In and Ex Spheres of a Tetrahedron

Hidefumi Katsuura

San Jose State University, San Jose, USA hidefumi.katsuura@sjsu.edu

Abstract. We prove that

(1) a tetrahedron is isosceles if and only if the vertices of its twin tetrahedron are the excenters of the tetrahedron,

(2) if a tetrahedron is orthocentric, and if the orthocenter is either the incenter, the centroid, or the circumcenter, then the tetrahedron is regular,

(3) a tetrahedron is regular if and only if the four ex-spheres are tangent to the in-sphere, and

(4) we prove an inequality relating the in-radius, circumradius, and the distances between the in-center and the vertices of a tetrahedron.

Key Words: in-sphere, in-center, in-radius, ex-sphere, ex-center, ex-radius, twin tetrahedron, isosceles tetrahedron, regular tetrahedron, centroid, circumsphere, circumradius, circumcenter, orthocentric tetrahedron, orthocenter, Lagrange multipliers

MSC 2020: 51M04

1 Introduction

Let us start with definitions.

Definition 1. A triangle ABC is denoted by $\triangle ABC$. A tetrahedron $ABCD$ is denoted by ∇*ABCD*. The sphere inside ∇*ABCD* tangent to the four faces △*ABC*, △*ACD*, △*ABD*, and △*BCD* is called the *in-sphere* of ∇*ABCD*. Let *S* denote the in-sphere of ∇*ABCD*. The center and radius of *S* are called *in-center* and *in-radius*, and denoted by *I* and *r*, respectively. The sphere, outside of ∇*ABCD,* on the opposite side of the vertex *A* with respect to the plane *BCD*, tangent to the face $\triangle BCD$ and tangent to the extended adjacent faces $\triangle ABC$, $\triangle ACD$, $\triangle ABD$ is called an *ex-sphere*, and it is denoted by S_A . The center and the radius of S_A are called the *ex-center* and the *ex-radius*, and denoted by I_A and r_A , respectively. So there are four ex-spheres S_A , S_B , S_C , S_D of $\nabla ABCD$, whose ex-radii are r_A , r_B , r_C , r_D , and ex-centers I_A , I_B , I_C , I_D , respectively.

ISSN 1433-8157/ \circ 2024 by the author(s), licensed under [CC BY SA 4.0.](https://creativecommons.org/licenses/by-sa/4.0/)

We can similarly define the in-circle and ex-circles for a triangle. If r_1 , r_2 , r_3 are the ex-radii and *r* the in-radius of a triangle, then it is known that $\frac{1}{r_1} + \frac{1}{r_2}$ $\frac{1}{r_2} + \frac{1}{r_3}$ $\frac{1}{r_3} = \frac{1}{r}$ $\frac{1}{r}$ (see [\[2,](#page-8-1) Page 13]). For your information, there is an analogous result which states that if ∇*ABCD* is a tetrahedron, then $\frac{1}{r_A} + \frac{1}{r_B}$ $\frac{1}{r_B} + \frac{1}{r_C}$ $\frac{1}{r_C} + \frac{1}{r_I}$ $\frac{1}{r_D} = \frac{2}{r}$ $\frac{2}{r}$. The source of this equation is unknown. But this can be proven in a similar way for a triangle by letting $T = \frac{1}{3}$ $\frac{1}{3}(T_A + T_B + T_C + T_D),$ where T_A , T_B , T_C , T_D are the areas of the triangular faces $\triangle BCD$, $\triangle ACD$, $\triangle ABD$, $\triangle ABC$, respectively, of the tetrahedron ∇*ABCD*.

Definition 2. A tetrahedron is *regular* if all edges have the same length. A tetrahedron $\nabla ABCD$ is said to be *isosceles* or *equifacial* if $|AB| = |CD|$, $|AC| = |BD|$ and $|AD| = |BC|$.

Definition 3. Let us inscribe ∇*ABCD* into a parallelepiped so that the edges of the tetrahedron are the diagonals of the six faces of the parallelepiped. We label the diagonally opposite vertices of *A*, *B*, *C*, *D* of the parallelepiped by A^*, B^*, C^*, D^* , respectively. Hence, for example, as in Figure [1,](#page-1-0) the faces *AD*[∗]*BC*[∗] and *A*[∗]*DB*[∗]*C* of the parallelepiped are determined by the planes parallel to the lines *AB* and *CD*. We will call the tetrahedron ∇*A*[∗]*B*[∗]*C* [∗]*D*[∗] the *twin* of the tetrahedron ∇*ABCD*. We call the parallelepiped *ABCDA*[∗]*B*[∗]*C* [∗]*D*[∗] the *inscribing parallelepiped* of ∇*ABCD*.

Figure 1: The parallelepiped inscribing a tetrahedron and its twin.

In Theorem [1](#page-2-0) of Section [2,](#page-2-1) we will prove that a tetrahedron ∇*ABCD* is isosceles if and only if the vertices of its twin tetrahedron ∇*A*[∗]*B*[∗]*C* [∗]*D*[∗] are the ex-centers of ∇*ABCD*. Note that the twin tetrahedron of ∇*A*[∗]*B*[∗]*C* [∗]*D*[∗] is ∇*ABCD*.

The following lemma is well known.

