Double Contact Conics in Involution

George Lefkaditis¹ , Anastasia Taouktsoglou²

¹Patras University, Patras, Greece glef@upatras.gr

²Democritus University of Thrace, Xanthi, Greece ataoukts@pme.duth.gr

Abstract. Three coplanar line segments *OA*, *OB*, *OC* are given and three concentric ellipses C_1 , C_2 , C_3 are defined, so that every two of the segments are conjugate semi-diameters of one ellipse. In previous studies we proved using Analytic Plane Geometry that the problem of finding an ellipse circumscribed to C_1, C_2, C_3 has at most two solutions. The *primary solution* T_1 is always an ellipse. The *secondary solution T*² (if it exists) is an ellipse or a hyperbola. We also constructed *T*¹ using Synthetic Projective Plane Geometry.

This study investigates the existence and the construction of *T*² with Synthetic Projective Geometry, particularly Theory of Involution. We prove that the common diameters of every couple of C_1 , C_2 , C_3 correspond through an involution f . Criteria of Synthetic Projective Geometry determine whether *f* is hyperbolic or elliptic. If f is hyperbolic, exactly two double contact conics T_1, T_2 exist circumscribed to C_1 , C_2 , C_3 . T_1 is always an ellipse. T_2 is an ellipse, a hyperbola or a degenerate parabola. The common diameters of T_1 , T_2 define the double lines of *f*. If *f* is elliptic, still two double contact conics T_1 , T_2 exist. Now T_1 is an ellipse circumscribed and T_2 an ellipse inscribed to C_1 , C_2 , C_3 . Regardless of whether f is hyperbolic or elliptic, we construct T_2 using the already constructed ellipse T_1 and the involution *f*.

Key Words: mutually conjugate ellipses, double contact conic, elliptic/hyperbolic involution, double rays, Frégier point

MSC 2020: 51N15 (primary), 51N20, 68U05

1 Introduction

The present study is a continuation of our study [\[9\]](#page-17-1). In that study we considered two concentric conics C_1 , C_2 intersecting at four points and we searched all conics having double contact with these two. As a solution we found an one-parameter family of conics, the so-called *double contact conics of* C_1 , C_2 . We noticed that this family creates a hyperbolic involution f_{AB} on

ISSN 1433-8157/ \circ 2024 by the author(s), licensed under [CC BY SA 4.0.](https://creativecommons.org/licenses/by-sa/4.0/)

the pencil of lines through their common centre *O*, with double lines the lines of the common diameters *AC*, *BD* of *C*1, *C*2. The lines of the contact diameters of every double contact conic C_3 with C_1 C_1 , C_2 correspond through f_{AB} ¹.

In the present paper we consider three concentric ellipses, *mutually conjugate*, and we search all conics having double contact with these three. The problem of finding a fourth concentric ellipse circumscribed to all three is solved through the three-dimensional space by G. A. Peschka (1879) in his proof of K. Pohlke's *Fundamental Theorem of Axonometry.* Previous studies of ours (cf. [\[5,](#page-17-2) [6\]](#page-17-3)) dealing with the problem as a two-dimensional one, confirmed that there is always the so-called *primary solution* T_1 of the problem, which is an ellipse. That's why the problem is referred as the *Four Ellipses Problem.* T_1 is also constructed in [\[5,](#page-17-2) [6\]](#page-17-3) using Synthetic Projective Plane Geometry.

The present study focuses on the investigation of existence and on the construction of the *secondary solution T*² of the *Four Ellipses Problem* using methods of Synthetic Projective Plane Geometry, in particular the Theory of Involution.

A projective transformation, which is not the identity, but applied twice yields the identity, is called an *involution* (cf. [\[2,](#page-17-4) p. 212] and [\[4,](#page-17-5) Vol. I, p. 174]). An involution on a pencil of lines has either two fixed lines *(hyperbolic involution)* or none *(elliptic involution)* (cf. [\[1,](#page-17-6) p. 153] and [\[4,](#page-17-5) Vol. I, p. 176]). Two pairs of lines (δ_1, δ'_1) , (δ_2, δ'_2) are needed, in order for an involution f on a pencil of lines to be defined (cf. $[1, p. 153]$ $[1, p. 153]$ and $[4, Vol. I, p. 175]$ $[4, Vol. I, p. 175]$). Then, $f(\delta_1) = \delta'_1$, $f(\delta_2) = \delta'_2$, $f(\delta'_1) = \delta_1$ and for any line δ of the pencil, $f(\delta)$ is the line of the pencil defined through the cross ratio equation $(\delta_1, \delta_2, \delta'_1, \delta) = (\delta'_1, \delta'_2, \delta_1, f(\delta)).$

2 Common Diameters of two Double Contact Conics

We consider now two double contact conics T_1 , T_2 of C_1 , C_2 intersecting at four points A' , B' , C' , D' (Figure [1\)](#page-2-0). We will prove the following:

Proposition 2.1. *Let C*1*, C*² *be two ellipses with common centre O intersecting at four points A, B, C, D. Let T*1*, T*² *be two of the double contact conics of C*1*, C*² *intersecting at four* points A' , B' , C' , D' . Then, the common diameters $A'C'$, $B'D'$ of T_1 , T_2 and the common *diameters AC*, *BD* of C_1 , C_2 C_2 *form a harmonic pencil, i.e.* $O(A, B, A', B') = -1$.²

Proof. Let T_1 , T_2 be two double contact conics of C_1 , C_2 with respect to M_1N_1 , M_2N_2 , i.e. M_1N_1 , M_2N_2 are contact diameters of T_1 , T_2 with C_1 respectively (Figure [1\)](#page-2-0). Let t_1 , t_2 be the gradients of M_1N_1 , M_2N_2 . We suppose that

$$
t_1 \neq \pm \lambda_1, \qquad t_2 \neq \pm \lambda_1,\tag{1}
$$

where λ_1 is the gradient of AC, in order for T_1, T_2 not to degenerate to double lines (cf. [\[9,](#page-17-1) Proposition 3]). According to [\[9,](#page-17-1) Equation (18)], T_1 , T_2 have the following equations:

$$
T_1: \alpha_1 x^2 + 2\beta_1 xy + \gamma_1 y^2 + \delta_1 = 0 \tag{2}
$$

$$
T_2: \alpha_2 x^2 + 2\beta_2 xy + \gamma_2 y^2 + \delta_2 = 0 \tag{3}
$$

¹ In what follows, when we refer to corresponding lines of a pencil, we will use the term *common diameter* (resp. *contact diameter*) instead of the term *line of a common diameter* (resp. *line of a contact diameter*) for brevity.

