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Abstract. In the Lorentz-Heisenberg space H3 endowed with flat metric g3, a
translation surface is parametrized by r(x, y) = γ1(x) ∗ γ2(y), where γ1 and γ2 are
two planar curves lying in planes, which are not orthogonal. In this article, we
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1 Introduction

In differential geometry, we have always been interested in the study of the curvatures of
surfaces in 3-dimensional spaces. In general the surfaces having a constant Gaussian curvature
or a constant mean curvature in 3-dimensional spaces have been studied in [4–7, 10, 12–
14, 17, 20, 23, 26, 28].

In particular in [1, 2, 8, 9, 16, 18, 19, 21, 22] the authors classify translation surfaces in
3-dimensional spaces.

It is well known that the surface S is called as flat or minimal surface if the Gaussian
curvature or the mean curvature vanishes, respectively. In [3, 11, 27, 29] we can see that the
study of flat or minimal surfaces have found many applications in differential geometry and
physics.

Recently on the one hand L. Belarbi in [6] classifies (Gi)i=1−2-invariant surfaces of the
Heisenberg group H3 with constant extrinsically Gaussian curvature Kext, including extrin-
sically flat G1-invariant surfaces. On the other hand in [15] A. Kelleci gets the complete
classification of Translation-Factorable (TF) surfaces with vanishing Gaussian curvatures in
3-spaces.

In [25] and [24] N. Rahmani and S. Rahmani have showed that, modulo an automorphism
of the Lie algebra, the 3-dimensional Lorentz Heisenberg group H3 has the following classes
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of left-invariant Lorentz metrics:

g1 = − dx2 + dy2 + (x dy + dz)2

g2 = dx2 + dy2 − (x dy + dz)2

g3 = dx2 + (x dy + dz)2 − [(1 − x) dy − dz]2.

They proved that the metrics g1, g2, g3 are non-isometrics, and that g3 is flat.
In this paper, we classify flat translation surfaces in Lorentz Heisenberg group H3 endowed

with flat metric g3.

2 Definition of Translation Surfaces in (H3, g3) and Their Types

2.1 The Lorentz-Heisenberg Space H3

In this paragraph we recall that the Heisenberg group H3 is a Lie group which is diffeomorphic
to 3-dimensional real space R3 and the group operation is defined as

(x, y, z) ∗ (x, y, z) = (x + x, y + y, z + z − xy).

The identity of the group is (0, 0, 0) and the inverse of (x, y, z) is given by (−x, −y, −xy − z).
The left invariant Lorentz metric on H3 is

g3 = dx2 + (x dy + dz)2 − [(1 − x) dy − dz]2.

The following set of left-invariant vector fields forms pseudo-orthonormal basis {e1, e2, e3} for
corresponding Lie-algebra

e1 = ∂

∂x
, e2 = ∂

∂y
+ (1 − x) ∂

∂z
, e3 = ∂

∂y
− x

∂

∂z
.

The characterizing properties of this algebra are the following commutation relations:

[e2, e3] = 0, [e3, e1] = e2 − e3, [e2, e1] = e2 − e3.

with
g3(e1, e1) = 1, g3(e2, e2) = 1, g3(e3, e3) = −1.

If ∇ is the Levi-Civita connection and R is the curvature tensor of ∇, we have

∇e1e1 = ∇e1e2 = ∇e1e3 = 0,

∇e2e1 = ∇e3e1 = e2 − e3,

∇e2e2 = ∇e2e3 = ∇e3e2 = ∇e3e3 = −e1.

Let (S, r) be a surface in the 3-dimensional Lorentz Heisenberg group H3. If (S, r) is
parametrized by an immersion

r(s, t) = (r1(s, t), r2(s, t), r3(s, t)). (1)

Thus, the basis of the tangent space TpS is

rs = ∂r

∂s
, rt = ∂r

∂t
. (2)
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Therefore, the coefficients of the first and second fundamental forms are

E = g3(rs, rs), F = g3(rs, rt), G = g3(rt, rt) (3)

and
L = g3(∇rsrs,N), M = g3(∇rsrt,N), N = g3(∇rtrt,N) (4)

where N is a unit normal vector field on S that satisfies the following system
g3(rs,N) = 0,

g3(rt,N) = 0,

g3(N,N) = −1.

