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Abstract. We prove that
(1) a tetrahedron is isosceles if and only if the vertices of its twin tetrahedron are
the excenters of the tetrahedron,
(2) if a tetrahedron is orthocentric, and if the orthocenter is either the incenter,
the centroid, or the circumcenter, then the tetrahedron is regular,
(3) a tetrahedron is regular if and only if the four ex-spheres are tangent to the
in-sphere, and
(4) we prove an inequality relating the in-radius, circumradius, and the distances
between the in-center and the vertices of a tetrahedron.
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1 Introduction

Let us start with definitions.

Definition 1. A triangle ABC is denoted by △ABC. A tetrahedron ABCD is denoted by
∇ABCD. The sphere inside ∇ABCD tangent to the four faces △ABC, △ACD, △ABD,
and △BCD is called the in-sphere of ∇ABCD. Let S denote the in-sphere of ∇ABCD. The
center and radius of S are called in-center and in-radius, and denoted by I and r, respectively.
The sphere, outside of ∇ABCD, on the opposite side of the vertex A with respect to the
plane BCD, tangent to the face △BCD and tangent to the extended adjacent faces △ABC,
△ACD, △ABD is called an ex-sphere, and it is denoted by SA. The center and the radius
of SA are called the ex-center and the ex-radius, and denoted by IA and rA, respectively. So
there are four ex-spheres SA, SB, SC , SD of ∇ABCD, whose ex-radii are rA, rB, rC , rD, and
ex-centers IA, IB, IC , ID, respectively.
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We can similarly define the in-circle and ex-circles for a triangle. If r1, r2, r3 are the
ex-radii and r the in-radius of a triangle, then it is known that 1

r1
+ 1

r2
+ 1

r3
= 1

r
(see [2,

Page 13]). For your information, there is an analogous result which states that if ∇ABCD
is a tetrahedron, then 1

rA
+ 1

rB
+ 1

rC
+ 1

rD
= 2

r
. The source of this equation is unknown. But

this can be proven in a similar way for a triangle by letting T = 1
3(TA + TB + TC + TD),

where TA, TB, TC , TD are the areas of the triangular faces △BCD, △ACD, △ABD, △ABC,
respectively, of the tetrahedron ∇ABCD.
Definition 2. A tetrahedron is regular if all edges have the same length. A tetrahedron
∇ABCD is said to be isosceles or equifacial if |AB| = |CD|, |AC| = |BD| and |AD| = |BC|.
Definition 3. Let us inscribe ∇ABCD into a parallelepiped so that the edges of the tetrahe-
dron are the diagonals of the six faces of the parallelepiped. We label the diagonally opposite
vertices of A, B, C, D of the parallelepiped by A∗, B∗, C∗, D∗, respectively. Hence, for ex-
ample, as in Figure 1, the faces AD∗BC∗ and A∗DB∗C of the parallelepiped are determined
by the planes parallel to the lines AB and CD. We will call the tetrahedron ∇A∗B∗C∗D∗

the twin of the tetrahedron ∇ABCD. We call the parallelepiped ABCDA∗B∗C∗D∗ the
inscribing parallelepiped of ∇ABCD.

Figure 1: The parallelepiped inscribing a tetrahedron and its twin.

In Theorem 1 of Section 2, we will prove that a tetrahedron ∇ABCD is isosceles if and
only if the vertices of its twin tetrahedron ∇A∗B∗C∗D∗ are the ex-centers of ∇ABCD. Note
that the twin tetrahedron of ∇A∗B∗C∗D∗ is ∇ABCD.

The following lemma is well known.
Lemma 1 ([1, Page 97]). A tetrahedron is isosceles if and only if any of the following three
identities holds: the centroid = the in-center, the centroid = the circum-center, or the in-
center = the circumcenter.

In Theorem 2 of Section 3, we will prove that if a tetrahedron ∇ABCD is orthocentric,
and if the orthocenter is either the incenter, the centroid, or the circumcenter of the tetrahe-
dron, then the tetrahedron ∇ABCD is regular. This is an interesting contrast to the above
Lemma 1. We will also prove that ∇ABCD is regular if and only if SA, SB, SC , SD are all
tangent to S in Theorem 3.
Definition 4. The sphere that contains all four vertices of ∇ABCD is said to be the cir-
cumsphere of ∇ABCD. The center and the radius of the circumsphere are called the cir-
cumcenter and circumradius of ∇ABCD, respectively. The circumradius is denoted by R.
Let LA = |IA|, LB = |IB|, LC = |IC|, LD = |ID|, where I is the incenter.

