2.

So (OT )2 = (OB)2 − (BR)(BO) = (OB)(OB − BR) = (OR)((OB).
(8)

Therefore B and R are inverse points with respect to the inversion circle Ω. So, as in
Section 2.2, the circle Ω with center O and radius OT can be constructed by compass
and ruler and the points of intersection of Ω with the sides BC and BA are the endpoints
of two equalizers M1N1 and M2N2.

Thus the geometric construction of the equalizers of scalene triangles by compass and
ruler is complete.

2.4 Searching for Equalizers of Isosceles Triangles
Let △ABC be an isosceles triangle such that BC = a = c = BA and E, F , H are the
midpoints of BC, AC, AB, respectively. Then

BF is a equalizer, s = 2a + b

2 , s − a = s − c = b

2 , s − b = 2a − b

2 , and b < 2a = 2c.

(9)
(i) First, we search for equalizers of triangles with side-lengths a = c > b and refer to

Figure 5(a) and prove that:
(i-1) The median BF is the only equalizer cutting AC. For if MN is an equalizer, say

from FC to BC ′, then we have by Lemma 1 that FM = BN and NF ∥ BM . But
AN > AH > AF . Thus AN

BN
> AF

F M
and hence NF ∦ BM , contradicting the assumption.

Also, by symmetry, there are no equalizers from A′B to AF .
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(ii-1) There are at most two equalizers from from HA to CE. Let MN be an equalizer from
HA to CE. Then by Lemma 1 and (9) we have, C ′M = CN = x, 0 < x < s− b = 2a−b

2 ,
CM ∥ NH. Therefore BH

BM
= BN

BC
. But BM = s − a + x = b+2x

2 , BN = a − x and hence
a

b+2x
= a−x

a
. So, we have 2x2 + (b − 2a)x + a2 − ab = 0. Thus

x1, x2 = 2a − b ∓
√

b2 + 4ab − 4a2

4 .

But a = c > b > 0, and

b2 +4ab−4a2 < 0 ⇐⇒ b < (2
√

2−2)a and b2 +4ab−4a2 ≥ 0 ⇐⇒ b ≥ (2
√

2−2)a.

Therefore there are no equalizers from HA to CE if and only if b < (2
√

2 − 2)a < a = c
and hence an isosceles △ABC such that c = a > b

has one equalizer the median BF ⇐⇒ 0 < b < 2(
√

2 − 1)c < a = c. (10)

Thus

b2 + 4ab − 4a2 = (2a − b)2 − 8a(a − b) > 0 ⇐⇒ b > 2(
√

2 − 1)a, s − b = 2a − b

2 ,

and (4(s − b) − 4x2) = (2a − b) −
√

(2a − b)2 − 8a(a − b).

So, if b > 2(
√

2 − 1)a, then

x1 < x2 < s − b, x1 + x2 = 2a − b

2 = s − b = C ′A = CA′,

AM1 = x2 = CN2, AM2 = x1 = CN1.

Therefore a △ABC such that a = c > b has two equalizers from HA to CE if and only
if b > 2(

√
2 − 1)c and hence such a △ABC has

three equalizers the median BF and M1N1, M2N2 ⇐⇒ 2(
√

2 − 1)c < b < a = c,

where x1 = C ′M1 = 2a−b−
√

b2+4ab−4a2

4 , x2 = C ′M2 = 2a−b+
√

b2+4ab−4a2

4 ,

and M2N2 is the reflection of M1N1 with respect to BF.
(11)

Note also that if c = a > b = 2(
√

2 − 1)c, then x1 = x2 = 2a−b
4 = C′A

2 = CA′

2 and hence
there is only one equalizer MN from HA to CE where M, N are the midpoints of C ′A,
CA′, respectively. Thus a △ABC such that a = c > b has

two equalizers the median BF and MN ⇐⇒ 0 < b = 2(
√

2 − 1)c < a = c,

where M , N are the midpoints of C ′A, CA′, respectively.
(12)

Note that the two equalizers BF and MN can be constructed by compass and ruler,
MN passes through the incenter R, and BM = BN . So, MN is normal to the angle
bisector BR and in this case

sin B
2 =

√
2 − 1 and B = B0 ≈ 48.94◦. (13)
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2.5 Geometric construction of the two equalizers M1N1, and M2N2

Referring to Figure 5(a), we have

BM1 = s − a + x1 = 2a + b −
√

b2 + 4ab − 4a2

4 = a − x2 = BN2,

BN1 = BM2 = BM1+x2−x1 > BM1, and BR bisects ∠B, we get RM1 = RN2, RM2 = RN1,
M1M2 = N2N1, and by angle bisector theorem RN1 > RM1 = RN2, RM2 > RN2 = RM2 and
hence △RM1M2 ∼= △RN2N1, ∠M2N2N1 = ∠N1M1M2, ∠RM1M2 > ∠RM2M1, ∠RN2N1 >
∠RN1N2. Thus ∠RM2M1 = ∠RN1N2 < 90◦ and the perpendicular bisectors QO, KO of
M1M2, N1N2, respectively, meet BF at O and since ∠M2N2N1 = ∠N1M1M2, it follows that
the quadrilateral M1M2N1N2 is cyclic and O is the center of the circle Ω that passes through
M1, M2, N1, N2.