(5)

The Gaussian curvature K is defined by

K = LN − M2

W 2 (6)

where W =
√

|EG − F 2|.

2.2 Translation Surfaces
In this paragraph, we would like to give the definition of the translation surfaces in (H3, g3)
defined in [19]. In the Lorentz-Heisenberg space H3, a translation surface is parametrized by
r(x, y) = γ1(x) ∗ γ2(y), where γ1 and γ2 are two planar curves lying in planes, which are non
orthogonal and ∗ denotes the group operation of H3.

Definition 1. A translation surface (S, r) in H3 is surface parametrised by γ1(x) ∗ γ2(y),
where γ1 : I ⊂ R → H3, γ2 : J ⊂ R → H3 are curves in two coordinate planes of R3.

We distinguish six types of translation surfaces in H3.

2.2.1 Translation Surfaces of Type 1 and Type 2

Let the curves γ1 and γ2 be given by

γ1(s) = (s, 0, f(s)) and γ2(t) = (0, t, g(t)).

We have two translation surfaces S(γ1, γ2) and S(γ2, γ1) parametrized by, respectively,

r(s, t) = γ1(s) ∗ γ2(t) = (s, t, f(s) + g(t) − st) (7)

and
r(s, t) = γ2(t) ∗ γ1(s) = (s, t, f(s) + g(t)), (8)

where f and g are two smooth functions. The surfaces given by (7) and (8) are called the
translation surfaces of Type 1 and 2.
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2.2.2 Translation Surfaces of Type 3 and Type 4

Let the curves γ1 and γ2 be given by

γ1(s) = (s, 0, f(s)) and γ2(t) = (g(t), t, 0).

We have two translation surfaces S(γ1, γ2) and S(γ2, γ1) parametrized by, respectively,

r(s, t) = γ1(s) ∗ γ2(t) = (s + g(t), t, f(s) − st) (9)

and
r(s, t) = γ2(t) ∗ γ1(s) = (g(t) + s, t, f(s)), (10)

where f and g are two smooth functions. The surfaces given by (9) and (10) are called the
translation surfaces of Type 3 and 4.

2.2.3 Translation Surfaces of Type 5 and Type 6

Let the curves γ1 and γ2 be given by

γ1(s) = (0, s, f(s)) and γ2(t) = (t, g(t), 0).

We have two translation surfaces S(γ1, γ2) and S(γ2, γ1) parametrized by, respectively,

r(s, t) = γ1(s) ∗ γ2(t) = (t, g(t) + s, f(s)) (11)

and
r(s, t) = γ2(t) ∗ γ1(s) = (t, g(t) + s, f(s) − st), (12)

where f and g are two smooth functions. The surfaces given by (11) and (12) are called the
translation surfaces of Type 5 and 6.

3 Classification of Flat Translation Surfaces in (H3, g3)

In this section, we would like to investigate the vanishing Gaussian curvature problem for
each type of translation surfaces in the Lorentz-Heisenberg space (H3, g3). As well known,
the surfaces with vanishing Gaussian curvature are called flat, and then, we examine when it
vanishes. Finally, we give the complete classification of the translation surfaces with vanishing
Gaussian curvatures.

3.1 Case of Flat Translation Surfaces of Type 1
Let S(γ1, γ2) be a translation surface of Type 1 which is parametrized as in the formula (7).
Thus the basis of the tangent space TpS is

rs = e1 + (fs − t)e2 − (fs − t)e3, (13)
rt = gte2 + (1 − gt)e3. (14)

Therefore, we get
N = −(fs − t)

W
e1 + (1 − gt)

W
e2 + gt

W
e3, (15)
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where N is the normal unit vector field on S(γ1, γ2), which satisfies the following system
g3(rs,N) = 0,

g3(rt,N) = 0,

g3(N,N) = −1
(16)

with W =
√

|EG − F 2| =
√

|2gt − (fs − t)2 − 1|, where E, F and G are the coefficients of
the first fundamental form I of S(γ1, γ2) which is defined by