It is known that R ≥ 3r (see [5]). In Theorem 4 of Section 4, we will use Lagrange
multipliers to extend this inequality to r

R
≤ 1

4

(
r

LA
+ r

LB
+ r

LC
+ r

LD

)
≤ 1

3 .
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2 Isosceles Tetrahedra

We will prove a characterization of an isosceles tetrahedron in terms of ex-centers.

Definition 5. Let ∇ABCD be a tetrahedron. Let #    »

DA = #»α , #    »

DB = #»

β , #    »

DC = #»γ . Let
Γ be the parallelepiped defined by vectors #»α , #»

β , #»γ . Let M and G be points defined by
#      »

DM = 1
2( #»α + #»

β + #»γ ) and #    »

DG = 1
4( #»α + #»

β + #»γ ). Then M is the centroid of the parallelepiped
Γ, and G is the centroid of the tetrahedron ∇ABCD.

We use the next lemma to prove Theorem 1 in this section.

Lemma 2 (See [3]). A tetrahedron ∇ABCD is isosceles if and only if the centroid M of Γ
is an ex-center of ∇ABCD.

Theorem 1. A tetrahedron ∇ABCD is isosceles if and only if the vertices of its twin tetra-
hedron ∇A∗B∗C∗D∗ are the ex-centers of ∇ABCD.

Proof. Since the parallelepiped ABCDA∗B∗C∗D∗ is the inscribing parallelepiped of ∇ABCD,
we have

#       »

DB∗ + #       »

DC∗ = #    »

DA = α⃗,
#      »

DA∗ + #       »

DC∗ = #    »

DB = β⃗, and #      »

DA∗ + #       »

DB∗ = #    »

DC = γ⃗.

Solving these equations for #      »

DA∗, #       »

DB∗ and #       »

DC∗, we have
#      »

DA∗ = 1
2(−α⃗ + β⃗ + γ⃗), #       »

DB∗ = 1
2(α⃗ − β⃗ + γ⃗), and #       »

DC∗ = 1
2(α⃗ + β⃗ − γ⃗).

Hence, we have
#       »

DD∗ = #      »

DA∗ + #       »

DB∗ + #       »

DC∗ = 1
2(α⃗ + β⃗ + γ⃗).

This shows that D∗ is the centroid of the parallelepiped Γ defined by α⃗, β⃗, γ⃗. Hence, ∇ABCD
is isosceles if and only if D∗ = M is one of the ex-centers of the tetrahedron ∇ABCD by
Lemma 2. Similarly, we can show that A∗, B∗, C∗ are ex-centers of ∇ABCD. This proves
that ∇ABCD is isosceles if and only if the vertices of ∇A∗B∗C∗D∗ are the ex-centers of
∇ABCD.

3 Regular Tetrahedra

We will characterize a regular tetrahedron using altitudes. The altitudes of a triangle al-
ways concur at a point which is called the orthocenter. In comparison, four altitudes of a
tetrahedron may not concur.

Definition 6. A tetrahedron is orthocentric if its four altitudes are concurrent, and the
concurrent point of the altitudes is called its orthocenter.

Lemma 3 (See [4, Page 64]). A tetrahedron is orthocentric if and only if the three pairs of
opposite edges are mutually perpendicular.

Lemma 4. An isosceles tetrahedron is orthocentric if and only if it is regular.
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Proof. A regular tetrahedron is isosceles and orthocentric. So let a tetrahedron ∇ABCD be
isosceles and orthocentric. Let ABCDA∗B∗C∗D∗ be a parallelepiped inscribing ∇ABCD.
See Figure 1. Since the tetrahedron ∇ABCD is isosceles, AB = CD = C∗D∗ so that the
face AC∗BD∗, for example, is a rectangle. Hence, ABCDA∗B∗C∗D∗ is a rectangular box.
By Lemma 3, the three pairs of opposite edges of ∇ABCD are mutually perpendicular. This
implies that the two diagonals of a rectangular face are perpendicular, i.e., the rectangle is
a square. Hence, the rectangular box ABCDA∗B∗C∗D∗ must be a cube. Therefore, this
shows that all edges of ∇ABCD have the same length. That is, the tetrahedron ∇ABCD is
regular.

