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Abstract. 3D printing has revolutionized manufacturing. However, its appli-
cability has been limited due to lengthy printing times and the waste generated
from the use of support materials. To address these limitations, this study in-
troduces an approach for 3D printing of flat-folded structures. This approach
utilizes bistable structures, which possess two stable states. We target structures
consisting of connected bistable units. This alignment results in the formation
of a tubular structure that follows a two-dimensional or three-dimensional curve.
These structures have applications in product design, engineering, and architec-
tural design. Additionally, the structures can be flat-folded and printed in this
state, minimizing the use of support materials and printer space. We have demon-
strated the functionality of this approach by printing models in a flat-folded state
and then deploying them. To facilitate usage by designers, we have developed this
system within the widely used Rhinoceros + Grasshopper environment.
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1 Introduction

3d printing or additive manufacturing technologies have seen a decrease in cost and increase in
use for the past few decades. Additionally, the advances in accuracy and material availability
led to widespread use in industry. Their printing time, support materials disposal and size
constraints are the main limitations of additive manufacturing.

One approach to address such limitations is printing structures, in a folded state, and then
unfolding them to the final product shape. Noma et al. [8] use curve origami and flexible
hinges to reduce printing size, hence reducing material disposal and printing time. However,
the range of shapes that can be printed using this method is limited, and the downsizing can
be improved.
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The goal of this research is to develop a system that enables the 3D printing of structures
in a flat folded state without the need for assembly. Flat-foldable structures are shapes that
can be folded until all their facets are parallel. Among the flat-foldable geometries, bistable
structures [6], with two stable states will be the focus of our study. Structures capable of
maintaining their volumetric shape without the application of external forces. These shapes
were selected for their potential applications in fields such as robotics, architecture, and
industrial design.

Melancon et al. [6] introduced a bistable inflatable arc, arranging two units with different
deployment angles. While inspired by their work on bistable structures, our research focused
on applying this approach to 3D printable objects. Additionally, we extend the range of
shapes presented by arranging a series of units along a two-dimensional Bézier curve. Fur-
thermore, we expand the design possibilities by introducing a method for adding a sloop,
thereby accommodating the unit along a curve traced on a sphere.

Furthermore, various hinge techniques [1, 3–5] have been explored and applied to exper-
imental printed models. Rigid origami geometric constraints were considered for the model
design [9]. During the experiments, various materials and parameter values were tested un-
til successful printing of the models in a flat folded state. A range of models was designed
and printed, beginning with a basic hinged dihedral, then a four-degree vertex, and finally a
bistable unit. During the process, minimum parameters such as thickness and gap between
pieces were determined to ensure the deployability of the models.

1.1 Research Goal

In our research, the objective is to create a design and deployment system for the fabrication
of bistable structures inspired by flat-foldable origami designs, which also uses 3D printing
technology to produce the objects. The two-dimensional tubular structures designed by our
system are flat-foldable, 3D-printable, and bistable. These structures have potential applica-
tions in fields such as product design, engineering, and architectural design. Our approach
is mainly based on the bistable unit structure introduced in [6]. A unit is made of two basic
two bottomless quadrilateral pyramid parts with an additional strip area between them (Fig-
ure 1a and 1b). For convenience, we call each bottomless quadrilateral pyramid in the unit a
sub-unit.

In the construction process, previous studies [6] alternately use two types of units with
different angles (the angle θ of each unit, refer to Figure 1a, along a two-dimensional arc.
This approach results in an inflatable, bistable tubular structure. However, their technique
allows only arc-shaped structures. In essence, their design represents an alignment over an
underlying plane. Notably, this plane is orthogonal to every tangent vector of the flat-folding
direction. Our goal is to increase the diversity of possible designs by enabling the arrangement
of units along relatively arbitrary open curves (except for the curves with non-differentiable
points) through the placing of isosceles triangles along a curve.