Lemma 1 ([\[1,](#page-8-2) Page 97])**.** *A tetrahedron is isosceles if and only if any of the following three identities holds: the centroid = the in-center, the centroid = the circum-center, or the incenter = the circumcenter.*

In Theorem [2](#page-3-0) of Section [3,](#page-2-2) we will prove that if a tetrahedron ∇*ABCD* is orthocentric, and if the orthocenter is either the incenter, the centroid, or the circumcenter of the tetrahedron, then the tetrahedron ∇*ABCD* is regular. This is an interesting contrast to the above Lemma [1.](#page-1-1) We will also prove that $\nabla ABCD$ is regular if and only if S_A , S_B , S_C , S_D are all tangent to *S* in Theorem [3.](#page-3-1)

Definition 4. The sphere that contains all four vertices of ∇*ABCD* is said to be the circumsphere of ∇*ABCD*. The center and the radius of the circumsphere are called the *circumcenter* and *circumradius* of ∇*ABCD*, respectively. The circumradius is denoted by *R*. Let $L_A = |IA|$, $L_B = |IB|$, $L_C = |IC|$, $L_D = |ID|$, where *I* is the incenter.

It is known that $R \geq 3r$ (see [\[5\]](#page-8-3)). In Theorem [4](#page-4-0) of Section [4,](#page-4-1) we will use Lagrange multipliers to extend this inequality to $\frac{r}{R} \leq \frac{1}{4}$ 4 $\left(\frac{r}{\epsilon} \right)$ $\frac{r}{L_A} + \frac{r}{L_B}$ $\frac{r}{L_B} + \frac{r}{L_0}$ $\frac{r}{L_C} + \frac{r}{L_I}$ *L^D* $\left.\right)\leq\frac{1}{3}$ $\frac{1}{3}$.

2 Isosceles Tetrahedra

We will prove a characterization of an isosceles tetrahedron in terms of ex-centers.

Definition 5. Let $\nabla ABCD$ be a tetrahedron. Let $\overrightarrow{DA} = \overrightarrow{\alpha}$, $\overrightarrow{DB} = \overrightarrow{\beta}$, $\overrightarrow{DC} = \overrightarrow{\gamma}$. Let **Definition 5.** Let $VABCD$ be a tetrahedron. Let $DA = \alpha$, $DB = \beta$, $DC = \gamma$. Let Γ be the parallelepiped defined by vectors $\vec{\alpha}$, $\vec{\beta}$, $\vec{\gamma}$. Let M and G be points defined by $\frac{1}{DM} = \frac{1}{2}$ e parallelepiped defined b
 $\frac{1}{2}(\vec{\alpha} + \vec{\beta} + \vec{\gamma})$ and $\vec{DG} = \frac{1}{4}$ by vectors α , β , γ . Let *M* and *G* be points defined by $\frac{1}{4}(\vec{\alpha} + \vec{\beta} + \vec{\gamma})$. Then *M* is the centroid of the parallelepiped Γ, and *G* is the centroid of the tetrahedron ∇*ABCD*.

We use the next lemma to prove Theorem [1](#page-2-0) in this section.

Lemma 2 (See [\[3\]](#page-8-4)). *A tetrahedron* $\nabla ABCD$ *is isosceles if and only if the centroid M of* Γ *is an ex-center of* ∇*ABCD.*

Theorem 1. *A tetrahedron* ∇*ABCD is isosceles if and only if the vertices of its twin tetrahedron* ∇*A*[∗]*B*[∗]*C* [∗]*D*[∗] *are the ex-centers of* ∇*ABCD.*

Proof. Since the parallelepiped *ABCDA*[∗]*B*[∗]*C*[∗]*D*[∗] is the inscribing parallelepiped of $\nabla ABCD$, we have

$$
\overrightarrow{DB^*} + \overrightarrow{DC^*} = \overrightarrow{DA} = \overrightarrow{\alpha}, \quad \overrightarrow{DA^*} + \overrightarrow{DC^*} = \overrightarrow{DB} = \overrightarrow{\beta}, \text{ and } \overrightarrow{DA^*} + \overrightarrow{DB^*} = \overrightarrow{DC} = \overrightarrow{\gamma}.
$$

Solving these equations for $\overrightarrow{DA^*}, \overrightarrow{DB^*}$ and $\overrightarrow{DC^*},$ we have

 $\overrightarrow{DA^*} = \frac{1}{2}$ $\frac{1}{2}(-\vec{\alpha}+\vec{\beta}+\vec{\gamma}),\overrightarrow{DB^*}$ $\overline{DB^*} = \frac{1}{2}$ $\frac{1}{2}(\vec{\alpha} - \vec{\beta} + \vec{\gamma}), \text{ and } \overrightarrow{DC^*} = \frac{1}{2}$ $\frac{1}{2}(\vec{\alpha}+\vec{\beta}-\vec{\gamma}).$

Hence, we have

$$
\overrightarrow{DD^*} = \overrightarrow{DA^*} + \overrightarrow{DB^*} + \overrightarrow{DC^*} = \frac{1}{2}(\vec{\alpha} + \vec{\beta} + \vec{\gamma}).
$$

This shows that D^* is the centroid of the parallelepiped Γ defined by $\vec{\alpha}, \vec{\beta}, \vec{\gamma}$. Hence, $\nabla ABCD$ is isosceles if and only if $D^* = M$ is one of the ex-centers of the tetrahedron $\nabla ABCD$ by Lemma [2.](#page-2-3) Similarly, we can show that A^* , B^* , C^* are ex-centers of $\nabla ABCD$. This proves that ∇*ABCD* is isosceles if and only if the vertices of ∇*A*[∗]*B*[∗]*C* [∗]*D*[∗] are the ex-centers of ∇*ABCD*. \Box

3 Regular Tetrahedra

We will characterize a regular tetrahedron using altitudes. The altitudes of a triangle always concur at a point which is called the *orthocenter*. In comparison, four altitudes of a tetrahedron may not concur.

Definition 6. A tetrahedron is *orthocentric* if its four altitudes are concurrent, and the concurrent point of the altitudes is called its *orthocenter*.