Lemma 5. If a tetrahedron is orthocentric, and if the orthocenter is the incenter, then the
tetrahedron is regular.

Proof. Let ∇ABCD be an orthocentric tetrahedron whose orthocenter is the incenter. Let I
be the orthocenter = the incenter. Let A′, B′, C ′, D′ be the feet of AI, BI, CI, DI on the
faces △BCD, △ACD, △ABD, △ABC, respectively. Since I is the incenter of ∇ABCD,
the plane ABA′ bisect the dihedral angle between the faces △ABC and △ABD. Since the
segment AA′ is normal to the plane BCD, the line BA′ is perpendicular to the edge CD and
bisects ∢CBD. Hence, the line BA′ bisects the edge CD. Similarly, CA′ and DA′ bisect
the edges BD and BC, respectively. Hence, A′ is the centroid of the face △BCD. Similarly,
B′, C ′, D′ are the centroids of the faces △ACD, △ABD, △ABC, respectively. Therefore,
the point I is the centroid of the tetrahedron ∇ABCD. This shows that the tetrahedron is
isosceles by Lemma 1. By Lemma 4, the tetrahedron ∇ABCD is regular.

Theorem 2. If a tetrahedron is orthocentric, and if the orthocenter is either the incenter,
the centroid, or the circumcenter, then the tetrahedron is regular.

Proof. If the orthocenter is the incenter, then the tetrahedron is regular by Lemma 5.
Suppose the orthocenter is the centroid ∇ABCD. Let G be the centroid = the orthocenter

of a tetrahedron ∇ABCD. Then the plane ABG bisects the edge CD. Since G is also the
orthocenter of ∇ABCD, the plane ABG is perpendicular to the edge CD. Hence, the plane
ABG bisects the dihedral angle between the faces △ABC and △ABD. Similarly, the plane
BCG bisects the dihedral angle between the faces △ABC and △BCD, and the plane CDG
bisects the dihedral angle between the faces △ACD and △BCD. Thus, G is the in-center of
∇ABCD. Therefore, ∇ABCD is regular by Lemma 5.

Next, suppose the circumcenter is the orthocenter of ∇ABCD. Let P be the circumcenter
= the orthocenter of ∇ABCD. Since P is the circumcenter of ∇ABCD, P is on the perpen-
dicular bisecting plane Ω of the edge CD. Since P is also the orthocenter of ∇ABCD, the
plane ABP is normal to the edge CD. But since P ∈ Ω and Ω is normal to the edge CD, the
plane Ω must be the plane ABP . Hence, the plane ABP bisects the dihedral angle between
the faces △ABC and △ABD. Similarly, the plane BCP bisects the dihedral angle between
the faces △ABC and △BCD, and the plane CDP bisects the dihedral angle between the
faces △ACD and △BCD. Thus, P is the in-center of ∇ABCD. Therefore, ∇ABCD is
regular by Lemma 5.

Remark 1. It can be shown that a triangle is equilateral if and only if the orthocenter and
the incenter are the same.

Theorem 3. A tetrahedron is regular if and only if its ex-spheres are tangent to the in-sphere.
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Proof. If a tetrahedron is regular, then the ex-spheres are all tangent to the in-sphere. So
suppose all ex-spheres SA, SB, SC , SD of a tetrahedron ∇ABCD are tangent to its in-sphere
S at A′, B′, C ′, and D′, respectively. Then A′, B′, C ′, and D′, are on the faces △BCD,
△ACD, △ABD, and △ABC, respectively. Recall I, IA, IB, IC , ID are the centers of S, SA,
SB, SC , SD, respectively. Then A′ ∈ IIA, B′ ∈ IIB, C ′ ∈ IIC , D′ ∈ IID. The planes ABI
and ABIA are the same since they are the planes bisecting the dihedral angle between the
faces △ABC and △ABD. Similarly, the planes ACI and ACIA are the same. This shows
that the lines AI and AIA are the same. Hence, A′ ∈ IIA ⊂ AIA. Hence, the segment AA′

is normal to the plane BCD. Similarly, we can show that BB′, CC ′, DD′ are normal to
the planes ACD, ABD, ABC, respectively. Hence, I is the orthocenter of ∇ABCD. By
Theorem 2, the tetrahedron ∇ABCD is regular.