² In what follows, the cross ratio of four concurring lines *OA*, *OB*, *OC*, *OD* (in this order) will be denoted by *O*(*A, B, C, D*), instead of (*OA, OB, OC, OD*), for brevity.

Figure 1: Two intersecting double contact conics.

where α_1 , β_1 , γ_1 , δ_1 and α_2 , β_2 , γ_2 , δ_2 are given by [\[9,](#page-17-1) Equations (19)–(22)] considering $\lambda_3 = t_1$ and $\lambda_3 = t_2$ respectively.

Let T_1 , T_2 be either both inscribed to C_1 , C_2 , or both circumscribed to C_1 , C_2 , i.e.

$$
(\lambda_1^2 - t_1^2)(\lambda_1^2 - t_2^2) > 0.
$$
\n⁽⁴⁾

Let also T_1 , T_2 have four intersection points A' , B' , C' , D' . Then, C_1 can be considered as a double contact conic of T_1 , T_2 with contact diameters M_1N_1 , M_2N_2 respectively. Then, according to [\[9,](#page-17-1) Proposition 1] it holds that $O(A', B', M_1, M_2) = -1$, i.e.

$$
(m_1 + m_2)(t_1 + t_2) = 2(m_1m_2 + t_1t_2)
$$
\n⁽⁵⁾

where m_1 , m_2 are respectively the gradients of lines $A'C'$, $B'D'$, which join the points of intersection, that are symmetric with respect to centre O . Similarly, C_2 can be considered as a double contact conic of T_1 , T_2 with contact diameters say R_1S_1 , R_2S_2 respectively. Then it holds that $O(A', B', R_1, R_2) = -1$, i.e.

$$
(m_1 + m_2)(s_1 + s_2) = 2(m_1m_2 + s_1s_2)
$$
\n(6)

where s_1 , s_2 are the gradients of R_1S_1 , R_2S_2 respectively. So, [\(5\)](#page-2-1) and [\(6\)](#page-2-2) lead to

$$
\begin{vmatrix} t_1 + t_2 & m_1 m_2 + t_1 t_2 \ s_1 + s_2 & m_1 m_2 + s_1 s_2 \end{vmatrix} = 0.
$$
 (7)

Since it holds $O(A, B, M_1, R_1) = -1$ and $O(A, B, M_2, R_2) = -1$, according to [\[9,](#page-17-1) Equation (6)] we get

$$
s_1 = \frac{\lambda_1^2}{t_1}, \qquad s_2 = \frac{\lambda_1^2}{t_2}.
$$
 (8)

Substituting *s*1*, s*² through [\(8\)](#page-2-3), equation [\(7\)](#page-2-4) leads to

$$
(t_1 + t_2)(\lambda_1^2 - t_1 t_2)(m_1 m_2 - \lambda_1^2) = 0.
$$
\n(9)

But $\lambda_1^2 - t_1 t_2 = 0$ states that T_1, T_2 form *a couple of double contact conics* (cf. [\[9,](#page-17-1) Proposition 6]). Then, one conic is inscribed and the other one circumscribed to C_1 , C_2 . That means equation $\lambda_1^2 - t_1 t_2 = 0$ contradicts to [\(4\)](#page-2-5). So, equation [\(9\)](#page-2-6) turns to

$$
(t_1 + t_2)(m_1 m_2 - \lambda_1^2) = 0.
$$
\n(10)

Figure 2: Common diameters *A*′*C* ′ *, B*′*D*′ and *AC, BD* form a harmonic pencil.

• In case $t_1 + t_2 \neq 0$, equation [\(10\)](#page-2-7) yields

$$
m_1 m_2 = \lambda_1^2 \tag{11}
$$

i.e.

$$
O(A, B, A', B') = -1.
$$
 (12)

• In case $t_1 + t_2 = 0$, it holds

$$
\alpha_2 = \alpha_1, \quad \beta_2 = -\beta_1, \quad \gamma_2 = \gamma_1 \quad \text{and} \quad \delta_2 = \delta_1. \tag{13}
$$

So, equation [\(3\)](#page-1-2) of T_2 turns to $\alpha_1 x^2 - 2\beta_1 xy + \gamma_1 y^2 + \delta_1 = 0$. Obviously, if T_1, T_2 intersect at four points, then the lines of the common diameters $A'C'$, $B'D'$ are the coordinate axes. But the coordinate axes satisfy condition [\(12\)](#page-3-0) too.

Consequently, line $A'C'$ is always harmonic conjugate to $B'D'$ with respect to AC, BD , i.e. $O(A, B, A', B') = -1$ (Figure [2\)](#page-3-1). \Box

Shortly, we have proved the following property:

Corollary 2.1. *Let C*1*, C*² *be two ellipses with common centre O intersecting at four points A, B, C, D and T*1*, T*² *be two of the double contact conics of C*1*, C*² *intersecting at four points* A' , B' , C' , D' . Then OM_1 , OM_2 are the rays through the contact points of T_1 , T_2 with C_1 *and* OR_1 , OR_2 *are the rays through the contact points of* T_1 , T_2 *with* C_2 *(Figure [2\)](#page-3-1). We proved that the following holds:*

On the pencil of lines with vertex O, (OM_1, OM_2) *and* (OR_1, OR_2) *are two pairs of harmonic conjugate rays with respect to rays* OA', OB' *and simultaneously* (OM_1, OR_1) and (*OM*2*, OR*2) *are two pairs of harmonic conjugate rays with respect to rays OA, OB. This leads to the conclusion that OA, OB are harmonic conjugate rays with respect to OA*′ *, OB*′ *, under the condition that lines OM*1*, OR*² *are not coincident, i.e.:*

$$
\begin{cases}\nO(M_1, M_2, A', B') = -1 \\
O(R_1, R_2, A', B') = -1 \\
O(M_1, R_1, A, B) = -1 \\
O(M_2, R_2, A, B) = -1\n\end{cases} \Rightarrow O(A, B, A', B') = -1.
$$
\n(14)

Remark 2.1*.* It can be easily verified, that *T*1, *T*² have four intersection points, in the following cases:

- T_1, T_2 are both ellipses inscribed to C_1, C_2 ,
- T_1 , T_2 are both ellipses circumscribed to C_1 , C_2 ,
- T_1 is an ellipse and T_2 is a hyperbola or a degenerate parabola, both circumscribed to $C_1, C_2.$

Remark 2.2*.* It can be easily proved, that the result of Proposition [2.1.](#page-1-3) remains true, if the two ellipses C_1 , C_2 are replaced by two arbitrary regular conics C_1 , C_2 having four intersection points *A*, *B*, *C*, *D*.