I = E ds2 + 2F ds dt + G dt2

where

E = g3(rs, rs) = 1, (17)
F = g3(rs, rt) = fs − t, (18)
G = g3(rt, rt) = 2gt − 1. (19)

To compute the second fundamental form of S(γ1, γ2), we have to calculate the following:

rss = ∇rsrs = fsse2 − fsse3,

rst = ∇rsrt = 0,

rtt = ∇rtrt = −e1 + gtte2 − gtte3.

(20)

Which imply the coefficients of the second fundamental form of S(γ1, γ2) are given by

L = g3(∇rsrs,N) = fss

W
, (21)

M = g3(∇rsrt,N) = 0, (22)

N = g3(∇rtrt,N) = gtt + fs − t

W
. (23)

By (17), (18), (19), (21), (22), (19) and (6), the Gaussian curvature K of translation surface
S of Type 1 is given by

K = fss(gtt + fs − t)
[2gt − (fs − t)2 − 1]2 . (24)

Now, we would like to investigate the vanishing Gaussian curvature problem, thus we
examine translation surfaces of Type 1, whose Gaussian curvature is identically zero.

Let S(γ1, γ2) be a translation surface of Type 1. Thus, from (24), it is clear that it is
sufficient that

fss(gtt + fs − t) = 0. (25)

Let us consider on the following possibilities:
Case 1: If gtt = 0, so (g = b1t + b2), from (25) we get f = a1s + a2, which gives the

surface S(γ1, γ2) parametrized as

r(s, t) = (s, t, a1s + b1t − st + a2 + b2) (26)

where a1, a2, b1, b2 ∈ R.
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Case 2: If fss = 0, so (f = a1s + a2), then, the Equation (25) is trivially satisfied for all
smooth function g and we obtain

r(s, t) = (s, t, a1s + g(t) − st + a2) (27)

where a1 a2 ∈ R.
Case 3: If fssgtt ̸= 0 from (25)) we find

fs = t − gtt. (28)

Therefore, both sides have to equal a nonzero constant, namely

fs = α = t − gtt (29)

then fss = 0, which is not possible.
As Case 1 is a particular cases of Case 2, we have the following result:

Theorem 1. Let S(γ1, γ2) be a translation surface of Type 1 in the Lorentz-Heisenberg space
(H3, g3). Then, S(γ1, γ2) is a flat surface if and only if it can be parametrized by

r(s, t) = (s, t, a1s + g(t) − st + a2) (30)

for all smooth functions g, and a1, a2 ∈ R.

3.2 Case of Flat Translation Surfaces of Type 2
By (8), for a translation surface of Type 2, the basis of the tangent space TpS is

rs = e1 + fse2 − fse3, (31)
rt = (s + gt)e2 + (1 − s − gt)e3 (32)

and the normal unit vector field N on S(γ1, γ2)

N = − fs

W
e1 + (1 − s − gt)

W
e2 + (s + gt)

W
e3 (33)

with
W =

√
|EG − F 2| =

√
|2(gt + s) − 1 − (fs)2|. (34)

Therefore the coefficients of the first fundamental form are

E = 1, F = fs, G = (2gt + 2s − 1). (35)

To compute the second fundamental form of S(γ1, γ2), we have to calculate the following:

rss = ∇rsrs = fsse2 − fsse3,

rst = ∇rsrt = e2 − e3,

rtt = ∇rtrt = −e1 + gtte2 − gtte3.