Lemma 3 (See [\[4,](#page-8-5) Page 64])**.** *A tetrahedron is orthocentric if and only if the three pairs of opposite edges are mutually perpendicular.*

Lemma 4. *An isosceles tetrahedron is orthocentric if and only if it is regular.*

Proof. A regular tetrahedron is isosceles and orthocentric. So let a tetrahedron $∇$ *ABCD* be isosceles and orthocentric. Let *ABCDA*[∗]*B*[∗]*C* [∗]*D*[∗] be a parallelepiped inscribing ∇*ABCD*. See Figure [1.](#page-1-0) Since the tetrahedron $\nabla ABCD$ is isosceles, $AB = CD = C^*D^*$ so that the face AC^*BD^* , for example, is a rectangle. Hence, $ABCDA^*B^*C^*D^*$ is a rectangular box. By Lemma [3,](#page-2-4) the three pairs of opposite edges of ∇*ABCD* are mutually perpendicular. This implies that the two diagonals of a rectangular face are perpendicular, i.e., the rectangle is a square. Hence, the rectangular box *ABCDA*[∗]*B*[∗]*C* [∗]*D*[∗] must be a cube. Therefore, this shows that all edges of ∇*ABCD* have the same length. That is, the tetrahedron ∇*ABCD* is regular. \Box

Lemma 5. *If a tetrahedron is orthocentric, and if the orthocenter is the incenter, then the tetrahedron is regular.*

Proof. Let ∇*ABCD* be an orthocentric tetrahedron whose orthocenter is the incenter. Let *I* be the orthocenter = the incenter. Let A' , B' , C' , D' be the feet of AI , BI , CI , DI on the faces △*BCD*, △*ACD*, △*ABD*, △*ABC*, respectively. Since *I* is the incenter of ∇*ABCD*, the plane *ABA*^{\prime} bisect the dihedral angle between the faces $\triangle ABC$ and $\triangle ABD$. Since the segment *AA*′ is normal to the plane *BCD*, the line *BA*′ is perpendicular to the edge *CD* and bisects ∢*CBD*. Hence, the line *BA*′ bisects the edge *CD*. Similarly, *CA*′ and *DA*′ bisect the edges BD and BC , respectively. Hence, A' is the centroid of the face $\triangle BCD$. Similarly, *B*['], *C*['], *D*['] are the centroids of the faces $\triangle ACD$, $\triangle ABD$, $\triangle ABC$, respectively. Therefore, the point *I* is the centroid of the tetrahedron ∇*ABCD*. This shows that the tetrahedron is isosceles by Lemma [1.](#page-1-1) By Lemma [4,](#page-2-5) the tetrahedron ∇*ABCD* is regular. \Box

Theorem 2. *If a tetrahedron is orthocentric, and if the orthocenter is either the incenter, the centroid, or the circumcenter, then the tetrahedron is regular.*

Proof. If the orthocenter is the incenter, then the tetrahedron is regular by Lemma [5.](#page-3-2)

Suppose the orthocenter is the centroid ∇*ABCD*. Let *G* be the centroid = the orthocenter of a tetrahedron ∇*ABCD*. Then the plane *ABG* bisects the edge *CD*. Since *G* is also the orthocenter of ∇*ABCD*, the plane *ABG* is perpendicular to the edge *CD*. Hence, the plane ABG bisects the dihedral angle between the faces $\triangle ABC$ and $\triangle ABD$. Similarly, the plane *BCG* bisects the dihedral angle between the faces $\triangle ABC$ and $\triangle BCD$, and the plane *CDG* bisects the dihedral angle between the faces $\triangle ACD$ and $\triangle BCD$. Thus, *G* is the in-center of ∇*ABCD.* Therefore, ∇*ABCD* is regular by Lemma [5.](#page-3-2)

Next, suppose the circumcenter is the orthocenter of ∇*ABCD*. Let *P* be the circumcenter = the orthocenter of ∇*ABCD*. Since *P* is the circumcenter of ∇*ABCD*, *P* is on the perpendicular bisecting plane Ω of the edge *CD*. Since *P* is also the orthocenter of ∇*ABCD*, the plane *ABP* is normal to the edge *CD*. But since $P \in \Omega$ and Ω is normal to the edge *CD*, the plane Ω must be the plane *ABP*. Hence, the plane *ABP* bisects the dihedral angle between the faces $\triangle ABC$ and $\triangle ABD$. Similarly, the plane *BCP* bisects the dihedral angle between the faces $\triangle ABC$ and $\triangle BCD$, and the plane *CDP* bisects the dihedral angle between the faces △*ACD* and △*BCD*. Thus, *P* is the in-center of ∇*ABCD*. Therefore, ∇*ABCD* is regular by Lemma [5.](#page-3-2) \Box

Remark 1*.* It can be shown that a triangle is equilateral if and only if the orthocenter and the incenter are the same.