Considering [\[9,](#page-17-1) Remark 5], Proposition [2.1](#page-1-3) can be formulated as follows (Figure [2\)](#page-3-1):

Lemma 2.1. *Let C*1*, C*² *be two arbitrary regular conics with common centre O intersecting at four points A*, *B*, *C*, *D*. Let T_1 , T_2 *be two of the double contact conics of* C_1 , C_2 *intersecting at four points A*′ *, B*′ *, C* ′ *, D*′ *. Then, the following hold:*

- *The common diameters AC, BD of C*1*, C*² *correspond through the hyperbolic involution* $f_{A'B'}$ on the pencil of lines through *O*, with double lines the common diameters $A'C'$, $B'D'$ *of* T_1 , T_2 . The contact diameters M_1N_1 , M_2N_2 *of* C_1 *with* T_1 , T_2 *also correspond through* $f_{A'B'}$ *. So do the contact diameters* R_1S_1 *,* R_2S_2 *of* C_2 *with* T_1 *,* T_2 *.*
- *The common diameters* $A'C'$ *,* $B'D'$ *of* T_1 , T_2 *correspond through the hyperbolic involution fAB on the pencil of lines through O, with double lines the common diameters AC, BD of* C_1 *,* C_2 *.*

Figure 3: Common diameters of T_1 , T_2 and common diameters of T_1' , T_2' are collinear.

According to [\[9,](#page-17-1) Proposition 6], the double contact conics of C_1 , C_2 are in couples, i.e. every diameter of C_1 corresponds to two double contact conics of C_1 , C_2 , one circumscribed and one inscribed to C_1 , C_2 . The next proposition relates the common diameters of two circumscribed double contact conics of C_1 , C_2 with the common diameters of their corresponding inscribed double contact conics (Figure [3\)](#page-4-0). The result follows directly from Lemma [2.1.](#page-4-1)

Proposition 2.2. *Let C*1*, C*² *be two ellipses with common centre O intersecting at four points* $A, B, C, D.$ Let T_1, T_2 be two double contact conics circumscribed to C_1, C_2 and T_1', T_2' their *corresponding double contact conics of* C_1 , C_2 *inscribed to* C_1 , C_2 *. Let* T_1 , T_2 *intersect at four* points A' , B' , C' , D' . Then, the common diameters of T'_{1} , T'_{2} lie on the common diameters *of* T_1 , T_2 *respectively.*

Proof. Let $A''C''$, $B''D''$ be the common diameters of T_1' , T_2' (Figure [3\)](#page-4-0). According to Lemma [2.1](#page-4-1) on the pencil of rays through O two hyperbolic involutions are defined: $f_{A''B''}$ with double lines $A''C''$, $B''D''$ and $f_{A'B'}$ with double lines $A'C'$, $B'D'$. Then, the common diameters AC , BD of C_1 , C_2 correspond through both involutions. We will prove that so do the contact diameters M_1N_1 , M_2N_2 of C_1 with T_1 , T_2 . Indeed, M_1N_1 , M_2N_2 correspond through $f_{A'B'}$ according to Lemma [2.1](#page-4-1) Furthermore they carry the contact diameters of C_2 with T_1' , T_2' . Consequently, M_1N_1 , M_2N_2 correspond through $f_{A''B''}$, too. So, involutions $f_{A'B'}$, $f_{A''B''}$ coincide, since they have two common pairs: (AC, BD) and (M_1N_1, M_2N_2) . Then, their double lines coincide too, i.e. the common diameters of T_1' , T_2' lie on the common diameters of T_1, T_2 . \Box

Figure 4: Every two of the three line segments are two conjugate semi–diameters of one of the three ellipses.

3 The Four Ellipses Problem

In [\[5\]](#page-17-2) the following problem has been studied (Figure [4\)](#page-5-0):

Consider three coplanar line segments, having one start point in common, where only two of them are permitted to coincide. Three concentric ellipses can then be defined, say C_i , $i = 1, 2, 3$, such that every two of these three line segments are *considered to be two conjugate semi–diameters of each ellipse. Can we determine a concentric to* C_i *ellipse* T *, circumscribing all* C_i *,* $i = 1, 2, 3$ *, using only Synthetic Projective Plane Geometry?*

The above plane–geometric problem (referred by the authors as the *Four Ellipses Problem*) is solved in [\[5\]](#page-17-2) by presenting one solution T_1 . The same problem is also investigated in [\[10\]](#page-17-7) in order for all existing circumscribing ellipses *T* of C_i , $i = 1, 2, 3$ to be determined. This time the problem was investigated exclusively with methods of Analytic Geometry. It is proved that, at most, two (concentric to C_i) circumscribing conics of C_i , $i = 1, 2, 3$ exist. One of them, say *T*1, is always an ellipse. We shall call it *primary solution* of the problem. The other one, say *T*2, if it exists, it is either an ellipse or a hyperbola. We shall call it *secondary solution* of the problem.

In [\[7\]](#page-17-8) a necessary and sufficient condition for the existence of the two circumscribing ellipses T_1, T_2 is given through the three-dimensional space.

