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Abstract. This article deals with an old problem: Constructing a conic section
from its five points. Our goal is to provide feasible construction that can be
done even without more profound knowledge of projective geometry. For our
construction, we use the concept of affinity.
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1 Introduction

There is no topic in classical geometry as well-known and much-studied as constructing conic
sections (or briefly conics) from its five points. It’s importance is evident in many applications
of mechanical engineering, civil engineering, architecture, and other applied sciences. The
beauty of the topic is that it raises difficult questions that can be approached with elementary
tools. This article provides constructions (and corresponding theories) that can be taught
to high school and university students. We recall some crucial facts about conic sections
in the rich literature. We use the concepts of affinity in our construction. We assume the
reader knows the basic definitions and constructions of conics and the concepts of focus, axis,
tangent, and main circle (the circle around the conic center with semi-major axis as radius).
We can avoid Pascal’s theorem, because we get an elementary construction to the problem:
Construct the second intersection point of a line with a conic through a known point of the
curve if we know the other four points of the conic in general position. To do so we use
Apollonius’ theorem on “locus concerning three or four lines” which can be found in the third
book of Appolonius [1, Prop. III. LV] and was investigated later by Descartes in the first
chapter of [3]. (For more information, see Chapter VII in [5].) This problem implies that five
points in a general position determine the conic section. In the twentieth century, Budden
gave an elementary proof for this in [2], but neither Apollonius nor Budden gave construction.
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Figure 1: Construction of an ellipse from its centre, a line of its axes and two points not on the axis.

2 Four Constructions Using Affinities

First, we recall the most known definition of conic sections.

Definition 1 (based on foci). The ellipse is the locus of those points P of the Euclidean plane
E for which the sum of distances from two given points F1 ̸= F2 is a constant 2a greater than
|F1F2|. The hyperbola is the locus of those points P of the plane E for which the absolute
value of the difference of its distances from two given points F1 ̸= F2 is a constant 2a less
than |F1F2|. The parabola is the locus of those points P of the plane E, which are at equal
distances from a given point F and a given line l, where F /∈ l.

In the following constructions, affine mappings play an essential role. We note that the
affine image of an ellipse, parabola and hyperbola is also the same type of conic because points
at infinity are sent to points at infinity. The easiest way to solve the following exercises is to
state the known properties of affinity, from which follows that the ellipse is the orthogonal
affine image of its principal circle, each hyperbola is an affine image of the hyperbola y = 1

x
of a

Cartesian coordinate system, and every two parabolas with a common axis are the orthogonal
affine images of each other with a particular axis of affinity perpendicular to the axis of the
parabola. For a non-familiar reader, we propose the Chapter 2 of the book [4].

2.1 Ellipse from the Line of one Axis and two Known Points

Let P and Q be the given points and denote by t one of the given axes through the centre O
of the ellipse. Let F be the midpoint of the segment PQ and denote by G the intersection
point of the line t with the line PQ. The circle with diameter OG meets the vertical line
through F in the points F ′. The affinity whose axis is t and which sends the points F to F ′

and P to P ′ also sends Q to Q′. Now the length of the segment OP ′ is equal to the length
of the segment OQ′ implying that the image of the searched ellipse at this affinity is a circle.
The radius of this circle is the length of the major semi-axis, and we can get easily also the
endpoint of the minor semi-axis using these connections (see Figure 1). The foci are obtained
from the axes in the well-known manner.
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Figure 2: Construction from the direction of the diameters of the ellipse its axes.

2.2 Construction of the Axes of an Ellipse from its Centre and two
Pairs of its Conjugate Diameters

A conjugate pair of the diameter of an ellipse is the orthogonal affine image of an orthogonal
pair of the diameter of the mean circle concerning the affinity that sends the mean circle into
the ellipse. From this, we can see that two pairs of conjugate diameters hold the property
that every angle domain of the first pair contains one of the diameters of the second one,
moreover the acute domains contain the major axis of the ellipse.