Furthermore, to overcome the limitation of their research (i.e., only permit arc-shaped
structures), we propose a new type of unit to realize the alignment of bistable units along
two-dimensional curves traced on a sphere. In this manner, we can also develop intrinsically
3D tubular structures with our design system. The corresponding 3D printable models will
be printed in their flat-folded states.
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Figure 1: (a) The basic design of bistable units (two congruent sub-units are glued along their bottom
edges). (b) A bistable unit with an intermediate rectangular connection component. (c) Design of
bistable unit for the arrangement along a curve traced on a sphere. (d) Triangular building block.
(e) Top, front and Isometric view of a sequence of bistable units arranged along a two-dimensional
curve.

1.2 Proposed Method
At first, the basic principle of our design involves aligning a series of bistable units along a
two-dimensional curve, to construct an intrinsically two-dimensional tubular structure. For
this design, the corresponding design system requires the following inputs: a two-dimensional
Bézier curve U0; length of the line segment AB, denoted as ∥AB∥; a ratio of ∥AB∥ to h; and
an angle γ which determines the orientation of the first unit (refer to Figure 1e).

The two-dimensional curve outlines the intended top-view shape that the structure will
assume. The length ∥AB∥ determines the size of the units, and the ratio ∥AB∥/h is used to
calculate the height h of the intermediate strip between two sub-units. An initial input angle
γ (refer to Figure 1e) specifies the angle between the first AB (of the first unit) on the XY
plane and the tangent line at the endpoint of the input curve U0, which in turn determines
the specification of a sequence of angles {θi}. The angles {θi} are the angles when the units
reach deployed stable state. These terms will be introduced later. The additional input for
the three-dimensional design, the angle ω, is depicted in Figure 1c. Roughly speaking, it
adjusts the slope with which the units align along the curve traced on a sphere. A more
comprehensive explanation of the inputs will be provided in Sections 3.2 and 4. Finally, our
system will generate bistable, flat-foldable designs that are suitable for 3D printing. These
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designs will be along either a two-dimensional or a curve traced on a sphere, all of which
maintain a tubular shape.

2 Previous Strategy

In this section, we introduce the geometrical properties of the basic units proposed in [6] and
how they were assembled. Especially, we will focus on the constraints arising from bistability.
Finally, we will analyze the limitations and shortcomings of these components.

The purpose of [6] is to present a collection of origami-based structures for building
substantial inflatable systems. These constructions fall under the self-folding origami design
category with an external force generated by inflation, which further satisfies self-lockability
and bistability. The fundamental sub-unit of their structure is a bottomless quadrilateral
pyramid, as illustrated in Figure 1a, made of two pairs of compatible symmetric triangular
building blocks. The triangular building blocks are defined by the points A, B and C. The
point A will rotate around the AC axis, as shown in Figure 1d. It is observed that during
the rotation, the projection of vertex A must move along the line segment AD.

A particular state exists in which the projection of A aligns with the circle circumscribed
by vertices A, B, and C. In this state, the projection of Ac on the XY plane forms an angle
αxy = α. The displacement wC

A is defined in [6] as follows.

wC
A =

√√√√1 − cos2(βi)
sin2(αi + βi)

. (1)

This point corresponds to a stable state, distinct from the flat-folded state. Any state
intermediate between the flat-folded state and this stable state is unstable due to geometric
frustration. To achieve continuous deformation between these two stable states, in [6], they
linked stiff triangular faces with stretchable hinges.

They further calculated the relationship between angles α and β, operating under the
premise that αxy = α can only occur when both ∠ACB and the central angle ∠AOC are
obtuse. The constraint is expressed in the following formula:

α ∈
[
0, π

2

]
, β ∈

[
π
4 − α, π

2 − α
]
.

They qualified and investigated the volume of each quadrilateral pyramid, defined by ver-
tices on AC , AC

xy, B, and C. They also explored the incompatibility (or instability) brought
about by geometric frustration, as well as the inflation and deployable constraints. Finally,
they concluded that closed origami-based designs(which means the base curve is closed) can-
not be realized by this system because it is impossible to satisfy both bistability and inflata-
bility simultaneously. Given that our design system is based on a similar shape of units, it is
unable to realize closed origami-based designs, either.