In $[6]$ a new construction of the *primary solution* T_1 is introduced using methods of Synthetic Plane Projective Geometry. In the present study we will go one step further. In case the *secondary solution* T_2 exists (i.e. there exist a second conic circumscribing C_i , $i = 1, 2, 3$, we will use the already constructed T_1 in [\[6\]](#page-17-3) and a hyperbolic involution to construct T_2 , regardless of the type of T_2 . So, T_2 will be also constructed using methods of Synthetic Projective Plane Geometry.

Figure 5: Tangent lines of each ellipse are parallel to the given line segment, which is not a semidiameter of this ellipse.

3.1 Construction of the Primary Solution *T*¹

In the real projective plane three line segments are given, having one start point in common, say OA_{13} , OA_{12} , OA_{23} (Figure [4\)](#page-5-0). Following *Rytz's Construction* (cf. [\[2,](#page-17-4) p. 357] and [\[4,](#page-17-5) Vol. II, Issue B, p. 183]) three concentric ellipses can then be defined, say C_i , $i = 1, 2, 3$, such that every two of these three line segments are two conjugate semi–diameters of each ellipse, i.e.

- OA_{13}, OA_{12} are two conjugate semi-diameters of C_1 ,
- OA_{12}, OA_{23} are two conjugate semi-diameters of C_2 and
- OA_{13}, OA_{23} are two conjugate semi-diameters of C_3 .

In the following C_1 , C_2 , C_3 are called *mutually conjugate* ellipses (cf. [\[10,](#page-17-7) p. 64]).

According to [\[6\]](#page-17-3) we consider the tangent lines of each ellipse C_i , $i = 1, 2, 3$, that are parallel to the given line segment, which is not a semi-diameter of C_i (Figure [5\)](#page-6-0). The corresponding contact points M_1 , N_1 , P_1 , Q_1 , R_1 , S_1 determine an ellipse T_1 . It is proved that T_1 has double contact with *C*1, *C*2, *C*³ at *M*1, *N*1, *P*1, *Q*1, *R*1, *S*¹ respectively. This ellipse is defined as the *primary solution* of the *Four Ellipses Problem* (Figure [6\)](#page-7-0).

Remark 3.1. Obviously, M_1N_1 is the diameter of C_1 whose conjugate diameter lies on OA_{23} , i.e. M_1N_1 corresponds to diameter $A_{23}C_{23}$ through the elliptic involution, through which the conjugate diameters of C_1 correspond. Similarly, P_1Q_1 (resp. R_1S_1) corresponds to $A_{13}C_{13}$ (resp. $A_{12}C_{12}$) through the respective involution of C_2 (resp. C_3).

3.2 Construction of the Secondary Solution *T*²

Let T_2 be the *secondary solution* of the problem. Both solutions T_1 , T_2 are double contact conics of C_1 , C_2 , C_3 , circumscribed to C_1 , C_2 , C_3 and T_1 is always an ellipse. T_2 can be an

Figure 6: Primary solution T_1 of the Four Ellipses Problem.

ellipse, a hyperbola or a degenerate parabola (i.e. a pair of parallel lines or a double line) (cf. [\[9,](#page-17-1) Proposition 3]). So, T_1 , T_2 intersect at four points, say A' , B' , C' , D' (cf. Remark [2.1\)](#page-4-2). A', B', C', D' are now unknown and they have to be determined.

Let $f_{A'B'}$ be the hyperbolic involution defined on the pencil of lines through O with double lines the common chords $A'C'$, $B'D'$ through *O* of T_1 , T_2 .

We consider now C_1 , C_2 as two double contact ellipses of T_1 , T_2 , intersecting at four points A_{12} , B_{12} , C_{12} , D_{12} . If $A_{12}C_{12}$, $B_{12}D_{12}$ are the common diameters of C_1 , C_2 (Figure [7\)](#page-7-1), according to Lemma [2.1,](#page-4-1) $A_{12}C_{12}$, $B_{12}D_{12}$ and common diameters $A'C'$, $B'D'$ form a harmonic pencil. So, $A_{12}C_{12}$, $B_{12}D_{12}$ correspond through $f_{A'B'}$. Similarly, considering C_2 , C_3 as two double contact conics of T_1 , T_2 , the common diameters $A_{23}C_{23}$, $B_{23}D_{23}$ of C_2 , C_3 (Figure [7\)](#page-7-1) correspond through $f_{A'B'}$. So do the common diameters $A_{13}C_{13}$, $B_{13}D_{13}$ of C_1 , C_3 .

Figure 7: Common diameters $A_{12}C_{12}$, $B_{12}D_{12}$ correspond through $f_{A'B'}$. So do common diameters *A*23*C*23, *B*23*D*23.

The two pairs of lines $(A_{12}C_{12}, B_{12}D_{12})$ and $(A_{23}C_{23}, B_{23}D_{23})$ through *O* enable us to determine the hyperbolic involution $f_{A'B'}$, through which the members of the pairs correspond. Then, we can construct the double lines of the hyperbolic involution $f_{A'B'}$. For this purpose we use the following (cf. $[2, p. 255]$ $[2, p. 255]$ and $[4, Vol. I, p. 200, 202]$ $[4, Vol. I, p. 200, 202]$):

Theorem (Frégier's Theorem^{[3](#page-8-0)}). Let f be an involution on a pencil of lines with vertex O. If *vertex O lies on a conic c, then the lines, that join the intersection points of corresponding lines of the pencil with the conic, pass through one fixed point F. Point F lies on the line of the pencil, which corresponds to the tangent line of the conic c at point O. Conversely, the intersecting points of conic c and a line through point F define a couple of corresponding lines of the pencil.*

Point *F* is called the *Fréqier point* to *c* and *O* (cf. [\[4,](#page-17-5) Vol. I, p. 199] and [\[8,](#page-17-9) p. 201]). According to the above theorem and Lemma [2.1](#page-4-1) we construct T_2 following the next steps:

Figure 8: $A_{12}C_{12}$, $B_{12}D_{12}$ define secant δ_1 of circle *c*.

Figure 9: Lines δ_1, δ_2 intersect at Frégier point *F*.

Step 1: We consider a circle *c* passing through point *O*. Let $A_{12}C_{12}$, $B_{12}D_{12}$ intersect circle *c* (except of *O*) at K_1 , K_2 respectively. Then, K_1 , K_2 define a secant δ_1 of *c* (Figure [8\)](#page-8-1).