Determine the lines of the axes as follows (see in Figure 2). Consider a skew affinity that
sends the two conjugate diameters into pairs with respective orthogonal elements. To do so,
intersect the four given diameters with a line at respective points P , Q, P ′, Q′, such that
∠POQ will be obtuse. This line will be the axis of the affinity we search for. (The pairs
{P, Q} and {P ′, Q′} obviously separates each other.) Consider the intersection point K of
the half-circles about the segments PQ and P ′Q′. A circle passing through the respective
centres O and K, centred on the axis of affinity, intersects this line at two points F and G,
which are on the legs of the invariant right angle of this affinity. Hence, the points F and G
lie on the lines of axes since only one pair of the conjugate diameters exists, whose angle is
a right angle, the pair of the two axes. The lines of the axis and the endpoints of the given
diameters determine the ellipse by the construction in Subsection 2.1.

2.3 Hyperbola Construction from two Asymptotes and a Point
First, we construct that vertex B of the real axis, which bisects the angle domain of the
asymptotes containing the given point P . The product of the affine distances x and y of the
point P from the asymptotes is independent of the position of P . (By Theorem 8.1.2 in [4],
the area of the corresponding parallelogram with opposite vertices O and P is independent
of the choice of the point P . Still, it is equal to xy sin φ, where x, y are the affine coordinates
of P and φ is the angle of the asymptotes.) For the point B, these distances are equal to
each other; we get the expected value as the geometric mean s of x and y. The tangent b at
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Figure 3: Construction of hyperbola from its asymptotes and one of its points.
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Figure 4: Construction of parabola from its axis and two of its points.

the vertex B intersects the asymptote two points, which lie on the circle with centre O and
through the foci (see Figure 3).

2.4 Parabola from its Axis and two of its Points

We use the fact that the affine image of a parabola is also a parabola. If the axis of an
orthogonal affinity is parallel to the directrix, then the axis of the image is the same as the
axis of the original one. This observation means that the axis of symmetry is unchanged,
and the image of the vertex of the parabola is the vertex of the image parabola. On the
axis t, choose a point F ′ and determine the directrix d′ such that one of the given points,
say P , will be a point of the parabola (F ′, d′). Denote by C ′ its vertex. On that diameter q
of this parabola, which contains the other given point Q, determine the unique point Q′ of
the parabola (F ′, d′). (Of course, if the line q and the line d′ intersect at the point E, the
orthogonal bisector of the segment F ′E intersects the point Q′ from the line q.) Consider
that orthogonal affinity, whose axis is the line s through the point P and perpendicular to
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the axis t of (F ′, d′), sends the point Q′ to the point Q. This affinity sends P to P ′ = P
and C ′ to a point C of t, the vertex of the image parabola. Let p denote the diameter of the
two parabolas passing through point P , and let c denote the tangent of the image parabola
at the vertex C. Finally, let R be the intersection point of the tangent c with the axis of
parallel lines p and t. We know that RP is tangent to the image parabola at point P , and
the reflection of the line p to the tangent RP intersects the axis t at the focus F . We also
get the directrix d from the points F and C (see Figure 4).

3 Construction of a Conics from its Five Points

We assume the five points in question are in a general position, so three are not collinear. We
recall Apollonius’ problem of locus, which concerns three or four lines. He investigated and
proved the following problem. If given four lines a, b, c, d in general position, then the locus
of points P of the plane for which the products d(P, a)d(P, c) and d(P, b)d(P, d) of distances
from points to lines has a given ratio forms a conic section. Of course, the intersection points
a ∩ b, b ∩ c, c ∩ d and d ∩ a always satisfy this property. The required conic contains these
points. It is possible to choose the ratio such that the conic goes through on an arbitrary
fifth point P of the plane, which doesn’t lie on these lines, respectively. From this, he proved
that five points uniquely determine a conic section. Descartes could solve this problem easily
by using his coordinate geometry. Shortly recall his argument. He obtained the distance of
a point to a line, substituting its coordinates to the normal equation of the line (which is a
linear form). Hence, the above products are quadratic expressions of the coordinates of the
unknown points. If their ratio is constant, then the coordinates of the points are solutions in
a quadratic equation. Hence, in general, the locus is a proper conic section.