But

BK = BQ = BM1 + x2 − x1 = s − a + x1 + x2 − x1

2 = s − a + x2 + x1

2 = 2a + b

4 = s

2 .

So, K, Q are the midpoints of BC, BA produced by the lengths CF , AF , respectively. Thus
O can be constructed by compass and ruler.

Finally, we show also that if BT is tangent to Ω, then the radius OT of Ω can be
constructed. Since OM1 = ON2 and RM1 = RN2, we have ∠ON2R = ∠OM1R. But
ON1 = OM1. So, ∠ON1R = ∠OM1R. Thus ∠ON2R = ∠ON1R and hence △ORN2N1
is cyclic and by symmetry about BF we have also △ORM1M2 is cyclic. So, by applying
Euclid’s proposition 36 of Book III on the cyclic quadrilaterals M1M2N1N2 and N1N2RO, we
get

(BT )2 = (BN1)(BN2) = (BO)(BR).

But (BT )2 = (BO)2 − (OT )2. Therefore (OT )2 = (BO)2 − (BO)(BR) = (OB)(OR) and
hence B and R are inverse points with respect to the inversion circle Ω. So, as in Section 2.2,
the circle Ω with center O and radius OT can be constructed by compass and ruler and the
points of intersection of Ω with the sides BA and BC are the endpoints of two equalizers
M1N1 and M2N2.

(ii) Finally, in searching for equalizers of triangles with side-lengths b ≥ a = c and
referring to Figure 5(b), we prove that every such triangle has three equalizers. To see
this let M1N1 be an equalizer from, say EB to AF such that A′M1 = AN1 = x. Then
AM1 ∥ N1E by Lemma 1. Since CN1 = b − x, CE = a

2 , CM1 = s − b + x = 2a−b+2x
2 , we have

CN1
CA

= CE
CM1

= b−x
b

= a
2a−b+2x

. Therefore

2x2 + (2a − 3b)x + b2 − ab = (2x − b)(x − b + a) = 0 and hence x = b

2 or x = b − a.

But s = 2a+b
2 , A′B = a − (s − b) = b

2 = AF . So, if x = b
2 , then M1N1 = BF and if x = b − a,

then the second equalizer is M1N1. Since BM1 = s − b + b − a = b
2 = CF and CN1 = b − x =

a = CB, it follows that △BFC ∼= △N1M1C and hence N1M1 ⊥ BC, N1M1 = BF . So by
symmetry we have the equalizer M2N2 from FC to BH where M2N2 is the reflection of N1M1
with respect to BF , M2N2 ⊥ BA, M2N2 = M1N1 = BF , and M1, N2, F are the points of
contact of the incircle with the sides of △ABC.
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Figure 5: Construction of equalizers of isosceles triangles

Note also that if b = a = c, then A′ = E and for x = b − a = 0 we get M1N1 = AE and
M2N2 = HC.

Thus we conclude that every triangle with side-lengths b ≥ a = c has three equal
equalizers and can be constructed by compass and ruler.

(14)

Next, in the conclusions section, a summary for the conditions on the side-length for any
△ABC to have either one, two, or three equalizers and their distribution and exact location
on the sides is given. To make this summary more feasible, a visual diagram (Figure 6) is
constructed that predicts the number of equalizers according with the side-length of △ABC.

60
◦

A(1, 0)D(0.5, 0)B(0, 0) K(0.18, 0)P (−1, 0)

E

H

F

G

1

1©

3

AK = 2
√

2 − 2

3©

f

Figure 6: Illustrating the conclusions

3 Conclusions

First, the construction of the visual diagram (Figure 6).
Since every triangle A∗B∗C∗ with side-lengths c∗, a∗, b∗ is similar to the △ABC with

side-lengths c = 1, a = a∗

c∗ , b = b∗

c∗ and they have the same number of equalizers, we place the
△ABC in the coordinate plane so that B = (0, 0), A = (1, 0), C = (x, y), CA = b, CB = a.
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Let P = (−1, 0), K(3 − 2
√

2, 0) ≈ (0.18, 0), D = (0.5, 0) and AP be the semicircle with
center B and radius 1 and let E be the point of the semicircle AP so that the central angle
∠EBA = 60◦. Then every scalene △ABC with c = 1 > a > b has vertex C interior to the
region bounded by the line segments AD, ED, and the circular arc AE. Also every isosceles
△ABC with c = a = 1 has vertex C at the open semicircle AP . Next, we draw the circular
arcs GD with center A and radius 0.5 and FK with center A and radius 2