Theorem 3. *A tetrahedron is regular if and only if its ex-spheres are tangent to the in-sphere.*

Proof. If a tetrahedron is regular, then the ex-spheres are all tangent to the in-sphere. So suppose all ex-spheres S_A , S_B , S_C , S_D of a tetrahedron $\nabla ABCD$ are tangent to its in-sphere *S* at *A'*, *B'*, *C'*, and *D'*, respectively. Then *A'*, *B'*, *C'*, and *D'*, are on the faces $\triangle BCD$, $\triangle ACD$, $\triangle ABD$, and $\triangle ABC$, respectively. Recall *I*, I_A , I_B , I_C , I_D are the centers of *S*, S_A , S_B , S_C , S_D , respectively. Then $A' \in II_A$, $B' \in II_B$, $C' \in II_C$, $D' \in II_D$. The planes *ABI* and *ABI^A* are the same since they are the planes bisecting the dihedral angle between the faces $\triangle ABC$ and $\triangle ABD$. Similarly, the planes ACI and ACI_A are the same. This shows that the lines *AI* and AI_A are the same. Hence, $A' \in II_A \subset AI_A$. Hence, the segment AA' is normal to the plane *BCD*. Similarly, we can show that *BB*′ , *CC*′ , *DD*′ are normal to the planes *ACD*, *ABD*, *ABC,* respectively. Hence, *I* is the orthocenter of ∇*ABCD*. By Theorem [2,](#page-3-0) the tetrahedron ∇*ABCD* is regular. \Box

Remark 2*.* It can be shown that a triangle is equilateral if and only if the ex-circles are tangent to the in-circle.

Remark 3. Let $\triangle ABC$ be a triangle, and let H_A , H_B , H_C be ex-centers. Then the feet of the altitudes of $\triangle H_A H_B H_C$ are A, B and C (see [\[2,](#page-8-1) Page 13]). So, for a tetrahedron $\nabla ABCD$, are *A*, *B*, *C*, *D* the feet of the altitudes of the tetrahedron $\nabla I_A I_B I_C I_D$? The answer is *NO*. Let $\nabla ABCD$ be any isosceles tetrahedron. Then by Theorem [1,](#page-2-0) we have $A^* = I_A$, $B^* = I_B$, $C^* = I_C$, $D^* = I_D$, or $\nabla I_A I_B I_C I_D = \nabla A^* B^* C^* D^*$. Since the parallelepiped $ABCDA^*B^*C^*D^*$ that inscribes the tetrahedron $\nabla ABCD$ is the rectangular box, and none of the triangular faces *A*[∗]*B*[∗]*C* ∗ , *A*[∗]*B*[∗]*D*[∗] , *A*[∗]*C* [∗]*D*[∗] , and *B*[∗]*C* [∗]*D*[∗] even do not contain any of the points *A*, *B*, *C* or *D*. So *A*, *B*, *C*, *D* are not the feet of the altitudes of the tetrahedron $\nabla I_A I_B I_C I_D.$

4 Inequalities Involving Inradius and Circumradius

We will prove the next theorem in this section.

Theorem 4. Let $\nabla ABCD$ be a tetrahedron. Recall that R is the circumradius of the tetra*hedron* $\nabla ABCD$ *, and* $L_A = |IA|$ *,* $L_B = |IB|$ *,* $L_C = |IC|$ *,* $L_D = |ID|$ *. Then*

$$
\frac{r}{R} \le \frac{1}{4} \left(\frac{r}{L_A} + \frac{r}{L_B} + \frac{r}{L_C} + \frac{r}{L_D} \right) \le \frac{1}{3}.
$$

The inequality on the left becomes equality if and only if ∇*ABCD is isosceles, and the inequality on the right becomes equality if and only if* ∇*ABCD is regular.*

Veljan [\[5\]](#page-8-3) proved the following lemma which is similar to Theorem [4.](#page-4-0)

Lemma 6 (Veljan). Let $a, a'; b, b'; c, c'$ be the lengths of opposing pairs of the edges of a *tetrahedron. If R and r are the circumradius and inradius of the tetrahedron, respectively, then*

$$
\left(\frac{r}{R}\right)^2 \le \frac{\sqrt[3]{(-aa'+bb'+cc')(aa'-bb'+cc')(aa'+bb'-cc')}}{3(aa'+bb'+cc')} \le \frac{1}{9}.
$$

The left side inequality becomes equality if and only if the tetrahedron is isosceles, and the right side inequality becomes equality if and only if $aa' = bb' = cc'$.

In this paper [\[5\]](#page-8-3), Veljan gave a nice proof of the inequality $R \geq 3r$. However, he says "Clearly, the equality $(R = 3r)$ is attained if and only if it (the tetrahedron) is regular". Maybe it is "clear". But it is not clear to us why $R = 3r$ implies that the tetrahedron is regular. Since this is important to us, we will prove this result next.

Lemma 7. *If* $\nabla ABCD$ *is a tetrahedron, then* $R \geq 3r$ *. The inequality becomes equality if and only if the tetrahedron is regular.*

Proof. Let *A'*, *B'*, *C'*, *D'* be the centroids of the faces $\triangle BCD$, $\triangle ACD$, $\triangle ABD$, $\triangle ABC$, respectively.

The tetrahedron $\nabla A'B'C'D'$ is similar to the tetrahedron $\nabla ABCD$, and its edges are exactly $\frac{1}{3}$ the lengths of edges of the tetrahedron $\nabla ABCD$. Therefore, we must have $R = 3R'$, where R^{\prime} is the circumradius of the tetrahedron $\nabla A'B'C'D'$. Since the in-sphere is the smallest sphere that touches all four faces of the tetrahedron, we must have $R' > r$. Hence, we have $R = 3R' \geq 3r$. (Up to this far, this is exactly Veljan's argument in [\[5\]](#page-8-3).)