3.1 Construction of Parallel Chords from Five Points of the Conic
Section

Our construction is based on the observation that we can consider the conic as the above
Apollonius locus. In Figure 5 we denote the given points of the conic by black circles. Four of
them successively join with the lines a, b, c and d and the fifth point is P . The perpendicular
feet of P to the lines a, b, c, d are Pa, Pb, Pc and Pd, respectively. Consider the line a′ through
P and parallel to a. We construct its second point Q of intersection concerning the conic
section. Thus, we get a pair of parallel chords for the conic.

The similar notation of the point Q gives the feet Qa, Qb, QC and Qd, respectively. Denote
by B, C, D the intersection points of b, c, d with a′ respectively. We get the ratios by the
theorem of parallel sections:

PPa = QQa,
PPb

QQb

= PB

QB
,

PPc

QQc

= PC

QC
, and PPd

QQd

= PD

QD
.

Since PPa · PPc = αPPb · PPd and QQa · QQc = αQQb · QQd we get the equality

PB · PD

PC
= QB · QD

QC
.

Since P is given, we have to construct point Q on the line a′ for which the above equality
holds. Consider the top picture in Figure 6. Here M and N are the respective endpoints of the
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Figure 5: Points on parallel chords.

chords of the Thales circle about B and D perpendicular to a′. Let C ′ and C ′′ be the second
intersection points of the Thales circles through C and the points M and N , respectively.
Since

PB · PD = PM2 = PC · PC ′,

QC · QC ′′ = QN2 = QB · QD,

then
PB · PD

PC
= QB · QD

QC

if and only if PC ′ = QC ′′. For simpler notation, denote by x and y the lengths of the segment
PC ′ and BP , respectively; moreover, denote by x′ = x and y′ the lengths of the corresponding
segments QC ′′ and QD at Q. (From the order of the points C, B, P and D in Figure 6 we see
that P lies between B and C ′ and C ′′ lies between Q and D.) To determine Q, we construct
the segment y′. Let r and R be the respective radius of the circle through CMC ′ and CNC ′′,
and k denotes the radius of the circle BMD. Then we get the equalities:

x(2R − x) = QN2 = y′(2k − y′) and 2R + y′ − x = CD = 2r + 2k − y − x.

From the second equation, we get

2R = 2r + 2k − y − y′

and the first one gives the equation

x(2r + 2k − y) = y′(2k + x − y′). (1)

We can see the construction of QD = y′ in the bottom picture in Figure 6.
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Figure 6: Construction of the second point of intersection on a line parallel to a given chord.

• Let E be the point from which DE = x and the order (CDE) holds on a′. Draw a
circle of radius r + k − y

2 through C and E. Then the tangent of the circle BMD at
D intersects the point L from the circle CLE. (We now know that DL2 is equal to the
left side of Equation (1).

• Draw a circle of radius k + x
2 whose centre lies on a′ and goes through L. (From the

two possibilities, choose the one whose centre doesn’t separate the points B and D.) If
it intersects the line at the points F and G, then one of the lengths of the segments FE
and GE is equal to y′ while the other one is equal to 2k + x − y′. Since QD = y′ and
QB = 2k − y′, the location of Q on the line a′ can be determined uniquely from getting
metric data. (In Figure 6, y′ = DF hence F ≡ Q.)

Remark 1. This problem has a solution in all cases which arise in the discussion of the order
of the points B, C, D and P in a′. The hardness is that we should use two distinct methods
to adopt the required equality of products according to the geometric position of the points
in its line. In the above construction, both P and Q separate B, D, and we could use the
intersecting secants theorem1 when both intersection points are inner points of a circle. If
this property does not hold, we can also use this theorem for the outer point of a curve. In
this situation, e.g. if P doesn’t separate B and D, the length of PM is equal to that of the
tangent to Thales-circle of BD from P . From Equation (1), we see that the terms’ signs
may also have plus or minus in both parentheses of the two sides. This fact means there are
sixteen different equations on the unknown value of y′. In this paper, we give a construction
for three of them and leave the other constructions to the reader. This complicated discussion