√
2 − 2 ≈ 0.82 that

meets ED at H, arc AE at F , and AB at K. Since AF = 2
√

2 − 2 and BF = AB = 1, we
get sin(∠F BA

2 ) =
√

2 − 1. So, by (13) ∠FBA = ∠B0 ≈ 48.94◦. Also we draw the segment
FD of the curve f defined by the parametric equations

x = 9 − 7t + 2(t − 3)
√

2 − 2t,

y =
√

(3 − t −
√

8 − 8t)2 − (9 − 7t + 2(t − 3)
√

2 − 2t)2; 0.5 ≤ t ≤ (2
√

2 − 2),

that represents all positions of the vertex C(x, y) such that

CB = a = 3 − b −
√

8 − 8b, 0.5 ≤ b = CA ≤ (2
√

2 − 2), AB = 1, t = CA = b.

Next, the side-lengths of triangles that have either one, two, or three equalizers are stated
and they can be easily predicted by referring to the visual diagram (Figure 5) where the label
of each region stands for its interior and for the number of equalizers.

So, let AB = c = 1 and the Cevians from the vertices of △ABC, through the Nagel
center, meet the opposite sides at A′, B′, C ′. Then we conclude from, (5), (iii-2), (10), (11),
(12), and (14) that:

(1) △ABC has only one equalizer MN in the following cases:
(i) c > a > b and c − a < b ≤ c

2 (i.e. C is a point of region 1 or the open ĜD; the
hat accent stands for the circular arc connecting G and D),

(ii) c > a > b, c
2 < b < (2

√
2 − 2)c and 3c − b −

√
8c(c − b) < a < c, (i.e. C is a point

of region 1⃝). Note that in both cases M , N lie on the largest and smallest sides
and

C ′M = CN =
3b − c − a +

√
(3b − c − a)2 + 8b(a − b)

4 ,

(iii) b < a = c and 0 < b < 2(
√

2 − 1)c. (i.e. MN is the median from vertex B and C
is a point of the open ÂF ).

(2) △ABC has two equalizers M1N1, MN in the following cases:
(i) c > a > b, c

2 < b < (2
√

2 − 2)c, a = 3c − b −
√

8c(c − b) < c, and so BM1 = BN1 =
c −

√
c(c−b)

2 , M1N1 ⊥ BR and M1N1 can be constructed by compass and ruler and
MN with endpoints on the largest and smallest sides AB and AC such that

C ′M = CN =
3b − c − a +

√
(3b − c − a)2 + 8b(a − b)

4

(i.e. C is a point of the open segment FD of the curve f),
(ii) b = (2

√
2 − 2)c < a = c. (i.e. C is the point F and ∠B ≈ 48.98◦). The equalizers

are the median from B and MN where M , N are the midpoints of C ′A, CA′. So
BM = BN = 2a+b

4 and MN ⊥ BR can be constructed by compass and ruler.
(3) △ABC has three equalizers in the following cases:

(i) (2
√

2 − 2)c ≤ b < a < c (i.e. C is a point of region 3⃝ or the open F̂H)



S. Abu-Saymeh: The Splitters and Equalizers of Triangles 53

(ii) c
2 < b < (2

√
2−2)c and b < a < 3c−b−

√
8c(c − b) < c. (i.e. C is a point of region

3 ). M1N1, M2N2 are equal in either (i) or (ii), have endpoints on the largest two
sides and M2N2 is the reflection of M1N1 with respect to the angle bisector BR,
see Figure 4,

A′M1 = AN1 =
3c − a − b −

√
(3c − a − b)2 − 8c(c − b)

4 ,

A′M2 = AN2 =
3c − a − b +

√
(3c − a − b)2 − 8c(c − b)

4 ,

and MN with endpoints on the largest and smallest sides AB and AC such that

C ′M = CN =
3b − c − a +

√
(3b − c − a)2 + 8b(a − b)

4 .

(iii) 2(
√

2 − 1)c < b < a = c (i.e. C is a point of the open F̂E). The equalizers in this
case are the median from B, M1N1 such that

C ′M1 = CN1 = x1 = 2a − b −
√

b2 + 4ab − 4a2

4

and, M2N2 such that

C ′M2 = CN2 = x2 = 2a − b +
√

b2 + 4ab − 4a2

4 ,

where M2N2 is the reflection of M1N1 with respect to angle bisector of ∠B, see
Figure 5(a).

(iv) c = a = b (i.e. C is the point E). The equalizers are the three medians,
(v) b > c = a (i.e. C is a point of the open ÊP ).

Note, as we have shown, that all equalizers that exist for a given △ABC can be con-
structed by compass and ruler.
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