If the tetrahedron is regular, then $R = 3r$. So suppose $R = 3r$. We will show that the tetrahedron is regular. Again, let *R'* be the circumradius of $\nabla A'B'C'D'$. Since $R = 3R'$, we must have $R' = r$. Note that the centroids of $\nabla ABCD$ and $\nabla A'B'C'D'$ are identical.^{[1](#page-5-0)}Since *A*['], *B*['], *C*['], *D*['] are points on the faces of $\nabla ABCD$, $R' = r$ implies that the centroid and circumcenter of $\nabla A'B'C'D'$ are identical, and it is *I*. So $\nabla A'B'C'D'$ is isosceles by Lemma [1.](#page-1-1) Since $\nabla ABCD$ is similar to $\nabla A'B'C'D'$, the tetrahedron $\nabla ABCD$ is also isosceles. Again, by Lemma [1,](#page-1-1) the point *I* is also the centroid of ∇*ABCD* so that *I* is the intersection of the segments *AA'*, *BB'*, *CC'*, *DD'*. Since *I* is the circumcenter of $\nabla A'B'C'D'$, and since ${I} = AA' \cap BB' \cap CC' \cap DD'$, the segments AA' , BB' , CC' , DD' are normal to the faces △*BCD*, △*ACD*, △*ABD*, △*ABC*, respectively. Hence, *I* is the orthocenter of ∇*ABCD*. Therefore, the tetrahedron ∇*ABCD* is regular by Lemma [4.](#page-2-5) \Box

As a corollary of Lemma [7,](#page-5-1) we have the next lemma.

Lemma 8. *Let* ∇*ABCD be an isosceles tetrahedron. Then we have*

$$
\cos^{-1}\frac{r}{R} \ge \cos^{-1}\frac{1}{3} \quad and \tag{1}
$$

$$
\cos^{-1}\frac{r}{L_A} + \cos^{-1}\frac{r}{L_B} + \cos^{-1}\frac{r}{L_C} + \cos^{-1}\frac{r}{L_D} \ge 4\cos^{-1}\frac{1}{3}.\tag{2}
$$

The inequalities in [\(1\)](#page-5-2) *and* [\(2\)](#page-5-3) *become equalities if and only if* ∇*ABCD is regular.*

Proof. By Lemma [7,](#page-5-1) we have $R \ge 3r$, or $\frac{r}{R} \le \frac{1}{3}$ $\frac{1}{3}$. Since the inverse cosine function is decreasing on the interval [0, 1], we have $\cos^{-1} \frac{r}{R} \ge \cos^{-1} \frac{1}{3}$. Since the in-center and the circumcenter of an isosceles tetrahedron are identical, we have $L_A = L_B = L_C = L_D = R$. Therefore, $\cos^{-1} \frac{r}{L_A} + \cos^{-1} \frac{r}{L_B} + \cos^{-1} \frac{r}{L_C} + \cos^{-1} \frac{r}{L_D} = 4 \cos^{-1} \frac{r}{R} \ge 4 \cos^{-1} \frac{1}{3}$. Again, by Lemma [7,](#page-5-1) the inequalities in [\(1\)](#page-5-2) and [\(2\)](#page-5-3) become equalities if and only if ∇*ABCD* is regular.

Now, we are ready for the next lemma. We use Lagrange Multipliers' method to prove it. **Lemma 9.** *Let* ∇*ABCD be a tetrahedron. (We are not assuming it to be isosceles.) Then*

$$
\frac{r}{L_A} + \frac{r}{L_B} + \frac{r}{L_C} + \frac{r}{L_D} \le \frac{4}{3}, \quad and \tag{3}
$$

$$
\cos^{-1}\frac{r}{L_A} + \cos^{-1}\frac{r}{L_B} + \cos^{-1}\frac{r}{L_C} + \cos^{-1}\frac{r}{L_D} \ge 4\cos^{-1}\frac{1}{3}.\tag{4}
$$

The inequalities in both [\(3\)](#page-5-4) *and* [\(4\)](#page-5-5) *become equalities if and only if the tetrahedron* ∇*ABCD is regular.*

¹Let *G*, *G'* be the centroids of $\nabla ABCD$ and $\nabla A'B'C'D'$, respectively. We will show that $G = G'$. Using bet *G*, *G* be the centroids of $\sqrt{ABC}D$ and $\sqrt{A'B'C'D'}$, respectively. We will show that $G = G'$. Using vectors defined in Definition [5,](#page-1-2) $\overrightarrow{DG} = \frac{1}{4}(\vec{\alpha} + \vec{\beta} + \vec{\gamma})$, $\overrightarrow{DA'} = \frac{1}{3}(\vec{\beta} + \vec{\gamma})$, $\overrightarrow{DB'} = \frac{1}{3}(\vec{\alpha}$ $\overrightarrow{DD'} = \frac{1}{3}(\vec{\alpha} + \vec{\beta} + \vec{\gamma})$. Hence, $\overrightarrow{D'A'} = \overrightarrow{DA'} - \overrightarrow{DD'} = -\frac{\vec{\alpha}}{3}, \overrightarrow{D'B'} = -\frac{\vec{\beta}}{3}, \overrightarrow{D'C'} = -\frac{\vec{\gamma}}{3}$ so that $\overrightarrow{D'B'} = -\frac{\vec{\beta}}{3},$ $\frac{1}{D'C'} = -\frac{7}{3}$ so that $\frac{a+p}{D'G'}$ = $\frac{1}{4}$ ($\overrightarrow{D'A'} + \overrightarrow{D'B'} + \overrightarrow{D'C'} = -\frac{1}{12}(\vec{\alpha} + \vec{\beta} + \vec{\gamma})$. Thus, $\overrightarrow{DG'} = \overrightarrow{DD'} + \overrightarrow{D'C'} = \frac{1}{3}(\vec{\alpha} + \vec{\beta} + \vec{\gamma}) - \frac{1}{12}(\vec{\alpha} + \vec{\beta} + \vec{\gamma}) =$ $\frac{1}{4}(\vec{\alpha} + \vec{\beta} + \vec{\gamma}) = \overrightarrow{DG}$. Therefore, $G = G'$.