Remark 2. It can be shown that a triangle is equilateral if and only if the ex-circles are tangent
to the in-circle.
Remark 3. Let △ABC be a triangle, and let HA, HB, HC be ex-centers. Then the feet of the
altitudes of △HAHBHC are A, B and C (see [2, Page 13]). So, for a tetrahedron ∇ABCD,
are A, B, C, D the feet of the altitudes of the tetrahedron ∇IAIBICID? The answer is
NO. Let ∇ABCD be any isosceles tetrahedron. Then by Theorem 1, we have A∗ = IA,
B∗ = IB, C∗ = IC , D∗ = ID, or ∇IAIBICID = ∇A∗B∗C∗D∗. Since the parallelepiped
ABCDA∗B∗C∗D∗ that inscribes the tetrahedron ∇ABCD is the rectangular box, and none
of the triangular faces A∗B∗C∗, A∗B∗D∗, A∗C∗D∗, and B∗C∗D∗ even do not contain any of
the points A, B, C or D. So A, B, C, D are not the feet of the altitudes of the tetrahedron
∇IAIBICID.

4 Inequalities Involving Inradius and Circumradius

We will prove the next theorem in this section.
Theorem 4. Let ∇ABCD be a tetrahedron. Recall that R is the circumradius of the tetra-
hedron ∇ABCD, and  LA = |IA|, LB = |IB|, LC = |IC|, LD = |ID|. Then

r

R
≤ 1

4

(
r

LA

+ r

LB

+ r

LC

+ r

LD

)
≤ 1

3 .

The inequality on the left becomes equality if and only if ∇ABCD is isosceles, and the in-
equality on the right becomes equality if and only if ∇ABCD is regular.

Veljan [5] proved the following lemma which is similar to Theorem 4.
Lemma 6 (Veljan). Let a, a′; b, b′; c, c′ be the lengths of opposing pairs of the edges of a
tetrahedron. If R and r are the circumradius and inradius of the tetrahedron, respectively,
then (

r

R

)2
≤

3
√

(−aa′ + bb′ + cc′)(aa′ − bb′ + cc′)(aa′ + bb′ − cc′)
3(aa′ + bb′ + cc′) ≤ 1

9 .

The left side inequality becomes equality if and only if the tetrahedron is isosceles, and the
right side inequality becomes equality if and only if aa′ = bb′ = cc′.

In this paper [5], Veljan gave a nice proof of the inequality R ≥ 3r. However, he says
“Clearly, the equality (R = 3r) is attained if and only if it (the tetrahedron) is regular”.
Maybe it is “clear”. But it is not clear to us why R = 3r implies that the tetrahedron is
regular. Since this is important to us, we will prove this result next.
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Lemma 7. If ∇ABCD is a tetrahedron, then R ≥ 3r. The inequality becomes equality if and
only if the tetrahedron is regular.

Proof. Let A′, B′, C ′, D′ be the centroids of the faces △BCD, △ACD, △ABD, △ABC,
respectively.

The tetrahedron ∇A′B′C ′D′ is similar to the tetrahedron ∇ABCD, and its edges are
exactly 1

3 the lengths of edges of the tetrahedron ∇ABCD. Therefore, we must have R = 3R′,
where R′ is the circumradius of the tetrahedron ∇A′B′C ′D′. Since the in-sphere is the smallest
sphere that touches all four faces of the tetrahedron, we must have R′ ≥ r. Hence, we have
R = 3R′ ≥ 3r. (Up to this far, this is exactly Veljan’s argument in [5].)

If the tetrahedron is regular, then R = 3r. So suppose R = 3r. We will show that the
tetrahedron is regular. Again, let R′ be the circumradius of ∇A′B′C ′D′. Since R = 3R′, we
must have R′ = r. Note that the centroids of ∇ABCD and ∇A′B′C ′D′ are identical.1Since
A′, B′, C ′, D′ are points on the faces of ∇ABCD, R′ = r implies that the centroid and
circumcenter of ∇A′B′C ′D′ are identical, and it is I. So ∇A′B′C ′D′ is isosceles by Lemma 1.
Since ∇ABCD is similar to ∇A′B′C ′D′, the tetrahedron ∇ABCD is also isosceles. Again,
by Lemma 1, the point I is also the centroid of ∇ABCD so that I is the intersection of
the segments AA′, BB′, CC ′, DD′. Since I is the circumcenter of ∇A′B′C ′D′, and since
{I} = AA′ ∩ BB′ ∩ CC ′ ∩ DD′, the segments AA′, BB′, CC ′, DD′ are normal to the faces
△BCD, △ACD, △ABD, △ABC, respectively. Hence, I is the orthocenter of ∇ABCD.
Therefore, the tetrahedron ∇ABCD is regular by Lemma 4.