Step 2: Similarly to Step 1, $A_{23}C_{23}$, $B_{23}D_{23}$ define a secant δ_2 of *c*. **Step 3:** Lines δ_1 , δ_2 intersect at Frégier point *F* (Figure [9\)](#page-8-2).

We consider now each of the contact chords M_1N_1 , P_1Q_1 , R_1S_1 of C_i , T_1 , $i = 1, 2, 3$ respectively and we construct its corresponding line through $f_{A'B'}$ in the following way: **Step 4:** Line M_1N_1 intersects circle c at point L_1 , different than O (Figure [10\)](#page-9-0).

³P. F. Fr´egier, Annales des Math. Pures et Appl., **6** (1815–1816), pp. 321–323.

Figure 11: OL_2 corresponds to M_1N_1 through involution $f_{A'B'}$.

Figure 12: *T*² passes through *M*2, *N*2, *P*2, *Q*2, *R*2, *S*2.

Step 5: We join point L_1 and Frégier point F .

Step 6: Line FL_1 intersects c at L_2 .

Step 7: Then, line OL_2 is the corresponding line of M_1N_1 (Figure [11\)](#page-9-1) and its intersection points M_2 , N_2 with C_1 are the contact points of T_2 , C_1 .

We repeat Steps $4-7$ to construct the contact points P_2 , Q_2 of T_2 , C_2 and the contact points *R*2, *S*² of *T*2, *C*3.

Final Step: We construct T_2 passing through M_2 , N_2 , P_2 , Q_2 , R_2 , S_2 (Figure [12\)](#page-9-2).

Hence, we have constructed T_2 using T_1 and the involution defined by two pairs of common

Figure 13: FE_1 , FE_2 are the tangent lines of c through F .

Figure 14: OE_1, OE_2 are the double lines of the involution $f_{A'B'}$.

diameters of the ellipses C_1 , C_2 , C_3 . Since T_1 , T_2 are double contact conics of C_1 , C_2 , C_3 and their contact diameters with C_1 , C_2 , C_3 correspond through this involution, T_1 , T_2 are called *double contact conics in involution*.

In the sequel, in order to determine the double lines of the involution $f_{A'B'}$, we consider the tangent lines of *c* through point *F*. Since $f_{A'B'}$ is a hyperbolic involution, Frégier point *F* lies outside circle *c*. So, there are two tangent lines of *c* passing through *F*. Let E_1 , E_2 be their contact points with c (Figure [13\)](#page-10-0). Then, lines OE_1 , OE_2 are the double lines of the hyperbolic involution $f_{A'B'}$ (Figure [14\)](#page-10-1). Their intersection points with T_1 are exactly the intersection points A' , B' , C' , D' of T_1 , T_2 . So, T_2 passes through A' , B' , C' , D' too (Figure [15\)](#page-11-0).

The *secondary solution T*² of the *Four Ellipses Problem* can be an ellipse, a hyperbola or a degenerate parabola (i.e. a pair of parallel lines or a double line) (Figures [16,](#page-11-1) [15,](#page-11-0) [17](#page-11-2) respectively).

Remark 3.2. The secondary solution T_2 of the Four Ellipses Problem degenerates to a pair of parallel lines, in case three endpoints of the common diameters of C_1 , C_2 , C_3 through O are collinear, i.e. if A_{12} , A_{23} , A_{13} are collinear (Figure [17](#page-11-2) left) or A_{12} , A_{23} , C_{13} are collinear (Figure [17](#page-11-2) right). In this case, lines of T_2 are parallel to the line that carries the three collinear points.

Remark 3.3. The secondary solution T_2 degenerates to a double line, in case C_1 , C_2 , C_3 are

Figure 15: T_2 passes through A' , B' , C' , D' and M_2 , N_2 , P_2 , Q_2 , R_2 , S_2 .

Figure 16: *T*² as an ellipse.

Figure 17: *T*² as a pair of parallel lines, in case points *A*12, *A*23, *A*¹³ are collinear (left) or *A*12, *A*23, *C*¹³ are collinear (right).

concurrent, i.e. three common diameters coincide (Figure [18\)](#page-12-0). In this case, the double line T_2 carries the triple common diameter. Now involution $f_{A'B'}$ can not be defined and Frégier point *F* lies on circle *c*.

Remark 3.4. It is worth noting that, although $A_{12}C_{12}$, $B_{12}D_{12}$ correspond through $f_{A'B'}$ and contact diameters M_1N_1 , P_1Q_1 form with $A_{12}C_{12}$, $B_{12}D_{12}$ a harmonic pencil, M_1N_1 , P_1Q_1 do

Figure 18: T_2 as a double line, in case C_1 , C_2 , C_3 are concurrent. Common diameters $A_{12}C_{12}$, $B_{13}D_{13}$, $B_{23}D_{23}$ coincide.

Figure 19: Common diameters $A_{12}C_{12}$, $B_{12}D_{12}$ and contact diameters M_1N_1 , P_1Q_1 form a harmonic pencil, but only $A_{12}C_{12}$, $B_{12}D_{12}$ correspond through $f_{A'B'}$.

not correspond through $f_{A'B'}$ (Figure [19\)](#page-12-1). Instead, contact diameter M_1N_1 corresponds to contact diameter M_2N_2 through $f_{A'B'}$, where M_2, N_2 are the contact points of C_1, T_2 . But M_1N_1 , P_1Q_1 do correspond through the hyperbolic involution $f_{A_{12}B_{12}}$ defined on the pencil of lines through *O* with double lines $A_{12}C_{12}$, $B_{12}D_{12}$. In our study we restricted our interest to the hyperbolic involution $f_{A'B'}$.

4 The Involution Defined by the Pairs of Common Diameters

In the general case, if three line segments are given, having one start point in common, say OA_{13} , OA_{12} , OA_{23} , then three concentric *mutually conjugate* ellipses C_1 , C_2 , C_3 are defined.