Proof of [\(3\)](#page-5-4)*.* We will

Maximize
$$
\frac{r}{L_A} + \frac{r}{L_B} + \frac{r}{L_C} + \frac{r}{L_D}
$$

Subject to $\cos^{-1} \frac{r}{L_A} + \cos^{-1} \frac{r}{L_B} + \cos^{-1} \frac{r}{L_C} + \cos^{-1} \frac{r}{L_D} = \theta$,

for some fixed angle $\theta > 0$.

Let $\frac{r}{L_A} = x$, $\frac{r}{L_A}$ $\frac{r}{L_B} = y$, $\frac{r}{L_0}$ $\frac{r}{L_C} = z, \frac{r}{L_I}$ $\frac{r}{L_D} = w$ for simplicity. Then, we are to

Maximize
$$
x + y + z + w
$$

Subject to $\cos^{-1} x + \cos^{-1} y + \cos^{-1} z + \cos^{-1} w = \theta$ and $0 < x, y, z, w < 1$.

Let $f(x, y, z, w) = x + y + z + w$ and $g(x, y, z, w) = cos^{-1} x + cos^{-1} y + cos^{-1} z + cos^{-1} w$. Then by Lagrange Multipliers' method, a critical point (x, y, z, w) must satisfy $\nabla f(x, y, z, w)$ = $\lambda \cdot \nabla g(x, y, z, w)$ for some λ , where ∇f stands for the gradient of f. Hence,

$$
\langle 1, 1, 1, 1 \rangle = \lambda \cdot \left\langle -\frac{1}{\sqrt{1 - x^2}}, -\frac{1}{\sqrt{1 - y^2}}, -\frac{1}{\sqrt{1 - z^2}}, -\frac{1}{\sqrt{1 - w^2}} \right\rangle.
$$

So, $\lambda = -$ √ $1 - x^2 = -$ √ $\overline{1-y^2} = -$ √ $1 - z^2 = -$ √ $1 - w^2$.

Since *x*, *y*, *z*, *w* > 0, we must have $x = y = z = w$. Since $\frac{r}{L_A} = x$, $\frac{r}{L_A}$ $\frac{r}{L_B} = y$, $\frac{r}{L_0}$ $\frac{r}{L_C} = z$, *r* $\frac{r}{L_D} = w$, this implies that $L_A = L_B = L_C = L_D = R$. The critical point is when the tetrahedron ∇*ABCD* is isosceles.

By Lemma [7,](#page-5-1) we have $R \geq 3r$ or $\frac{r}{R} \leq \frac{1}{3}$. So when $L_A = L_B = L_C = L_D = R$, we have $\frac{p}{r}$ $\frac{r}{r}$ $\frac{r}{r}$ $\frac{r}{r}$ $\frac{r}{r}$ $\frac{3}{r}$ Therefore for any p $\frac{r}{L_A} + \frac{r}{L_B}$ $\frac{r}{L_B} + \frac{r}{L_0}$ $\frac{r}{L_C} + \frac{r}{L_I}$ $\frac{r}{L_D} \leq \frac{4}{3}$ $\frac{4}{3}$. Therefore, for any possible angle $\theta > 0$, (that is, for any tetrahedron $\nabla ABCD$, we have $\frac{r}{L_A} + \frac{r}{L_A}$ $\frac{r}{L_B} + \frac{r}{L_0}$ $\frac{r}{L_C} + \frac{r}{L_I}$ $\frac{r}{L_D} \leq \frac{4}{3}$ $\frac{4}{3}$. Since $R = 3r$ if and only if the tetrahedron is regular, the inequality becomes equality if and only if ∇*ABCD* is regular.

Proof of [\(4\)](#page-5-5). As in the above proof, by letting $\frac{r}{L_A} = x$, $\frac{r}{L_A}$ $\frac{r}{L_B} = y$, $\frac{r}{L_0}$ $\frac{r}{L_C} = z$, $\frac{r}{L_i}$ $\frac{r}{L_D} = w$, this problem is simplified to

Minimize
$$
\cos^{-1} x + \cos^{-1} y + \cos^{-1} z + \cos^{-1} w
$$

Subject to
$$
x + y + z + w = \delta, \text{ and } 0 < x, y, z, w < 1,
$$

for some fixed $\delta > 0$. Let $f(x, y, z, w) = \cos^{-1} x + \cos^{-1} y + \cos^{-1} z + \cos^{-1} w$, and $g(x, y, z, w) =$ $x + y + z + w$. From $\nabla f(x, y, z, w) = \lambda \cdot \nabla g(x, y, z, w)$, the critical point (x, y, z, w) is given by

$$
\left\langle -\frac{1}{\sqrt{1-x^2}}, -\frac{1}{\sqrt{1-y^2}}, -\frac{1}{\sqrt{1-z^2}}, -\frac{1}{\sqrt{1-w^2}} \right\rangle = \lambda \cdot \langle 1, 1, 1, 1 \rangle \text{ for some } \lambda.
$$

Hence, $\lambda = -\frac{1}{\sqrt{1-x^2}} = -\frac{1}{\sqrt{1-x^2}}$ $\frac{1}{1-y^2} = -\frac{1}{\sqrt{1-y^2}}$ $\frac{1}{1-z^2} = -\frac{1}{\sqrt{1-z^2}}$ $\frac{1}{1-w^2}$.