(36)

Then the coefficients of the second fundamental form of S(γ1, γ2) are

L = fss

W
, M = 1

W
, N = fs + gtt

W
. (37)
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By (35), (37) and (6), the Gaussian curvature K of translation surface S of Type 2 is given
by

K = fss(fs + gtt) − 1
[2(gt + s) − 1 − (fs)2]2 . (38)

Now let S(γ1, γ2) be a translation surface of Type 2. Thus, from (38), it is clear that it
is sufficient that

fss(fs + gtt) − 1 = 0. (39)

It is clear that if fss = 0, Equation (39) is never satisfied, so we consider the following cases:
Case 1: If gtt = 0, so g = b2t + b3, from (39) we get f = ±1

3(2s + a1)
3
2 + a2, which gives

the surface S(γ1, γ2) parametrized as

r(s, t) = (s, t, ±1
3(2s + a1)

3
2 + b2t + a2 + b3), (40)

where a1, a2, b2, b3 ∈ R and s ≥ −a1
2 .

Case 2: If gtt ̸= 0. From (39) we have

fss(fs + gtt) − 1 = 0, (41)

gtt = 1 − fssfs

fss

(42)

therefore, both sides have to equal a nonzero constant, namely

gtt = b1 = 1 − fssfs

fss

. (43)

Then
fss(fs + b1) = 1 (44)

and
g = b1

2 t2 + b2t + b3 (45)

where b1 ∈ R∗ and b2, b3 ∈ R.
After solving (44), we find

f = ±1
3(2s + a1)

3
2 − b1s + a2 (46)

where a1, a2 ∈ R, b1 ∈ R∗ and s ≥ −a1
2 . This gives the surface S(γ1, γ2) parametrized as

r(s, t) = (s, t, ±1
3(2s + a1)

3
2 + b1

2 t2 + b2t − b1s + a2 + b3). (47)

As Case 1 is particular case of Case 2, then have the following result:

Theorem 2. Let S(γ1, γ2) be a translation surface of Type 2 in the Lorentz-Heisenberg space
(H3, g3). Then S(γ1, γ2) is a flat surface if and only if it can be parametrized by

r(s, t) = (s, t, ±1
3(2s + a1)

3
2 + b1

2 t2 + b2t − b1s + a2 + b3), (48)

where a1, a2, b1, b2, b3 ∈ R and s ≥ −a1
2 .
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3.3 Case of Flat Translation Surfaces of Type 3
Let S(γ1, γ2) be a translation surface of type 3, by (9), Thus the basis of the tangent space
TpS is

rs = e1 + (fs − t)e2 − (fs − t)e3, rt = gte1 + e3, (49)

and the normal unit vector field N on S(γ1, γ2)

N = (fs − t)
W

e1 − (gt(fs − t) + 1)
W

e2 + gt(fs − t)
W

e3 (50)

with W =
√

|(fs − t)2 + 2gt(fs − t) + 1|.
Therefore the coefficients of the first fundamental form are

E = 1, F = fs + gt − t, G = (gt)2 − 1. (51)

The covariant derivatives are:

rss = ∇rsrs = fsse2 − fsse3,

rst = ∇rsrt = 0,

rtt = ∇rtrt = (gtt − 1)e1 + gte2 − gte3.

(52)

Then the coefficients of the second fundamental form of S(γ1, γ2) are

L = −fss

W
, M = 0, N = [(gtt − 1)(fs − t) − gt]

W
. (53)

By (51), (53) and (6), the Gaussian curvature K of translation surface S of Type 3 is given
by

K = −fss[(gtt − 1)(fs − t) − gt]
[(fs − t)2 + 2gt(fs − t) + 1]2 . (54)

Let S(γ1, γ2) be a translation surface of Type 3. Thus, from (54), it is clear that the
equation of flat surface is

fss[(gtt − 1)(fs − t) − gt] = 0 (55)

so we consider the following cases:
Case 1: If gt = 0, so g = b, by following the same steps as Case 1 of translation surface

of Type 1, from (55)) we obtain the same result, which provides that the surface S(γ1, γ2) is

r(s, t) = (s + b, t, a1s + a2 − st) (56)