Let C_1 , C_2 (resp. C_2 , C_3) intersect at four points A_{12} , B_{12} , C_{12} , D_{12} (resp. A_{23} , B_{23} , C_{23} , D_{23}) and $A_{12}C_{12}$, $B_{12}D_{12}$ (resp. $A_{23}C_{23}$, $B_{23}D_{23}$) be their common diameters. Then, using the two pairs of lines $(A_{12}C_{12}, B_{12}D_{12}), (A_{23}C_{23}, B_{23}D_{23})$ we determine an involution f on the pencil of lines through *O*, through which the members of the pairs correspond. Involution *f* can be either elliptic or hyperbolic depending on whether the pairs $(A_{12}C_{12}, B_{12}D_{12})$, $(A_{23}C_{23}, B_{23}D_{23})$ are mutually separated or not (cf. [\[2,](#page-17-4) p. 211] and [\[4,](#page-17-5) Vol. I, p. 177]). In Figure [20](#page-13-0) (left) the pairs $(A_{12}C_{12}, B_{12}D_{12})$, $(A_{23}C_{23}, B_{23}D_{23})$ define an elliptic involution f . In Figure [20](#page-13-0) (right) they define a hyperbolic involution *f*.

Figure 20: $A_{12}C_{12}$, $B_{12}D_{12}$ and $A_{23}C_{23}$, $B_{23}D_{23}$ are mutually separated on the left, but not on the right.

4.1 The Equation of Involution *f*

First we determine the equation of involution *f*. Let λ_{12} , μ_{12} , λ_{23} , μ_{23} be the gradients of lines $A_{12}C_{12}$, $B_{12}D_{12}$, $A_{23}C_{23}$, $B_{23}D_{23}$ respectively. We assume that $\lambda_{12} \neq \mu_{12}$ and $\lambda_{23} \neq \mu_{23}$, so that neither $A_{12}C_{12}$, $B_{12}D_{12}$, nor $A_{23}C_{23}$, $B_{23}D_{23}$ coincide. Let also μ , μ' the gradients of a line *OM* and its corresponding line *OM'* through *f*. Then it holds $O(A_{12}, B_{12}, A_{23}, M)$ = *O*(*B*12*, A*12*, B*23*, M*′). So,

$$
\frac{\lambda_{23} - \lambda_{12}}{\mu_{12} - \lambda_{23}} \cdot \frac{\mu_{12} - \mu}{\mu - \lambda_{12}} = \frac{\mu_{23} - \mu_{12}}{\lambda_{12} - \mu_{23}} \cdot \frac{\lambda_{12} - \mu'}{\mu' - \mu_{12}} \tag{15}
$$

or equivalently

$$
\begin{vmatrix} \lambda_{12}\mu_{12} & \lambda_{12} + \mu_{12} & 1\\ \lambda_{23}\mu_{23} & \lambda_{23} + \mu_{23} & 1\\ \mu\mu' & \mu + \mu' & 1 \end{vmatrix} = 0.
$$
 (16)

Equation [\(16\)](#page-13-1) is exactly the equation of involution *f*.

In the sequel we prove that the common diameters of C_1 , C_3 also correspond through f .

Proposition 4.1. *Let C*1*, C*2*, C*³ *be three mutually conjugate ellipses with common centre O. Let f be the involution on the pencil of lines through O determined by the pairs of the common diameters of* C_1 , C_2 *and* C_2 , C_3 *. Then, the common diameters of* C_1 , C_3 *also correspond through involution f.*

Proof. Let C_1 , C_3 intersect at four points A_{13} , B_{13} , C_{13} , D_{13} and $A_{13}C_{13}$, $B_{13}D_{13}$ be their common diameters with gradients λ_{13} , μ_{13} respectively. Let also

$$
C_1: \alpha_1 x^2 + 2\beta_1 xy + \gamma_1 y^2 + \delta_1 = 0,\tag{17}
$$

$$
C_2: \alpha_2 x^2 + 2\beta_2 xy + \gamma_2 y^2 + \delta_2 = 0,\tag{18}
$$

$$
C_3: \alpha_3 x^2 + 2\beta_3 xy + \gamma_3 y^2 + \delta_3 = 0 \tag{19}
$$

be the equations of C_1 , C_2 , C_3 . So, if line ε : $y = \ell x$ is a secant of C_1 , C_2 through O , then it holds

$$
\begin{cases} (\alpha_1 + 2\beta_1 \ell + \gamma_1 \ell^2) x^2 + \delta_1 = 0, \\ (\alpha_2 + 2\beta_2 \ell + \gamma_2 \ell^2) x^2 + \delta_2 = 0. \end{cases}
$$
 (20)

Therefore, it holds

$$
\begin{vmatrix} \alpha_1 + 2\beta_1 \ell + \gamma_1 \ell^2 & \delta_1 \\ \alpha_2 + 2\beta_2 \ell + \gamma_2 \ell^2 & \delta_2 \end{vmatrix} = 0.
$$
 (21)

Consequently, gradients λ_{12} , μ_{12} are exactly the roots of the equation

$$
\begin{vmatrix} \gamma_1 & \delta_1 \\ \gamma_2 & \delta_2 \end{vmatrix} \ell^2 + 2 \begin{vmatrix} \beta_1 & \delta_1 \\ \beta_2 & \delta_2 \end{vmatrix} \ell + \begin{vmatrix} \alpha_1 & \delta_1 \\ \alpha_2 & \delta_2 \end{vmatrix} = 0.
$$
 (22)

 \mathbf{L}

 \mathbf{r}

So, it holds

$$
\lambda_{12} + \mu_{12} = -2 \frac{\begin{vmatrix} \beta_1 & \delta_1 \\ \beta_2 & \delta_2 \end{vmatrix}}{\begin{vmatrix} \gamma_1 & \delta_1 \\ \gamma_2 & \delta_2 \end{vmatrix}}, \qquad \lambda_{12} \cdot \mu_{12} = \frac{\begin{vmatrix} \alpha_1 & \delta_1 \\ \alpha_2 & \delta_2 \end{vmatrix}}{\begin{vmatrix} \gamma_1 & \delta_1 \\ \gamma_2 & \delta_2 \end{vmatrix}}.
$$
 (23)