Since $x, y, z, w > 0$, this implies that $x = y = z = w$, which in turn implies that $L_A = L_B = L_C = L_D = R$. Thus, the critical value of $\cos^{-1} \frac{r}{L_A} + \cos^{-1} \frac{r}{L_B} + \cos^{-1} \frac{r}{L_C} + \cos^{-1} \frac{r}{L_D}$
is attained when the tetrahedron is an isosceles tetrahedron. However, among all isosceles tetrahedron $\nabla ABCD$, we have $\cos^{-1} \frac{r}{L_A} + \cos^{-1} \frac{r}{L_B} + \cos^{-1} \frac{r}{L_C} + \cos^{-1} \frac{r}{L_D} \geq 4 \cos^{-1} \frac{1}{3}$ by Equation [\(2\)](#page-5-3) in Lemma [8.](#page-5-6) This shows that the minimum value of $\cos^{-1} \frac{r}{L_A} + \cos^{-1} \frac{r}{L_B} +$ $\cos^{-1} \frac{r}{L_C} + \cos^{-1} \frac{r}{L_D}$ is attained when the tetrahedron $\nabla ABCD$ is isosceles when $\frac{r}{L_A} + \frac{r}{L_B}$ $\frac{r}{L_B}$ + *r* $\frac{r}{L_C} + \frac{r}{L_I}$ $\frac{\dot{r}}{L_D} = \delta$ for some $\delta > 0$.

Therefore, this proves that $\cos^{-1} \frac{r}{L_A} + \cos^{-1} \frac{r}{L_B} + \cos^{-1} \frac{r}{L_C} + \cos^{-1} \frac{r}{L_D} \geq 4 \cos^{-1} \frac{1}{3}$ for any tetrahedron ∇*ABCD,* and the inequality becomes equality if and only if ∇*ABCD* is regular by Equation [\(2\)](#page-5-3) in Lemma [8.](#page-5-6) \Box *Remark* 4. The inequalities $\frac{r}{L_A} + \frac{r}{L_A}$ $\frac{r}{L_B} + \frac{r}{L_0}$ $\frac{r}{L_C} + \frac{r}{L_I}$ $\frac{r}{L_D} \leq \frac{4}{3}$ $\frac{4}{3}$ and $3r \leq R$ can be rewritten as

$$
\frac{1}{L_A} + \frac{1}{L_B} + \frac{1}{L_C} + \frac{1}{L_D} \le \frac{4}{3r} \text{ and } \frac{4}{R} \le \frac{4}{3r}.
$$

Which is larger, $\frac{1}{L_A} + \frac{1}{L_A}$ $\frac{1}{L_B} + \frac{1}{L_C}$ $\frac{1}{L_C} + \frac{1}{L_I}$ $\frac{1}{L_D}$ or $\frac{4}{R}$? Let us look at the following example:

Let $A = (1,0,0), \ \overline{B} = (0,1,0), \ C = (0,0,1), \ D = (0,0,0).$ Then the incenter of the tetrahedron $\nabla ABCD$ is $\left(\frac{1}{3+\sqrt{3}}, \frac{1}{3+\sqrt{3}}, \frac{1}{3+\sqrt{3}}\right)$. Hence,

$$
L_A^2 = L_B^2 = L_C^2 = \left(1 - \frac{1}{3 + \sqrt{3}}\right)^2 + 2\left(\frac{1}{3 + \sqrt{3}}\right)^2 = \frac{9 + 4\sqrt{3}}{(3 + \sqrt{3})^2},
$$

and $L_D =$ $\frac{\sqrt{3}}{3+\sqrt{3}}$. So,

$$
\frac{1}{L_A} + \frac{1}{L_B} + \frac{1}{L_C} + \frac{1}{L_D} = 3 \cdot \frac{3 + \sqrt{3}}{\sqrt{9 + 4\sqrt{3}}} + \frac{2 + \sqrt{3}}{\sqrt{3}} \approx 6.289.
$$

On the other hand, its circumcenter of of $\nabla ABCD$ is $(\frac{1}{2}, \frac{1}{2})$ $\frac{1}{2}, \frac{1}{2}$ $(\frac{1}{2})$, so that $R =$ $\sqrt{3}$ $\frac{\sqrt{3}}{2}$. Hence, $\frac{4}{R}=\frac{8}{\sqrt{2}}$ $\frac{1}{3} \approx 4.61$. This is the motivation for the next lemma.

Lemma 10. For any tetrahedron $\nabla ABCD$, we have $\frac{1}{L_A} + \frac{1}{L_A}$ $\frac{1}{L_B} + \frac{1}{L_Q}$ $\frac{1}{L_C} + \frac{1}{L_I}$ $\frac{1}{L_D} \geq \frac{4}{R}$ *R . The inequality becomes equality if and only if the tetrahedron* ∇*ABCD is isosceles.*

Proof. This is a problem to

Minimize
$$
\frac{1}{L_A} + \frac{1}{L_B} + \frac{1}{L_C} + \frac{1}{L_D}
$$

Subject to $\cos^{-1} \frac{r}{L_A} + \cos^{-1} \frac{r}{L_B} + \cos^{-1} \frac{r}{L_C} + \cos^{-1} \frac{r}{L_D} = \theta$,

for some fixed $\theta > 4\cos^{-1}\frac{1}{3}$ $\theta > 4\cos^{-1}\frac{1}{3}$ $\theta > 4\cos^{-1}\frac{1}{3}$ by Equation 4 in Lemma [9.](#page-5-7) For the simplicity, let $x = \frac{1}{L}$ $\frac{1}{L_A}$ $y=\frac{1}{L}$ $\frac{1}{L_B}$, $z=\frac{1}{L_Q}$ $\frac{1}{L_C}$, $w = \frac{1}{L_I}$ $\frac{1}{L_D}$. Then we are to