1The intersecting secants theorem says that if we draw lines through a point of the plane which intersects a
given circle, then the product of the signed distance of the given point from the points of intersection in
the circle is a constant. This constant is positive if the point is outside the circle, negative if it is an inner
point and zero if it lies on the circle.
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Figure 7: Construction of parallel chords and the centre of the conic.

prevented Apollonius from providing a general explanation of this problem because there is no
doubt that he knew all the tools needed for such constructions. The remaining two analogous
constructions of this article will prove where they arise.

3.2 Construction of a Conic Section from its Five Points
Let P1, P2, . . . , P5 be five points on the plane. We construct the essential data of that conic
section defined by these points. First, we determine two pairs of parallel chords of the conic
with the method of Subsection 3.1, see the left top and bottom pictures in Figure 7.
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First, we construct point Q = P6 in the top left picture. The given data forces solution
different from those we investigated in Subsection 3.1. Thus, we prove it. (In the left top
picture of Figure 7 we can follow the proof.) Since the order of the points P = P1, B, D and
C holds (PBDC) in a′, C ′ has to lie on the segment PB. From this, we also deduce that Q
has to lie between D and C ′′ where C ′′ is defined by the equalities QC ′′ · QC = QD · QB,
and QC ′′ = PC ′. If PC ′ = QC ′′ = x and C ′B = y, QD = y′ and as the earlier construction
BD = 2k, CC ′ = 2r and CC ′′ = 2R we get the following equation system:

QC ′′ · QC ′ = x(2R + x) = y′(2k + y′) = QD · QB and 2R = 2r − 2k − x − y − y′.

From which we deduce the equality

x(2r − 2k − y) = y′(2k + y′ + x).

This equality differs from Equation (1) only the signs of the terms in the parenthesizes. From
this, we can construct y′ and Q by the following steps.

• The construction of C ′ is standard; around P , we draw a circle with a radius of the
tangents from P to the circle with diameter BD and draw a tangent from C to this
circle. The point of tangency is M , (which is also the intersection of the circle above
and the Thales circle of the segment PC). Its orthogonal projection to a′ is C ′.

• The circle CLF has diameter 2k+x = CD+DF = CD+PC ′, the chord DL orthogonal
to a′ has length x · CD = x(2r − 2k − y).

• Draw a circle with diameter DE = BD+x = 2k+x and construct the tangent of it with
a length of DL with one endpoint on a′. (This tangent goes through the intersection
of the segment LO with the circle if O is the centre of the circle.) We thus get Q as
the endpoint of this tangent on the line a′ because QD × QE = QD × (QD + 2k − x)
implies that QD = y′.

We construct the other pair of parallel chords from the points P1, P2, P3, P6 and P5. The
seventh point is Q = P7, and the original data differ from the position of C and C ′ concerning
the pair P , D. Our notation again: PC ′ = x = QC ′′, PB = y, QD = y′ from which now:
QP = C ′C ′′ = 2r − 2R and C ′′D = x − y′. (Again, we have BD = 2k, CC ′ = 2r and
CC ′′ = 2R.) The equation system is x(x − 2R) = y′(y′

2k) where 2R = 2k + 2r + y − y′, and so

x(2k + 2r + y − x) = y′(x + 2k − y′).

The solution requires the use of both versions of the intersecting secants theorem, and hope-
fully, it can be read from the bottom picture of Figure 7.

Consider a chord AB from the parallel family and connect its midpoint F with the centre
O of the conic. (In the case of the parabola, draw a parallel with the axis of the parabola.)
Consider the line OF as the axis of a skew affinity sending the point A to the points A′ with
the property, then A′F is orthogonal to OF . The image of the conic is a conic of the same
type, whose diameter is the line OF . Since OF is the perpendicular bisector of the image
A′B′ of AB, OF is an axis of the image conic. Thus, all chords of the image parallel to
A′B′ halving by OF , implying that OF halves all chords of the original conic parallel to AB.
Hence, a line connecting the midpoints of two parallel chords is always a diameter. Thus, a
line connecting the parallel chords’ midpoints contains the conic’s centre. (In the case of a
parabola, it is parallel to the axis; see the right top picture in Figure 7.) From an Euclidean
point of view, we have two different options.
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Figure 8: Construction from the direction of the parabola’s diameters, focus, and axis.