They subsequently shifted their focus to open origami-based designs and succeeded in
establishing a system for creating designs along arcs. In our research, we expand their de-
sign approach, enabling designs not only along two-dimensional arcs but also along two-
dimensional curves of relatively arbitrary shapes (provided they remain open and without
any non-differentiable points) and along a curve traced on a sphere.
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3 Bistable Units Along a Two-dimensional Curve

In [6], the authors presented a design method that alternately aligns two types of units with
different angles α and β along an arc. In our research, we aim to increase the diversity of
possible shapes by extending the shape of the base two-dimensional curve to arbitrary shapes
as long as it remains open and without any non-differentiable point, otherwise. The presence
of such factors would result in over-lapping units. To achieve this, we first place isosceles
triangles along the curve and then define the unit in terms of the result of the placement.

3.1 Place Isosceles Triangles Along the Curve
The shape of the entire structure is primarily determined by the input two-dimensional curve,
which can have a relatively arbitrary shape, unlike the arcs used in [6].

Our method begins by placing isosceles triangles along the curve on the same plane,
designated as the XY plane in our system. The parameters for such a triangle include the
length of the two legs, ∥AB∥, apex angle θ, and direction of initial AB, determined by the
angle γ. The length ∥AB∥ is included in the input and constant along all the triangles, while
the apex angle θ can vary among different triangles along the curve. We denote the set of
these angles as {θk | k ∈ N} and compute them sequentially based on the inputs. After
the triangle placement, we arrange the units (which will be introduced in the next section)
according to {θk} along the input open two-dimensional curve.

The input Bézier curve is supposed to be generated from n control points P , being
{n > 1 | n ∈ N}. The input curve is required to be an open curve, as opposed to a closed
one, to prevent the possibility of unit overlap. Therefore, we utilize these control points to
accomplish the placement of the triangles using the following steps (see Figure 2c and 2d).

1. Connect the first (P0) and second control points (P1) with a line segment, denoted as l.
2. Draw a line segment, AB0, with length ∥AB∥, perpendicular to l. The midpoint of AB0

should coincide with P0.
3. Rotate AB0 around the first control point of the curve, by an angle of γ.
4. Draw an circle with a radius of ∥AB∥/2, centered at B0, B0 is considered as the endpoint

of AB0 on the concave side of the curve. Record the intersection of the arc with the
curve as the midpoint of the new line segment AB1 and B0 as the initial point of the
new line segment AB1.

5. Repeat Step 4 to create new line segments ABk until no new intersection between the
circles and the curve is found.

The internal angles between ABi and ABi+1 are the angles θi. The above process deter-
mines the precise projection of each unit onto the XY plane. This, in turn, establishes the
extent to which each unit is deployed. We translate the outcome of this process into {θk}.
The range of each θk will be detailed in Section 3.2.

3.2 Adjusted Design of the Unit
We use one of the bistable units proposed in [6], with the strip section located between two
bottomless quadrilateral pyramids (as depicted in Figure 2a). A bottomless quadrilateral
pyramid comprises two pairs of equilateral triangles, as seen in the blue and green areas
in Figure 2b. These are referred to as ABC and A′B′C ′, respectively. The angle, θ, must
be considered when two equilateral quadrilateral pyramids are joined together to reach a
deployed state. Moreover, for the triangles ABC and A′B′C ′ to simultaneously achieve their
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Figure 2: (a) Top, front, and side view of a bistable unit. The movement of the unit is illustrated
in the upper-right corner. (b) Top view of two types of triangular which comprise the unit. (c)
The placement of isosceles triangles along an input two-dimensional curve with parameter inputs
∥AB∥ and γ. (d) How the bistable units are arranged along the input two-dimensional curve.

stable states, their respective α values must be equal, i.e., α = α′, which also gives rise to the
following formula [6]:

β′ = arctan
( sin β

cos(β + α) cos α
− tan α

)
. (2)

The unit to utilize is supposed to be defined in terms of the angles α and β of the triangle
building block, and the length of every AB, ∥AB∥. Correspondingly, the output of this
triangle placement process includes the specialized line segments {ABi}i∈N fixed on the plane
and the angles {θi}i∈N. The following equation defines each θi in relation to the pair of angles
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(αi, βi), refer to Figure 1(e):

θi

2 = arcsin

√√√√1 − cos2(βi)
sin2(αi + βi)

. (3)

Since in the showed formula (3), θi is totally decided by (αi, βi),every combination within
the range of αi and βi, yields a corresponding θi. When we further extend the result, to
arrange the bi-stable units on a curve traced on a sphere (which will be introduced in the
next section), these angles and the relationship between them will be redefined. In the
next section, we show that for each θi, there is only one corresponding setting of (αi, βi)
that satisfies the geometric constraints for the unit for the curve traced on a sphere. For
convenience, we denote them without the subscript in the next section.