Case 2: If gtt = 0, so g = b1t + b2, by following the same steps as Case 2 of translation
surface of Type 1, from (55) we obtain the same result, which provides that the surface
S(γ1, γ2) is

r(s, t) = (s + b1t + b2, t, a1s + a2 − st) (57)

where a1, a2, b1, b2 ∈ R.
Case 3: If fss = 0, so f = a1s + a2. Then, the Equation (55) is trivially satisfied for all

smooth function g and we obtain

r(s, t) = (s + g(t), t, a1s + a2 − st) (58)
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where a1, a2 ∈ R.
Case 4: If fssgtt ̸= 0. from (55) we obtain

fss[(gtt − 1)(fs − t) − gt] = 0, (59)
(gtt − 1)(fs − t) = gt. (60)

Since we cannot have both gtt = 1 and gt = 0, so gtt ̸= 1, which implies

fs = gt

gtt − 1 + t. (61)

Therefore, both sides have to equal a nonzero constant, namely

fs = a1 = gt

gtt − 1 + t (62)

which implies fss = 0, which is a contradiction.
As Cases 1 and 2 are particular cases of Case 3, we have the following theorem:

Theorem 3. Let S(γ1, γ2) be a translation surface of Type 3 in the Lorentz-Heisenberg space
(H3, g3). Then, S(γ1, γ2) is a flat surface if and only if it can be parametrized by

r(s, t) = (s + g(t), t, a1s + a2 − st) (63)

for all smooth function g, a1 ∈ R∗ and a2 ∈ R.

3.4 Case of Flat Translation Surfaces of Type 4
Let S(γ1, γ2) be a translation surface of Type 4, by (10), we obtain

rs = e1 + fse2 − fse3, (64)
rt = gte1 + (g + s)e2 + (1 − g − s)e3. (65)

and normal unit vector field N on S(γ1, γ2)

N = − fs

W
e1 − (fsgt + 1 − g − s)

W
e2 + (g + s − fsgt)

W
e3 (66)

with W =
√

|2(g + s − fsgt) − (fs)2 − 1|.
Therefore the coefficients of the first fundamental form are

E = 1, F = fs + gt, G = (gt)2 + 2g + 2s − 1. (67)

The covariant derivatives are:

rss = ∇rsrs = fsse2 − fsse3,

rst = ∇rsrt = e2 − e3,

rtt = ∇rtrt = (gtt − 1)e1 + 2gte2 − 2gte3.

(68)

Then the coefficients of the second fundamental form of S(γ1, γ2) are

L = fss

W
, M = 1

W
, N = 2gt − (gtt − 1)fs

W
. (69)
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By (67), (69) and (6), the Gaussian curvature K of translation surface S of Type 4 is given
by

K = fss[2gt − (gtt − 1)fs] − 1
[2(g + s − fsgt) − (fs)2 − 1]2 . (70)

Let S(γ1, γ2) be a translation surface of Type 4. Thus, from (70), it is clear that the
equation of flat surface is

fss[2gt − (gtt − 1)fs] − 1 = 0. (71)
It is clear that if fss = 0, equation (71) is never satisfied, so we us consider the following
cases:

Case 1: If gt = 0, so g = b, from (71) we get

fssfs = 1. (72)

After solving (72), we find
f = ±1

3(2s + a1)
3
2 + a2 (73)

which gives the surface S(γ1, γ2) parametrized as

r(s, t) = (s + b, t, ±1
3(2s + a1)

3
2 + a2), (74)

where a1, a2, b ∈ R and s ≥ −a1
2 .

Case 2: If gtt = 0, so g = b1t + b2. Then, the Equation (71) becomes

fss(fs + 2b1) = 1. (75)

After solving (75), we find
f = ±1

3(2s + a1)
3
2 − 2b1s + a2 (76)

where a1, a2, b1, b2 ∈ R and s ≥ −a1
2 , which gives the surface S(γ1, γ2) parametrized as

r(s, t) = (b1t + s + b2, t, ±1
3(2s + a1)

3
2 − 2b1s + a2). (77)

Case 3: If fssgtt ̸= 0. Taking partial derivative in (71) with respect to t, we find

2gtt − gtttfs = 0 (78)

whence
2
fs

= gttt

gtt

. (79)

Then both sides have to equal a nonzero constant, namely
2
fs

= α = gttt

gtt

(80)

which implies fss = 0, which is a contradiction. As Case 1 is particular case of Case 2, we
have the following result:

Theorem 4. Let S(γ1, γ2) be a translation surface of type 4 in the Lorentz-Heisenberg space
(H3, g3). Then, S(γ1, γ2) is a flat surface if and only if it can be parametrized by

r(s, t) = (b1t + s + b2, t, ±1
3(2s + a1)

3
2 − 2b1s + a2) (81)

where a1, a2, b1, b2 ∈ R, and s ≥ −a1
2 .
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3.5 Case of Flat Translation Surfaces of Type 5
In this case, the translation surface S(γ1, γ2) is parametrized as in (11), thus the basis of the
tangent space TpS is

rs = (fs + t)e2 − (fs + t − 1)e3, (82)
rt = e1 + tgte2 + (1 − t)gte3. (83)

Therefore, the normal unit vector field N on S(γ1, γ2) is

N = fsgt

W
e1 − (fs + t − 1)

W
e2 + (fs + t)

W
e3 (84)

with W =
√

|2(fs + t) − (fs)2(gt)2 − 1|.
Therefore the coefficients of the first fundamental form are

E = 2(fs + t) − 1, F = (fs + 2t − 1)gt, G = (2t − 1)(gt)2 + 1. (85)

To compute the second fundamental form of S(γ1, γ2), we have to calculate the covariant
derivatives:

rss = −e1 + fsse2 − fsse3, (86)
rst = −gte1 + e2 − e3, (87)
rtt = −(gt)2e1 + (2gt + tgtt)e2 − (2gt + (t − 1)gtt)e3. (88)

These imply the coefficients of the second fundamental form of S(γ1, γ2) are given by

L = fss − fsgt

W
, M = 1 − fs(gt)2

W
, N = 2gt − fsgtt − fs(gt)3

W
. (89)

By (85), (89), (6), the Gaussian curvature K of translation surface S of Type 5 is given by

K = fss(2gt − fsgtt − fs(gt)3) + (fs)2gtgtt − 1
[2(fs + t) − (fs)2(gt)2 − 1]2 . (90)

Let S(γ1, γ2) be a translation surface of Type 5. Thus, from (90), the equation of flat
surface is

fss(2gt − fsgtt − fs(gt)3) + (fs)2gtgtt − 1 = 0. (91)

It is clear that if fsgt = 0, equation (91) is never satisfied, so we us consider the following
cases:

Case 1: If fss = 0, so f = a1s + a2 with a1 ̸= 0, then, the Equation (91) becomes

gtgtt = 1
a2

1
. (92)

After solving (92), we obtain

g = ±a2
1

2

(
2
a2

1
t + c1

) 3
2

+ c2 (93)
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where a2, c1, c2 ∈ R, a1 ∈ R∗ and t ≥ − c1(a1)2

2 ; which gives the surface S(γ1, γ2) parametrized
as

r(s, t) =
(

t, ±a2
1

2

( 2
a2

1
t + c1

) 3
2

+ s + c2, a1s + a2

)
. (94)

Case 2: If gtt = 0, so g = b1t + b2 with b1 ̸= 0, then, the Equation (91) becomes

fss(2 − b2
1fs) = 1

b1
. (95)

After solving (95), we obtain

f = ± 1
2b3

1
(d1 − 2b1s) 3

2 + 2
b2

1
s + d2 (96)

where b2 d1 d2 ∈ R, b1 ∈ R∗ and s ≤ d1
2b1

; which gives the surface S(γ1, γ2) parametrized as

r(s, t) = (t, b1t + s + b2, y(s)) (97)

such that
y(s) = ± 1

2b3
1
(d1 − 2b1s) 3

2 + 2
b2

1
s + d2. (98)

Case 3: Here, fssgtt ̸= 0. If one takes

U = U1e1 + U2e2 + U3e3 (99)

such as

U1 = 2fss

fs

, (100)

U2 = −fss(fsgtt + fsg
3
t ), (101)

U3 = fss(fsgtt + fs(gt)3) + 1 − f 2
s gtgtt

fs + t
. (102)

From (99), (84) and (91), the surface S(γ1, γ2) is flat if and only if g3(U,N) = 0.
Therefore we have U = 0 or U ∈ TpS.
1) If U = 0, from (100) we have U1 = 2fss

fs
= 0, which is a contradiction.