• In the first case, the diameters are parallel, which means that the centre lies at infinity,
i.e. the conic section is a parabola. In this case, we know the direction of the axis, and
by affinity, we can determine two tangents from the known points. Take an affine image
of the data in which a chord and its diameter go to an orthogonal pair of lines. The
axis of the image parabola is the image of the diameter. We can construct the focus
and directrix with the result of Subsection 2.4; hence, we can also get the tangents at
the known points. Using the inverse of two from these tangents, we quickly construct
the parabola’s further data (see this construction, e.g. in [4].) This construction can
be seen in Figure 8, the original data denoted by letters with stars, their affine images
by letters, and we denote the helping correspondence by letters with a prime. The
diameter is the line that connects the midpoints of the parallel chords T ⋆S⋆ and P ⋆R⋆.
The axis of the affinity goes through the point Q⋆. In the last step, we constructed the
focus and the directrix from the tangents at the points C⋆ and P ⋆, respectively.

• In the second case, we must distinguish between the case of a hyperbola and an ellipse.
Two pairs of conjugate diameters are available at the centre O, so if we take a line that
intersects these lines in four points, we have two possibilities.

– In the first, the corresponding pairs of points cross each other. As we saw in
Subsection 2.2, the searched conic is an ellipse, and we can get its axes with the
method of Subsection 2.2. After determining the line of axes, we can use the
method of Subsection 2.1 to get the required data of the ellipse.

– If the two pairs of points do not cross, we get a hyperbola case. First, we define



Á. G. Horváth: Affine Construction of Conic Sections. . . 39

P

O O

P’ P’

QQ’
Q’

R

F F

GG’ G’

R’ R’

A’

B’

A’

B’

A

B

Figure 9: Construction from the direction of the diameters of the hyperbola its asymptotes.

the asymptotes and then apply the construction of subsection 2.3. Note that we
can determine the asymptotes of the hyperbola from the points P , Q and R and
the centre O (see Figure 9).
In fact, by applying skew-affinity, we can map the segment PQ to the segment
P ′Q′, which is perpendicular to the line OF , where F is the midpoint of PQ
(see the left image in Figure 9). This affinity maps R to R′ and the midpoint
G of the segment QR to the midpoint G′ of the segment Q′R′. The asymptotes
of the new hyperbola defined by the points P ′, Q′, R′ and the centre O can be
obtained using the method of the right-hand image of Figure 9. In this picture,
we use the midpoint G′ of the segment Q′R′ as the midpoint of the segment A′B′,
where the sought asymptotes are OA′ and OB′. Therefore, we know the vertex
O of the triangle OA′B′, the angle bisector at this vertex, OF , and the median
OG′ of the triangle. We know that the segment bisector perpendicular to the side
A′B′ intersects the angle bisector OF at a point of the circumscribed circle of the
triangle so that we can construct the vertices A′ and B′ as the intersection of the
circumscribed circle with the line A′B′. Finally, using the previous affinity again,
we get the points A and B of the asymptotes from the points A′ and B′ (see the
left image of Figure 9).

Remark 2. Using Pascal’s theorem on a hexagon inscribed in a conic section, we can essentially
simplify the first part of this construction and the parabola case. Such constructions in a
course on projective geometry are practice exercises corresponding to the theorem. The
construction of this article is not the simplest but uses the most elementary tools.

4 Conclusion

Given its five points, we show a path of constructions that leads to the solution of a conic
section. We used only the elementary properties of conics and affine solutions for engaging
exercises from the world of such problems. Our method does not have a universal character
in that one construction should solve all metric situations. However, we can analogously
reproduce the elements of our path of constructions in all generic cases.
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