Similarly, it holds

$$
\lambda_{23} + \mu_{23} = -2 \frac{\begin{vmatrix} \beta_2 & \delta_2 \\ \beta_3 & \delta_3 \end{vmatrix}}{\begin{vmatrix} \gamma_2 & \delta_2 \\ \gamma_3 & \delta_3 \end{vmatrix}}, \qquad \lambda_{23} \cdot \mu_{23} = \frac{\begin{vmatrix} \alpha_2 & \delta_2 \\ \alpha_3 & \delta_3 \end{vmatrix}}{\begin{vmatrix} \gamma_2 & \delta_2 \\ \gamma_3 & \delta_3 \end{vmatrix}}
$$
(24)

and also

$$
\lambda_{13} + \mu_{13} = -2 \frac{\begin{vmatrix} \beta_1 & \delta_1 \\ \beta_3 & \delta_3 \end{vmatrix}}{\begin{vmatrix} \gamma_1 & \delta_1 \\ \gamma_3 & \delta_3 \end{vmatrix}}, \qquad \lambda_{13} \cdot \mu_{13} = \frac{\begin{vmatrix} \alpha_1 & \delta_1 \\ \alpha_3 & \delta_3 \end{vmatrix}}{\begin{vmatrix} \gamma_1 & \delta_1 \\ \gamma_3 & \delta_3 \end{vmatrix}}.
$$
 (25)

Using [\(23\)](#page-14-0), [\(24\)](#page-14-1) and [\(25\)](#page-14-2) it can be easily verified that

$$
\begin{vmatrix} \lambda_{12}\mu_{12} & \lambda_{12} + \mu_{12} & 1\\ \lambda_{23}\mu_{23} & \lambda_{23} + \mu_{23} & 1\\ \lambda_{13}\mu_{13} & \lambda_{13} + \mu_{13} & 1 \end{vmatrix} = 0.
$$
 (26)

So, according to [\(16\)](#page-13-1), $A_{13}C_{13}$, $B_{13}D_{13}$ correspond through f .

 \Box

4.2 The Construction of *T*² **Through Involution** *f*

Let now T_1 be the primary solution of the *Four Ellipses Problem* and M_1N_1 , P_1Q_1 , R_1S_1 the contact diameters of C_i , T_1 , $i = 1, 2, 3$ respectively.

We shall prove the contact diameters of C_i , T_1 and C_i , T_2 correspond through f for all $i = 1, 2, 3$, regardless whether f is elliptic or hyperbolic. So, the *secondary solution* T_2 of the problem can be constructed through involution *f* in any case.

Theorem 4.1. Let C_1 , C_2 , C_3 be three mutually conjugate ellipses with common centre O . *Let T*¹ *be the primary solution of the Four Ellipses Problem. Let f be the involution on the pencil of lines through O determined by any two of the three pairs of common diameters of* C_1, C_2, C_3 . The corresponding lines through f of the contact diameters of $C_i, T_1, i = 1, 2, 3$ *determine the secondary solution T*² *of the Four Ellipses Problem.*

Proof. Let T_1 be the *primary solution* of the *Four Ellipses Problem* and M_1N_1 , P_1Q_1 , R_1S_1 the contact diameters of C_i , T_1 , $i = 1, 2, 3$. Let the corresponding line of M_1N_1 through involution *f* intersect C_1 at M_2 , N_2 , the corresponding line of P_1Q_1 through *f* intersect C_2 at P_2 , Q_2 and the corresponding line of R_1S_1 through f intersect C_3 at R_2 , S_2 .

We shall prove that the *secondary solution* of the *Four Ellipses Problem* is exactly the conic T_2 passing through M_2 , N_2 , P_2 , Q_2 , R_2 , S_2 , i.e. the conic passing through M_2 , N_2 , P_2 , Q_2 , R_2 , S_2 has double contact with C_1 at M_2 , N_2 , double contact with C_2 at P_2 , Q_2 and double contact with C_3 at R_2 , S_2 .

Since involution *f* preserves the cross ratio, it holds

$$
O(A_{12}, B_{12}, M_2, P_2) = O(B_{12}, A_{12}, M_1, P_1). \tag{27}
$$

But contact diameters M_1N_1 , P_1Q_1 form with $A_{12}C_{12}$, $B_{12}D_{12}$ a harmonic pencil (cf. [\[3,](#page-17-10) p. 287, Case (b)) i.e. $O(B_{12}, A_{12}, M_1, P_1) = -1$. So,

$$
O(A_{12}, B_{12}, M_2, P_2) = -1
$$
\n(28)

i.e. M_2N_2 and P_2Q_2 form with $A_{12}C_{12}$, $B_{12}D_{12}$ a harmonic pencil. Then, according to [\[9,](#page-17-1) Proposition 1]

• there is a unique conic K_1 passing through M_2 , N_2 , P_2 , Q_2 and having double contact with C_1 and C_2 at M_2 , N_2 and P_2 , Q_2 respectively.

Similarly, there is

- a unique conic K_2 passing through M_2 , N_2 , R_2 , S_2 and having double contact with C_1 and C_3 at M_2 , N_2 and R_2 , S_2 respectively, and
- a unique conic K_3 passing through P_2 , Q_2 , R_2 , S_2 and having double contact with C_2 and C_3 at P_2 , Q_2 and R_2 , S_2 respectively.

We will prove that K_1, K_2, K_3 coincide. We have the following cases:

Among K_1, K_2, K_3 we have two ellipses, say K_1, K_2 . They are concentric ellipses having double contact at two antipodal points M_2 , N_2 . Then, all points of the one ellipse – say K_2 – (except M_2 , N_2) lie inside the other ellipse-say K_1 . So, points R_2 , S_2 lie inside K_1 . K_1 , K_3 are also two concentric conics having double contact at two antipodal points P_2 , Q_2 , and K_3 passes through points R_2 , S_2 . So, K_3 is also an ellipse and all points of K_3 (except P_2 , Q_2) lie inside K_1 . Then, K_2 , K_3 are two concentric ellipses inscribed K_1 . So, K_2 , K_3 intersect at four points, which is absurd, because K_2 , K_3 have double contact with C_3 at R_2 , S_2 and therefore they have double contact with each other at these two antipodal points. So, *K*2, *K*³ coincide i.e. all three ellipses *K*1, *K*2, *K*³ coincide. That means there is a unique ellipse passing through M_2 , N_2 , P_2 , Q_2 , R_2 , S_2 having double contact with C_1 , C_2 , C_3 at M_2 , N_2 , P_2 , Q_2 , R_2 , S_2 respectively.