2) If U ∈ TpS, there exist α, β ∈ R, such as

U = αrs + βrt. (103)

Therefore, from (99), (82) and (83) we obtain the following system of ordinary differential
equations

2fss

fs

= β, (104)

U2 = α(fs + t) + βtgt, (105)

−U2 + 1 − f 2
s gtgtt

fs + t
= −α(fs + t − 1) + β(1 − t)gt. (106)
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Combining Equations (105) and (106) yields

1 − (fs)2gtgtt = (α + βgt)(fs + t). (107)

Taking the partial derivative of (107) with respect to s gives

−2fsfssgtgtt = (α + βgt)fss. (108)

Since fssgtt ̸= 0,
fs = −α + βgt

2gtgtt

. (109)

Then both sides have to equal a nonzero constant, namely

fs = θ = −α + βgt

2gtgtt

(110)

We infer fss = 0 but this is not possible.
Then we have the following result:

Theorem 5. Let S(γ1, γ2) be a translation surface of Type 5 in the Lorentz-Heisenberg space
(H3, g3). Then, S(γ1, γ2) is a flat surface if and only if it can be parametrized as one of the
followings:

1. S(γ1, γ2) is a regular surface in the Lorentz-Heisenberg space (H3, g3) parametrized by

r(s, t) = (t, ±a2
1

2

(
2
a2

1
t + c1

) 3
2

+ s + c2, a1s + a2) (111)

where a2, c1, c2 ∈ R, a1 ∈ R∗ and t ≥ − c1a2
1

2 .
2. S(γ1, γ2) is a regular surface in the Lorentz-Heisenberg space (H3, g3) parametrized by

r(s, t) = (t, b1t + s + b2, ± 1
2b3

1
(d1 − 2b1s) 3

2 + 2
b2

1
s + d2) (112)

where b2, d1, d2 ∈ R, b1 ∈ R∗ and s ≤ d1
2b1

.

3.6 Case of Flat Translation Surfaces of Type 6
For the translation surface of Type 6, by (12), the basis of the tangent space TpS is

rs = fse2 + (1 − fs)e3, (113)
rt = e1 + (tgt − s)e2 + (s − tgt + gt)e3 (114)

and the normal unit vector field N on S(γ1, γ2)

N = (fsgt − tgt + s)
W

e1 + (1 − fs)
W

e2 + fs

W
e3 (115)

with W =
√

|2fs − (fsgt − tgt + s)2 − 1|.
Therefore the coefficients of the first fundamental form are

E = 2fs − 1, F = (fs + t − 1)gt − s, G = 1 − (gt)2 + 2gt(tgt − s). (116)
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To compute the second fundamental form of S(γ1, γ2), we have to calculate the covariant
derivatives:

rss = −e1 + fsse2 − fsse3, (117)
rst = −gte1, (118)
rtt = −(gt)2e1 + (2vy + yvyy)e2 − (2gt + (t − 1)gtt)e3. (119)

which imply the coefficients of the second fundamental form of S(γ1, γ2) are given by

L = fss − fsgt + tgt − s

W
,

M = −(fsgt − tgt + s)gt

W
,

N = −(fsgt − tgt + s)(gt)2 + 2gt + tgtt − fsgtt

W
.