As a corollary of Lemma 7, we have the next lemma.

Lemma 8. Let ∇ABCD be an isosceles tetrahedron. Then we have

cos−1 r
R

≥ cos−1 1
3 and (1)

cos−1 r
LA

+ cos−1 r
LB

+ cos−1 r
LC

+ cos−1 r
LD

≥ 4 cos−1 1
3 . (2)

The inequalities in (1) and (2) become equalities if and only if ∇ABCD is regular.

Proof. By Lemma 7, we have R ≥ 3r, or r
R

≤ 1
3 . Since the inverse cosine function is decreasing

on the interval [0, 1], we have cos−1 r
R

≥ cos−1 1
3 . Since the in-center and the circumcenter

of an isosceles tetrahedron are identical, we have LA = LB = LC = LD = R. Therefore,
cos−1 r

LA
+ cos−1 r

LB
+ cos−1 r

LC
+ cos−1 r

LD
= 4 cos−1 r

R
≥ 4 cos−1 1

3 . Again, by Lemma 7, the
inequalities in (1) and (2) become equalities if and only if ∇ABCD is regular.

Now, we are ready for the next lemma. We use Lagrange Multipliers’ method to prove it.

Lemma 9. Let ∇ABCD be a tetrahedron. (We are not assuming it to be isosceles.) Then
r

LA
+ r

LB
+ r

LC
+ r

LD
≤ 4

3 , and (3)
cos−1 r

LA
+ cos−1 r

LB
+ cos−1 r

LC
+ cos−1 r

LD
≥ 4 cos−1 1

3 . (4)

The inequalities in both (3) and (4) become equalities if and only if the tetrahedron ∇ABCD
is regular.

1Let G, G′ be the centroids of ∇ABCD and ∇A′B′C ′D′, respectively. We will show that G = G′. Using
vectors defined in Definition 5, #    »

DG = 1
4 (α⃗ + β⃗ + γ⃗),

#      »

DA′ = 1
3 (β⃗ + γ⃗),

#      »

DB′ = 1
3 (α⃗ + γ⃗),

#      »

DC ′ = 1
3 (α⃗ + β⃗),

#      »

DD′ = 1
3 (α⃗ + β⃗ + γ⃗). Hence,

#        »

D′A′ =
#      »

DA′ −
#      »

DD′ = − α⃗
3 ,

#        »

D′B′ = − β⃗
3 ,

#        »

D′C ′ = − γ⃗
3 so that

#        »

D′G′ =
1
4 (

#        »

D′A′ +
#        »

D′B′ +
#        »

D′C ′) = − 1
12 (α⃗ + β⃗ + γ⃗). Thus,

#      »

DG′ =
#      »

DD′ +
#        »

D′G′ = 1
3 (α⃗ + β⃗ + γ⃗) − 1

12 (α⃗ + β⃗ + γ⃗) =
1
4 (α⃗ + β⃗ + γ⃗) = #    »

DG. Therefore, G = G′.
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Proof of (3). We will

Maximize r
LA

+ r
LB

+ r
LC

+ r
LD

Subject to cos−1 r
LA

+ cos−1 r
LB

+ cos−1 r
LC

+ cos−1 r
LD

= θ,

for some fixed angle θ > 0.
Let r

LA
= x, r

LB
= y, r

LC
= z, r

LD
= w for simplicity. Then, we are to

Maximize x + y + z + w

Subject to cos−1 x + cos−1 y + cos−1 z + cos−1 w = θ and 0 < x, y, z, w < 1.