Among K_1, K_2, K_3 we have two hyperbolas, say K_1, K_2 . They are concentric hyperbolas having double contact at two antipodal points M_2 , N_2 . Since they both have double contact with ellipse C_1 at M_2 , N_2 , all points of the one hyperbola-say K_2 -(except M_2 , N_2) lie inside the other hyperbola-say K_1 . So, similarly to the case of K_1 , K_2 being two ellipses, it can be proved that K_2 , K_3 coincide i.e. all three hyperbolas K_1 , K_2 , K_3 coincide. That means there is a unique hyperbola passing through M_2 , N_2 , P_2 , Q_2 , R_2 , S_2 having double contact with C_1, C_2, C_3 at $M_2, N_2, P_2, Q_2, R_2, S_2$ respectively.

Among K_1 , K_2 , K_3 there are neither two ellipses, nor two hyperbolas, i.e. all K_1 , K_2 , K_3 are degenerate parabolas (couples of parallel lines). But *K*1, *K*² have double contact at *M*2, N_2 and K_2 , K_3 have double contact at R_2 , S_2 . So, K_1 , K_2 , K_3 coincide. That means there

is a unique degenerative parabola passing through M_2 , N_2 , P_2 , Q_2 , R_2 , S_2 having double contact with C_1 , C_2 , C_3 at M_2 , N_2 , P_2 , Q_2 , R_2 , S_2 respectively.

The *secondary solution* T_2 of the *Four Ellipses Problem* is exactly the unique conic passing \Box through M_2 , N_2 , P_2 , Q_2 , R_2 , S_2 .

Figure 21: Left: Elliptic involution yields that *T*² is inscribed to *C*1, *C*2, *C*3. Right: Hyperbolic involution yields that T_2 is circumscribed to C_1 , C_2 , C_3 .

Figure 22: If involution *f* is hyperbolic, *T*² can be an ellipse (left), a hyperbola (right) or a degenerate parabola (down) circumscribed to C_1 , C_2 , C_3 .

Remark 4.1. In case involution f is hyperbolic the secondary solution T_2 of the Four Ellipses Problem is an ellipse, a hyperbola or a degenerate parabola circumscribed to C_1 , C_2 , C_3 having four intersection points with the primary solution T_1 . In case involution f is elliptic the Four Ellipses Problem has still a secondary solution T_2 , but this time T_2 is an ellipse inscribed to C_1 , C_2 , C_3 (Figure [21\)](#page-16-0).

Conclusion

In the real projective plane three line segments *OA*, *OB*, *OC* are given and three *mutually conjugate* ellipses C_1 , C_2 , C_3 with common centre *O* are defined. We proved that the common diameters of every couple of C_1 , C_2 , C_3 correspond through an involution f . Criteria of Synthetic Projective Plane Geometry determine whether *f* is hyperbolic or elliptic.

If f is hyperbolic, then there exist exactly two conics T_1 , T_2 concentric to C_1 , C_2 , C_3 , that circumscribe C_1 , C_2 , C_3 . The *primary solution* T_1 , is always an ellipse, while the *secondary solution* T_2 is an ellipse, a hyperbola or a degenerate parabola, i.e. a pair of parallel lines (Figure [22\)](#page-16-1). In any case, the common diameters of T_1 , T_2 define the double lines of f.

If f is elliptic, then there still exist two conics T_1 , T_2 concentric to C_1 , C_2 , C_3 , that have double contact with C_1 , C_2 , C_3 . But this time only the *primary solution* T_1 is an ellipse circumscribed to C_1 , C_2 , C_3 , while T_2 is an ellipse inscribed to C_1 , C_2 , C_3 .

Regardless of whether f is hyperbolic or elliptic, T_2 can be constructed using the already constructed T_1 (cf. [\[5,](#page-17-2) [6\]](#page-17-3)) and involution f , since the contact diameters of T_1 , C_i and T_2 , C_i , $i = 1, 2, 3$ correspond through f .

References

- [1] E. Casas-Alvero: *Analytic Projective Geometry*. European Mathematical Society, 2014.
- [2] G. Glaeser, H. Stachel, and B. Odehnal: *The Universe of Conics. From the ancient Greeks to 21st century developments*. Springer Spektrum, Berlin, Heidelberg, 2016. ISBN 978-3-662-45449-7. doi: [10.1007/978-3-662-45450-3](https://dx.doi.org/10.1007/978-3-662-45450-3).
- [3] J. L. S. Hatton: *The Principles of Projective Geometry Applied to the Straight Line and Conic*. Cambridge University Press, 1913.
- [4] P. Ladopoulos: *Elements of Projective Geometry (2 Vol.)*. A. Karavias Publications, 1966, 1972. In Greek.
- [5] G. Lefkaditis, T. Toulias, and S. Markatis: *The Four Ellipses Problem*. International Journal of Geometry **5**(2), 77–92, 2016.
- [6] G. Lefkaditis, T. Toulias, and S. Markatis: *On the Circumscribing Ellipse of Three Concentric Ellipses*. Forum Geometricorum **17**, 527–547, 2017.
- [7] R. Manfrin: *A Note on a Secondary Pohlke's Projection*. International Journal of Geometry **11**(1), 33–53, 2022.
- [8] H.-P. SCHRÖCKER: *Singular Frégier Conics in Non-Euclidean Geometry*. Journal for Geometry and Graphics **21**(2), 201–208, 2017.
- [9] A. Taouktsoglou and G. Lefkaditis: *Family of Conics Having Double Contact With Two Intersecting Ellipses*. Journal for Geometry and Graphics **27**(1), 11–28, 2023.
- [10] T. TOULIAS and G. LEFKADITIS: *Parallel Projected Sphere on a Plane: A New Plane-Geometric Investigation*. International Electronic Journal of Geometry **10**(1), 58–80, 2017. doi: [10.36890/iejg.584443](https://dx.doi.org/10.36890/iejg.584443).

Received June 13, 2024; final form July 3, 2024.