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1 Introduction

Let us remember two proofs of the Pythagorean theorem. The central idea in both is to
express the area of the same figure in two different ways, match both expressions and deduce
what is sought. In the first case (proof attributed to the Pythagoreans in [1, pp. 27–28]
(Figure 1, left) the area of the square, in the second case (Garfield proof, Figure 1, central)
the area of the right trapezium. Garfield’s proof uses half the figure of the first proof. Looking
at the previous proofs, the following question emerge: Is it possible to use a quarter of the
figure from the first proof to make a new proof?

Figure 1: Diagrams to prove the Pythagorean theorem
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2 The Proof

AOBC has right angles AOB and BCA (see Figure 1, right), so AOBC is cyclic (the four
vertices belong to the same circle).

area AOBC = area ABC + area ABO = ab

2 + c2

4 ,

so
(area AOBC)2 =

(2ab + c2

4

)2
= c4 + 4abc2 + 4a2b2

16 . (1)

According to the Brahmagupta formula [2, p. 81] the area of a cyclic quadrilateral with
sides a, b, c, d is

√
(s − a)(s − b)(s − c)(s − d) with

s = a + b + c + d

2 , s = a + b + c
√

2
2 , s − a = −a + b + c
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2

2 = c
√

2 − (a − b)
2 ,

s − b = a − b + c
√
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2 = c

√
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2 , s − c = s − d = a + b

2 ,

(area AOBC)2 =
(

c
√

2 − (a − b)
2

)(
c
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)(
a + b

2

)2

=
(2c2 − a2 + 2ab − b2

4

)(
a2 + 2ab + b2

4

)
=

(2a2b2 + 2a2c2 + 2b2c2 − (a4 + b4 − 4abc2)
16

)
. (2)

From (1) and (2):

2a2b2 + 2a2c2 + 2b2c2 − (a4 + b4 − 4abc2) = c4 + 4abc4 + 4a2b2,

2a2b2 − 2a2c2 − 2b2c2 + a4 + b4 + c4 = 0,

a4 + 2a2b2 + b4 − 2a2c2 − 2b2c2 + c4 = 0,

(a2 + b2)2 − 2c2(a2 + b2) + (c2)2 = 0,(
(a2 + b2) − c2

)2
= 0,

a2 + b2 = c2.
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