Let f(x, y, z, w) = x+y +z +w and g(x, y, z, w) = cos−1 x+cos−1 y +cos−1 z +cos−1 w. Then
by Lagrange Multipliers’ method, a critical point (x, y, z, w) must satisfy ∇f(x, y, z, w) =
λ · ∇g(x, y, z, w) for some λ, where ∇f stands for the gradient of f. Hence,

⟨1, 1, 1, 1⟩ = λ ·
〈
− 1√

1−x2 , − 1√
1−y2

, − 1√
1−z2 , − 1√

1−w2

〉
.

So, λ = −
√

1 − x2 = −
√

1 − y2 = −
√

1 − z2 = −
√

1 − w2.
Since x, y, z, w > 0, we must have x = y = z = w. Since r

LA
= x, r

LB
= y, r

LC
= z,

r
LD

= w, this implies that LA = LB = LC = LD = R. The critical point is when the
tetrahedron ∇ABCD is isosceles.

By Lemma 7, we have R ≥ 3r or r
R

≤ 1
3 . So when LA = LB = LC = LD = R, we have

r
LA

+ r
LB

+ r
LC

+ r
LD

≤ 4
3 . Therefore, for any possible angle θ > 0, (that is, for any tetrahedron

∇ABCD), we have r
LA

+ r
LB

+ r
LC

+ r
LD

≤ 4
3 . Since R = 3r if and only if the tetrahedron is

regular, the inequality becomes equality if and only if ∇ABCD is regular.

Proof of (4). As in the above proof, by letting r
LA

= x, r
LB

= y, r
LC

= z, r
LD

= w, this
problem is simplified to

Minimize cos−1 x + cos−1 y + cos−1 z + cos−1 w

Subject to x + y + z + w = δ, and 0 < x, y, z, w < 1,

for some fixed δ > 0. Let f(x, y, z, w) = cos−1 x+cos−1 y+cos−1 z+cos−1 w, and g(x, y, z, w) =
x + y + z + w. From ∇f(x, y, z, w) = λ · ∇g(x, y, z, w), the critical point (x, y, z, w) is given
by 〈

− 1√
1−x2 , − 1√

1−y2
, − 1√

1−z2 , − 1√
1−w2

〉
= λ · ⟨1, 1, 1, 1⟩ for some λ.

Hence, λ = − 1√
1−x2 = − 1√

1−y2
= − 1√

1−z2 = − 1√
1−w2 .

Since x, y, z, w > 0, this implies that x = y = z = w, which in turn implies that
LA = LB = LC = LD = R. Thus, the critical value of cos−1 r

LA
+cos−1 r

LB
+cos−1 r

LC
+cos−1 r

LD

is attained when the tetrahedron is an isosceles tetrahedron. However, among all isosceles
tetrahedron ∇ABCD, we have cos−1 r

LA
+ cos−1 r

LB
+ cos−1 r

LC
+ cos−1 r

LD
≥ 4 cos−1 1

3 by
Equation (2) in Lemma 8. This shows that the minimum value of cos−1 r

LA
+ cos−1 r

LB
+

cos−1 r
LC

+ cos−1 r
LD

is attained when the tetrahedron ∇ABCD is isosceles when r
LA

+ r
LB

+
r

LC
+ r

LD
= δ for some δ > 0.

Therefore, this proves that cos−1 r
LA

+ cos−1 r
LB

+ cos−1 r
LC

+ cos−1 r
LD

≥ 4 cos−1 1
3 for any

tetrahedron ∇ABCD, and the inequality becomes equality if and only if ∇ABCD is regular
by Equation (2) in Lemma 8.
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Remark 4. The inequalities r
LA

+ r
LB

+ r
LC

+ r
LD

≤ 4
3 and 3r ≤ R can be rewritten as

1
LA

+ 1
LB

+ 1
LC

+ 1
LD

≤ 4
3r

and 4
R

≤ 4
3r

.

Which is larger, 1
LA

+ 1
LB

+ 1
LC

+ 1
LD

or 4
R

? Let us look at the following example:
Let A = (1, 0, 0), B = (0, 1, 0), C = (0, 0, 1), D = (0, 0, 0). Then the incenter of the

tetrahedron ∇ABCD is
(

1
3+

√
3 , 1

3+
√

3 , 1
3+

√
3

)
. Hence,

L2
A = L2

B = L2
C =

(
1 − 1

3+
√

3

)2
+ 2

(
1

3+
√

3

)2
= 9+4

√
3

(3+
√

3)2 ,

and LD =
√

3
3+

√
3 . So,

1
LA

+ 1
LB

+ 1
LC

+ 1
LD

= 3 · 3+
√

3√
9+4

√
3

+ 2+
√

3√
3 ≈ 6.289.