Minimize
$$
x + y + z + w
$$

Subject to $\cos^{-1} rx + \cos^{-1} ry + \cos^{-1} rz + \cos^{-1} rw = \theta$,

where $\theta > 4 \cos^{-1} \frac{1}{3}$, and *x*, *y*, *z*, *w* > 0. Let $f(x, y, z, w) = x + y + z + w$, and $g(x, y, z, w) =$ $\cos^{-1} rx + \cos^{-1} ry + \cos^{-1} rz + \cos^{-1} rw$. Then $\nabla f(x, y, z, w) = \lambda \cdot \nabla g(x, y, z, w)$ gives us the critical point (x, y, z, w) for some λ . Hence,

$$
\langle 1, 1, 1, 1 \rangle = \lambda \left\langle \frac{-r}{\sqrt{1 - (rx)^2}}, \frac{-r}{\sqrt{1 - (ry)^2}}, \frac{-r}{\sqrt{1 - (rz)^2}}, \frac{-r}{\sqrt{1 - (rw)^2}} \right\rangle, \text{ or}
$$

$$
-r\lambda = \sqrt{1 - (rx)^2} = \sqrt{1 - (ry)^2} = \sqrt{1 - (rz)^2} = \sqrt{1 - (rw)^2}.
$$

This implies that the critical point (x, y, z, w) is given by $x = y = z = w$ since $x, y, z, w > 0$. From Remark [1,](#page-3-3) this implies that the minimal value of $\frac{1}{L_A} + \frac{1}{L_A}$ $\frac{1}{L_B} + \frac{1}{L_C}$ $\frac{1}{L_C} + \frac{1}{L_I}$ $\frac{1}{L_D}$ is attained only when $L_A = L_B = L_C = L_D = R$ (i.e. when the in-radius is the circumradius), and the minimum value is equal to $\frac{4}{R}$. Hence, $\frac{1}{L_A} + \frac{1}{L_A}$ $\frac{1}{L_B} + \frac{1}{L_0}$ $\frac{1}{L_C} + \frac{1}{L_I}$ $\frac{1}{L_D}$ is minimized if and only if the tetrahedron $∇$ *ABCD* is isosceles by Lemma [1.](#page-1-1) \Box

Proof. Proof of Theorem [4](#page-4-0) Theorem 4 is a consequence of Equation [\(3\)](#page-5-4) in Lemma [9](#page-5-7) and Lemma [10.](#page-7-0) \Box

Remark 5. Let $\triangle ABC$ be a triangle with the in-center *H*. Let *r* and *R* be the in-radius and circumradius of the triangle $\triangle ABC$. Then $R \geq 2r$, called Euler's inequality (see [\[5\]](#page-8-3)), and the inequality becomes equality if and only if the triangle $\triangle ABC$ is equilateral. Let A' , B' , *C* ′ be the perpendicular feet from *H* to the edges *BC*, *AC*, *AB*, respectively. Then

$$
\triangleleft AHB' + \triangleleft BHC' + \triangleleft CHA' = \pi.
$$

Let $L_A = |HA|$, $L_B = |HB|$, $L_C = |HC|$. Then

$$
\cos^{-1}\frac{r}{L_A} + \cos^{-1}\frac{r}{L_B} + \cos^{-1}\frac{r}{L_C} = \langle AHB' + \langle BHC' + \langle CHA' = \pi = 3\cos^{-1}\frac{1}{2}.
$$

This may be an interesting contrast to Equation [\(2\)](#page-5-3) in Lemma [9.](#page-5-7)

Now, as in Equation [3](#page-5-4) in Lemma [9,](#page-5-7) we can prove that $\frac{r}{L_A} + \frac{r}{L_A}$ $\frac{r}{L_B} + \frac{r}{L_0}$ $\frac{r}{L_C} \leq \frac{3}{2}$ $\frac{3}{2}$, where the equality holds only when the triangle $\triangle ABC$ is equilateral. By rewriting it to $\frac{1}{L_A} + \frac{1}{L_B}$ $\frac{1}{L_B} + \frac{1}{L_0}$ $\frac{1}{L_C} \leq \frac{3}{2n}$ $\frac{3}{2r}$ and the inequality $2r \leq R$ can be rewritten as $\frac{3}{R} \leq \frac{3}{2r}$ $\frac{3}{2r}$. Hence, as in Lemma [10,](#page-7-0) we can show that $\frac{1}{L_A} + \frac{1}{L_B}$ $\frac{1}{L_B} + \frac{1}{L_C}$ $\frac{1}{L_C} \geq \frac{3}{R}$ $\frac{3}{R}$. Thus, we have the next triangle version of Theorem [4.](#page-4-0)

Corollary 1. Let r be the in-radius, and R the circumradius of the triangle. Let L_A , L_B , L_C *be the lengths between the in-center and the vertices. Then we have*

$$
\frac{r}{R} \le \frac{1}{3} \left(\frac{r}{L_A} + \frac{r}{L_B} + \frac{r}{L_C} \right) \le \frac{1}{2}.
$$

The inequalities become equalities if and only if the triangle is equilateral.

References

- [1] N. Altshiller-Court: *Modern Pure Solid Geometry*. The Macmillan Company, 1935.
- [2] H. S. M. Coxeter and S. L. Greitzer: *Geometry Revisited*. The Mathematical Association of America, 1967.
- [3] H. Katsuura: *Characterization of an Isosceles Tetrahedron*. Journal for Geometry and Graphics **23**(1), 37–40, 2019.
- [4] I. F. Sharigin: *Problems in Solid Geometry*. Mir Publisher, Moscow, 1986. English translation.
- [5] D. Veljan: *Improved Euler's Inequality in Plane and Space*. Journal of Geometry **112**, 31, 2021. doi: [https://doi.org/10.1007/s00022-021-00595-2](https://dx.doi.org/https://doi.org/10.1007/s00022-021-00595-2).

Received March 27, 2024; final form May 20, 2024.