(120)

By (116), (120), (6), the Gaussian curvature K of translation surface of type 6 is given by

K = 1
W 4 [(fss − P )(2gt + tgtt − fsgtt) − Pfss(gt)2] (121)

where P = fsgt − tgt + s.
Let S(γ1, γ2) be a translation surface of Type 6. Thus, from (121), the equation of flat

surface is
(fss − P )(2gt + tgtt − fsgtt) − Pfss(gt)2 = 0. (122)

Remark 1. It is clear that if gt = 0, Equation (122) is satisfied, for all smooth functions f .
So we us consider the following cases:
Case 1: If fs = 0, so f = a, from (122) we get

(tgt − s)(2gt + tgtt) = 0. (123)

As tgt ̸= s, we have
2gt + tgtt = 0. (124)

After solving (124), we obtain
g = ± 1

b1t
+ b2 (125)

where b1 ∈ R∗ and b2 ∈ R, t ̸= 0 which gives the surface S(γ1, γ2) parametrized as

r(s, t) = (t, ± 1
b1t

+ s + b2, a − st). (126)

Case 2: If fss = 0, so f = a1s + a2 with a1 ̸= 0, then, the Equation (122) becomes

P (2gt + tgtt − a1gtt) = 0. (127)

There exist two cases.
1) If P = 0, we obtain

(t − a1)gt = s. (128)
The left hand side in (128) is either a constant or a function of t, while other side is a function
of s. That is not possible.
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2) If P ̸= 0, we get
2gt + (t − a1)gtt = 0. (129)

After solving (129), we obtain
g = ± 1

3b1
(a1 − t)3 + b2 (130)

where a1, b1 ∈ R∗ and b2 ∈ R, which gives the surface S(γ1, γ2) parametrized as

r(s, t) = (t, ± 1
3b1

(a1 − t)3 + s + b2, a1s − st + a2). (131)

Case 3: If gtt = 0, so g = b1t + b2 with b1 ̸= 0, then, the Equation (122) becomes

(b2
1fs + s − 2)fss + 2(b1fs + s)

(b1fss + 2) = b1t. (132)

The left hand side in (131) is either a constant or a function of s, while other side is a function
of t. That is not possible.

Case 4: Here fssgtt ̸= 0. If one takes

V = V1e1 + V2e2 + V3e3 (133)

such as

V1 = −fss(gt)2 − (2gt + tgtt − fsgtt), (134)
V2 = fss(2gt + tgtt − fsgtt), (135)
V3 = −fss(2gt + tgtt − fsgtt). (136)

From (133), (115) and (122), the surface S(γ1, γ2) is flat if and only if g3(V,N) = 0.
Therefore we have V = 0 or V ∈ TpS.
1) If V = 0, from (133) we have

fs = 2gt + tgtt

gtt

. (137)

Then both sides have to equal a nonzero constant, namely

fs = α = 2gt + tgtt

gtt

(138)

which implies fss = 0, which is a contradiction.
2) If V ∈ TpS, there exist α, β ∈ R, such as

V = αrs + βrt. (139)

Therefore, from (133) and (113) we obtain the following system of ordinary differential equa-
tions

fss(gt)2 + (2gt + tgtt − fsgtt) = −β (140)
fss(2gt + tgtt − fsgtt) = αfs + β(tgt − s) (141)

fss(2gt + tgtt − fsgtt) = α(fs − 1) − β(s − tgt + gt). (142)

Combining Equations (141) and (142) yields

βgt = −α (143)

then gtt = 0. This is not possible.
Then we have the following theorem:
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Theorem 6. Let S(γ1, γ2) be a translation surface of Type 6 in the Lorentz-Heisenberg space
(H3, g3). Then, S(γ1, γ2) is a flat surface if and only if it can be parametrized as one of the
followings:

1. S(γ1, γ2) is a regular surface in the Lorentz-Heisenberg space (H3, g3) parametrized by

r(s, t) = (t, b + s, f(s) − st), (144)

where b ∈ R and f any smooth function.
2. S(γ1, γ2) is a regular surface in the Lorentz-Heisenberg space (H3, g3) parametrized by

r(s, t) = (t, ± 1
b1t

+ s + b2, a − st) (145)

where b1 ∈ R∗, a, b2 ∈ R and t ̸= 0.
3. S(γ1, γ2) is a regular surface in the Lorentz-Heisenberg space (H3, g3) parametrized by

r(s, t) = (t, ± 1
3b1

(a1 − t)3 + s + b2, a1s − st + a2) (146)

where a1, b1 ∈ R∗ and a2, b2 ∈ R.
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