4 Adding Slope to the Array of the Bistable Units

In this section, we first investigate the geometry of the shape formed by three connected units
(see Figure 3a). Its projection onto the XZ plane emulates the shape of an arc. Following this,
we will further discuss the geometric constraints of our design for a curve traced on a sphere.
The design is then implemented as a program running in the Rhinoceros + Grasshopper
environment.

Our design employs units made up of two differently-sized quadrilateral pyramids. A
bistable state requires that each unit must consist of the same pair of different bottomless
quadrilateral pyramids. These two kinds of quadrilateral pyramids are distinguished by their
sizes; the larger one is called the outer sub-unit, and the other is called the inner sub-unit
(see Figure 3b).

The area between two quadrilateral pyramids in each unit is designed as a group of
trapezoids, the trapezoids that represent the contact area between units are denoted as contact
trapezoids, and the trapezoids bordering the structures are denoted as border trapezoids.
Note that when designing bistable units along a two-dimensional curve, the shape degenerates
into a rectangle. Since all the units share the same ∥AB∥, the trapezoids should share the
same shape. We denote the length of the longer base of the contact trapezoids as ∥AB∥out(i.e.,
the length of the base of the outer sub-unit), the length of the shorter base ∥AB∥in (i.e., the
length of the base of the inner sub-unit), and the height h.

We must employ isosceles trapezoids to connect the units due to their symmetrical nature.
The acute base angle is defined as an input, denoted by ω. As illustrated in Figure 3d, the
endpoints of ABout and ABin are positioned on two distinct spheres, both of which share the
same center point. As a result, this design is only applicable to curves traced on a sphere
(see 3c).

The reason is that each group of trapezoids, representing each unit, should be embedded
on the surface of a quadrilateral-based pyramid with a vertex labeled as V . If another group
of trapezoids is placed adjacent to it, sharing a contact trapezoid, they would also share the
vertex V (see Figure 3c). This would result in all endpoints of the longer base of the contact
trapezoids aligning on the same sphere and all endpoints of the shorter base aligning on a
smaller sphere.

The four trapezoids form a shape as illustrated in Figure 3d. Due to the requirement
for flat-foldability, the extensions of their legs should converge at the same vertex V . This
vertex is determined by the angle ω. Following the constraints of flat-foldability of Kawasaki
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Figure 3: (a) Three connecting bistable units along a curve traced on a sphere. (b) A single bistable
unit for a curve traced on a sphere, whose inner sub-unit is colored blue, the outer sub-unit is
colored green, and the intermediate strip made of trapezoids is colored grey. (c) A sequence of
connecting isometric isosceles trapezoids with their endpoints located on two concentric spheres.
(d) Intermediate area between two bottomless quadrilateral pyramids. (e) Unfolded intermediate
area.

theorem [2], a vertex can be considered flat-folded when the alternating sum and difference of
the angles at that specific vertex equals zero. The base lengths of the two smaller trapezoids
in Figure 3d should be ∥AB∥/2, whereas the two larger trapezoids should have base lengths
of ∥AB∥. That is, ∥A′C ′∥ = ∥AB∥/2 (see Figure 3d, 3e). Consequently, we can derive the
following formula, where α′ and β′ are depicted in Figure 2b:

∥AC∥ sin(β)
cos(π

2 − (α′ + β′)) = ∥A′C ′∥
∥AB∥

= 1
2 . (4)

