The Pythagorean Theorem: One More Proof

Mario Dalcín

'ARTIGAS' Secondary School Teachers Institute-CFE Montevideo, Uruguay mdalcin00@gmail.com

Abstract. A new proof of the Pythagorean theorem is made. *Key Words:* Pythagorean Theorem *MSC 2020:* 51M04

1 Introduction

Let us remember two proofs of the Pythagorean theorem. The central idea in both is to express the area of the same figure in two different ways, match both expressions and deduce what is sought. In the first case (proof attributed to the Pythagoreans in [\[1,](#page-1-1) pp. 27–28] (Figure [1,](#page-0-0) left) the area of the square, in the second case (Garfield proof, Figure [1,](#page-0-0) central) the area of the right trapezium. Garfield's proof uses half the figure of the first proof. Looking at the previous proofs, the following question emerge: Is it possible to use a quarter of the figure from the first proof to make a new proof?

Figure 1: Diagrams to prove the Pythagorean theorem

ISSN 1433-8157/ \circ 2024 by the author(s), licensed under [CC BY SA 4.0.](https://creativecommons.org/licenses/by-sa/4.0/)

2 The Proof

AOBC has right angles *AOB* and *BCA* (see Figure [1,](#page-0-0) right), so *AOBC* is cyclic (the four vertices belong to the same circle).

area
$$
AOBC
$$
 = area ABC + area ABO = $\frac{ab}{2} + \frac{c^2}{4}$,

so

$$
(\text{area } AOBC)^2 = \left(\frac{2ab + c^2}{4}\right)^2 = \frac{c^4 + 4abc^2 + 4a^2b^2}{16}.
$$
 (1)

According to the Brahmagupta formula [\[2,](#page-1-2) p. 81] the area of a cyclic quadrilateral with sides *a*, *b*, *c*, *d* is $\sqrt{(s-a)(s-b)(s-c)(s-d)}$ with

$$
s = \frac{a+b+c+d}{2}, \quad s = \frac{a+b+c\sqrt{2}}{2}, \quad s-a = \frac{-a+b+c\sqrt{2}}{2} = \frac{c\sqrt{2}-(a-b)}{2},
$$

$$
s-b = \frac{a-b+c\sqrt{2}}{2} = \frac{c\sqrt{2}+(a-b)}{2}, \quad s-c = s-d = \frac{a+b}{2},
$$

$$
(\text{area } AOBC)^2 = \left(\frac{c\sqrt{2} - (a - b)}{2}\right) \left(\frac{c\sqrt{2} + (a - b)}{2}\right) \left(\frac{a + b}{2}\right)^2
$$

$$
= \left(\frac{2c^2 - a^2 + 2ab - b^2}{4}\right) \left(\frac{a^2 + 2ab + b^2}{4}\right)
$$

$$
= \left(\frac{2a^2b^2 + 2a^2c^2 + 2b^2c^2 - (a^4 + b^4 - 4abc^2)}{16}\right). \tag{2}
$$

From (1) and (2) :

$$
2a^{2}b^{2} + 2a^{2}c^{2} + 2b^{2}c^{2} - (a^{4} + b^{4} - 4abc^{2}) = c^{4} + 4abc^{4} + 4a^{2}b^{2},
$$

\n
$$
2a^{2}b^{2} - 2a^{2}c^{2} - 2b^{2}c^{2} + a^{4} + b^{4} + c^{4} = 0,
$$

\n
$$
a^{4} + 2a^{2}b^{2} + b^{4} - 2a^{2}c^{2} - 2b^{2}c^{2} + c^{4} = 0,
$$

\n
$$
(a^{2} + b^{2})^{2} - 2c^{2}(a^{2} + b^{2}) + (c^{2})^{2} = 0,
$$

\n
$$
((a^{2} + b^{2}) - c^{2})^{2} = 0,
$$

\n
$$
a^{2} + b^{2} = c^{2}.
$$

References

- [1] H. Eves: *Great moments in mathematics. Before 1650*. The Mathematical Association of America, 1983.
- [2] R. A. Johnson: *Advanced Euclidean Geometry*. Dover, 2007.

Received October 30, 2023; final form November 10, 2023.