On the other hand, its circumcenter of of ∇ABCD is (1
2 , 1

2 , 1
2), so that R =

√
3

2 . Hence,
4
R

= 8√
3 ≈ 4.61. This is the motivation for the next lemma.

Lemma 10. For any tetrahedron ∇ABCD, we have 1
LA

+ 1
LB

+ 1
LC

+ 1
LD

≥ 4
R

. The inequality
becomes equality if and only if the tetrahedron ∇ABCD is isosceles.

Proof. This is a problem to

Minimize 1
LA

+ 1
LB

+ 1
LC

+ 1
LD

Subject to cos−1 r
LA

+ cos−1 r
LB

+ cos−1 r
LC

+ cos−1 r
LD

= θ,

for some fixed θ > 4 cos−1 1
3 by Equation 4 in Lemma 9. For the simplicity, let x = 1

LA
,

y = 1
LB

, z = 1
LC

, w = 1
LD

. Then we are to

Minimize x + y + z + w

Subject to cos−1 rx + cos−1 ry + cos−1 rz + cos−1 rw = θ,

where θ > 4 cos−1 1
3 , and x, y, z, w > 0. Let f(x, y, z, w) = x + y + z + w, and g(x, y, z, w) =

cos−1 rx + cos−1 ry + cos−1 rz + cos−1 rw. Then ∇f(x, y, z, w) = λ · ∇g(x, y, z, w) gives us the
critical point (x, y, z, w) for some λ. Hence,

⟨1, 1, 1, 1⟩ = λ
〈

−r√
1−(rx)2

, −r√
1−(ry)2

, −r√
1−(rz)2

, −r√
1−(rw)2

〉
, or

−rλ =
√

1 − (rx)2 =
√

1 − (ry)2 =
√

1 − (rz)2 =
√

1 − (rw)2.

This implies that the critical point (x, y, z, w) is given by x = y = z = w since x, y, z, w > 0.
From Remark 1, this implies that the minimal value of 1

LA
+ 1

LB
+ 1

LC
+ 1

LD
is attained only

when LA = LB = LC = LD = R (i.e. when the in-radius is the circumradius), and the
minimum value is equal to 4

R
. Hence, 1

LA
+ 1

LB
+ 1

LC
+ 1

LD
is minimized if and only if the

tetrahedron ∇ABCD is isosceles by Lemma 1.

Proof. Proof of Theorem 4 Theorem 4 is a consequence of Equation (3) in Lemma 9 and
Lemma 10.
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Remark 5. Let △ABC be a triangle with the in-center H. Let r and R be the in-radius and
circumradius of the triangle △ABC. Then R ≥ 2r, called Euler’s inequality (see [5]), and
the inequality becomes equality if and only if the triangle △ABC is equilateral. Let A′, B′,
C ′ be the perpendicular feet from H to the edges BC, AC, AB, respectively. Then

∢AHB′ + ∢BHC ′ + ∢CHA′ = π.

Let LA = |HA|, LB = |HB|, LC = |HC|. Then

cos−1 r
LA

+ cos−1 r
LB

+ cos−1 r
LC

= ∢AHB′ + ∢BHC ′ + ∢CHA′ = π = 3 cos−1 1
2 .

This may be an interesting contrast to Equation (2) in Lemma 9.
Now, as in Equation 3 in Lemma 9, we can prove that r

LA
+ r

LB
+ r

LC
≤ 3

2 , where the equality
holds only when the triangle △ABC is equilateral. By rewriting it to 1

LA
+ 1

LB
+ 1

LC
≤ 3

2r
,

and the inequality 2r ≤ R can be rewritten as 3
R

≤ 3
2r

. Hence, as in Lemma 10, we can show
that 1

LA
+ 1

LB
+ 1

LC
≥ 3

R
. Thus, we have the next triangle version of Theorem 4.

Corollary 1. Let r be the in-radius, and R the circumradius of the triangle. Let LA, LB, LC

be the lengths between the in-center and the vertices. Then we have

r
R

≤ 1
3

(
r

LA
+ r

LB
+ r

LC

)
≤ 1

2 .

The inequalities become equalities if and only if the triangle is equilateral.
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