As aforementioned, α′ = α and the relationship between β′ and β follows Equation (2). We
compute the ratio ∥A′C ′∥/∥AB∥ and visually represent it using Grasshopper and AutoCAD,
as depicted in Figure 4a, where the Z component representing the result of the ∥A′C ′∥/∥AB∥
equation, the Y component representing β, and the X component representing α. The grid-
like blue surface represents all possible combinations of the triplet (α, β, ∥A′C ′∥/∥AB∥). The
red two-dimensional curve represents the solution set where ∥A′C ′∥/∥AB∥ = 1

2 .
The combinations of α and β that yield ∥A′C ′∥/∥AB∥ = 1/2 can be determined by
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Figure 4: (a) A three-dimensional vision illustrating the ratio of the ∥A′C∥/∥AB∥ in terms of α and
β. The red curve indicates the solution set of (α, β). (b) The top view of illustration (a), which
indicates the range of θ. The orange curve indicates the solution set of (α′, β′). (c)Two units for
a curve traced on a sphere. (d) Top, front, and side view of an arrangement of the bistable units
along a curve traced on a sphere.

examining the projection of the solution curve, as depicted in Figure 4a. In Figure 4b, the
corresponding combinations of α′ and β′ for each α and β combination are represented by an
orange line. It is evident from the figure that the range of θ is constrained by the resulting
values of α′ and β′. Linking this finding with Equation (3), we conclude that 0 < θ < π

3 .
The input angle ω will define the location of the center vertex V as shown in Figure 4c,

V also is the center point of the sphere where the inputted two-dimensional curve is traced
(refer to 3d).

5 3D Printing

Our objective includes devising a more efficient process for producing bistable structures using
3D printing. In this aspect, our design is highly compatible with this objective, as it allows
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for the structures to be printed in a flat-folded state. We successfully 3D printed various
hinged designs, starting with a basic hinged dihedral to a bistable unit.

To identify the most suitable technique, we first separately tested the hinged dihedral, i.e.,
the hinge between every pair of neighboring faces. Some of the practically tested components
are shown in Figure 5b and 5c, which have different parameters. Next, we tested the combina-
tion of four faces together, we refer to the entire of these four hinges as a Hinged four-degree
vertex [12] (see Figure 5e–5i). The final experiment consisted of printing a bistable unit for
a three-dimensional curve (Figure 6c and 6d). Throughout the manufacturing process, all
components were printed in their flat-folded states.

Gap between planes

Gap

Material thickness

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5: 3D printing results. (a) Hinge design, side view of its flat-folded state and its unfolded
state. (b) Examples of our printed dihedral rotational hinges (Hinges 1,2,3 and 5). (c) Example
of functional dihedral rotational Hinge (Hinge 4). (d) An example of our printed dihedral flexible
hinges (Hinge 6). (e) An example of a developable four-degree vertex with rotational hinges
and support material. (f) Photo of Hinges 7, 8, and 9. Hinges 7 and 8 failed and broke during
deployment, while Hinge 9 successfully deployed. (g) An example of a developable four-degree
vertex (Hinge9). (h)The unfolded state of the printed four-degree vertex (Hinge9). (i) An example
of a non-developable four-degree vertex.
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5.1 Hinged Dihedral
Two materials were evaluated for a hinged dihedral: rigid PLA and flexible TPUa. For
the PLA hinge, the “Axis Shift Technique” [10] was used with PVA (water soluble) support
material. Segmented hinges enabled rotation, with results for different segmentation shown
in Table 1 and Figures 5b and 5c. Specifically, the materials were 0.4 mm black PLA for the
main structure and 0.4 mm natural PVA for support. Figure 5d shows a TPUa hinge attached
to a rigid PLA face without segmentation. Bonding the printed PLA and TPUa materials
presented a key challenge due to their differing physical properties [11]. To address this, an
interlaced chess pattern between materials was implemented[7].

Comparing the results, we found that the rotational hinge made of PLA outperformed
the flexible hinge. The rotational hinge technique allows for printing with support materials,
enabling the creation of complex shapes, which aligns well with our design requirements.
Conversely, the flexible hinge requires two extruders for printing, one for PLA and one for
TPUa. This limitation also precludes the use of soluble support materials. Therefore, the
rotational hinge made of PLA was chosen for further experimentation.

Table 1: Hinged dihedral- rotational hinge
Hinge Parameters Hinge1 Hinge2 Hinge3 Hinge4 Hinge5 Recommended

Values
Rotation Angle (degrees) 0 8 0 0 5 0º
Num of Segmentations 3 5 5 7 7 >5

Gap length (mm) 1 0.6 0.2 0.4 0.4 0.4
Gap between planes (mm) 3 0 1.2 0.8 0 0.8

Face thickness (mm) 1.5 1 0.8 0.8 0.6 0.8
Print time (min) 45 53 29 22 25

Profile (mm) 0.3 0.2 0.3 0.3 0.3
length x (mm) 45 45 45 45 45
length y (mm) 36 36 36 36 36
length z (mm) 6 7 03 2.4 4

The failed ones are colored red, and the optimal ones are colored green.

5.2 Hinged Four-Degree Vertex
Next, we assessed the performance of a Hinged four-degree vertex with the aforementioned
rotational hinges made of PLA. Since we need to print the unit with all four hinges together,
we print it in its flat-folded state. Considering the overall thickness and overlapping, we
represent the flat-folded state by its side view, as illustrated in Figure 5a. To enhance ro-
bustness, we thicken the face. Three models were printed under these conditions, as depicted
in Figure 5f, 5g and 5h, and the experimental results are provided in Table 2.

Additionally, we printed a non-developable four-degree vertex, varying the parameters in
the same manner. The printed model is depicted in Figure 5i.

5.3 Bistable Unit
Next, a model for a flat-folded bistable for a three-dimensional curve unit was designed for
printing. Achieving the desired bistability involves careful consideration of hinge alignment.
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Table 2: Hinge Group for a four-degree vertex
Hinge Parameters Hinge7 Hinge8 Hinge9 Recommended

Values
Rotation Angle (degrees) 0 0 0 0
Num of Segmentations 5 5 5 5

Gap between planes (mm) 0.4 0.8 0.6 0.6
Face thickness (mm) 0.8 0.8 1.2 1.2

Print time (min) 23 43 93
length x (mm) 30 20 50
length y (mm) 25 36 32
length z (mm) 4 5.6 6.6

The values that lead to failure are represented in red, while the minimum successfully values are
highlighted in green.

The incorporation of a double hinge, referred to as ‘Offset crease’ in [3], was necessary to
achieve the desired movement, as illustrated in Figures 6a and 6b. This design comprises
two parallel hinges with a small gap between them, facilitating free rotation of the panels
without interference. Due to its intricate shape, the model was printed with high-resolution
acrylic and successfully deployed with 1 degree of freedom (1DOF) movements, as intended
(see Figure 6c and 6d).
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Figure 6: Bistable Unit for 3D Printing. (a) Isometric view of the geometry of a bistable unit with
a double hinge. (b) Sides views of the hinged bistable unit. (c) Printed model of a bistable unit,
deployed. (d)Printed model of a bistable unit, flat-folded.

6 Conclusion and Future Work

In this research, we investigated 3D printable bistable structures based on origami designs.
We renovated the design from [6], and proposed a method for constructing curved designs
applicable to both two-dimensional and curves traced on a sphere. The unit can be relatively
freely decided by users through the user interface (parameters) of our system. We have also
experimented with our design using the 3D-printing technique in practice. The origami-
based design enables easy printing of components from a flat-folded state, demonstrating
the potential for industrial manufacturing of these structures. This approach is particularly
useful for the design of space-saving items that expand into functional shapes when needed.
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So far, our design system is limited to creating shapes that follow a specific type of curve,
namely, those located on a sphere. This limitation arises from the triangle placement method.
Moreover, due to this same reason, our system is incapable of handling any form of closed
curve input. In future work, our objective is to 3D-print the entire bistable structure along a
curve traced on a sphere. This will entail connecting the units with rotational double hinges,
employing methodologies reminiscent of those previously used. Subsequently, our focus will
shift towards extending the adaptability of this system to accommodate a variety of curve
types beyond the current ones supported.
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