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Abstract. The twin tetrahedron of a given tetrahedron is obtained by circum-
scribing it by a parallelepiped. However, in general, it is not easy to construct a
box that circumscribes a tetrahedron. Actually, constructing a box is equivalent of
finding two tangled tetrahedra. We first establish a theorem to construct tangled
tetrahedra circumscribed in a box with concurrent diagonals. This generalizes the
idea of twin tetrahedra circumscribed in a parallelepiped. And we show that two
tetrahedra are twins if and only if they are tangled with concurrent diagonals at
the centroid of one of the tetrahedra. We establish a theorem in order to give an
alternate proof of this theorem, which we think is a new characterization of the
centroid of a tetrahedron. Then we prove that there is a tetrahedron that tangles
a reversible tetrahedron with concurrent diagonals such that these two tetrahedra
are congruent after relabeling vertices. In addition, both of these tetrahedra can
be circumscribed by the same sphere.
Key Words: skew quadrilateral, quadrilateral, tetrahedron, hexahedron with eight
vertices, box, tangled tetrahedra, tangled tetrahedra with concurrent diagonals,
parallelepiped, twin tetrahedra, isosceles tetrahedron, reversible tetrahedron, trape-
zoidal box
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1 Introduction

There is a parallelepiped that circumscribes a given tetrahedron having each edge of the
tetrahedron as diagonals of its six parallelogram faces. By drawing an additional six diagonals
on each of these parallelogram faces, we can obtain a so-called twin of the tetrahedron. For a
more precise definition of twins, see Definition 4 below. The idea of twin tetrahedra has been
around for a long time, and they are an example of two tangled tetrahedra which we will be
investigating in this paper. We will be generalizing the notion of twin tetrahedra.

Let A, B, C and D be points in R3. We denote the line AB by AB, the line segment
AB with the end points A and B is denoted by [AB], the line segment AB without the end
points A and B is denoted by (AB), and the length of [AB] is denoted by |AB|.
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By joining the points A, B, C, D with line segments [AB], [BC], [CD] and [DA], we obtain
a skew quadrilateral ABCD if [AB] ∩ [CD] = ∅ and [AD] ∩ [BC] = ∅. If a skew quadrilateral
ABCD is planar, then we say that the skew quadrilateral ABCD is a quadrilateral. If ABCD
is a non-planar skew quadrilateral, and if two edges [AC] and [BD] are added to the skew
quadrilateral ABCD, the resulting solid is a tetrahedron and it is denoted by ∇ABCD.

Two tetrahedra ∇ABCD and ∇A′B′C ′D′ are said to be congruent if |AB| = |A′B′|,
|AC| = |A′C ′|, |AD| = |A′D′|, |BC| = |B′C ′|, |BD| = |B′D′|, and |CD| = |C ′D′|, and we
write ∇ABCD ∼= ∇A′B′C ′D′. Please be careful that even though ∇ABCD ∼= ∇A′B′C ′D′,
∇ABCD and ∇D′C ′B′A′, for example, may not be congruent by our definition even though
∇A′B′C ′D and ∇D′C ′B′A are the same tetrahedron.

Let {A, B, C, D, A∗, B∗, C∗, D∗} be a set of eight distinct points in R3. Suppose that
AC∗BD∗, AB∗DC∗, C∗DA∗B, BA∗CD∗, D∗CB∗A, and B∗DA∗C are quadrilaterals such
that no two of their interiors intersect. Then by joining A, B, C, D, A∗, B∗, C∗, D∗ with
twelve edges to form these quadrilaterals, we obtain a solid called a hexahedron with eight
vertices and denote it by

(
AC∗BD∗

B∗DA∗C

)
.

Cubes, rectangular boxes and parallelepipeds are hexahedra with eight vertices. The word
“hexahedron” indicates that the solid has six faces. So, two identical regular tetrahedra glued
face to face is an example of a hexahedron with five vertices.

In order to shorten “a hexahedron with eight vertices”, and in order to avoid the confusion
with a hexahedron with five vertices, we call a hexahedron

(
AC∗BD∗

B∗DA∗C

)
with eight vertices a box.

The notation
(

AC∗BD∗

B∗DA∗C

)
indicates that the quadrilaterals AC∗BD∗ and B∗DA∗C are the top

and bottom faces of the box, respectively; the vertices A, C∗, B, D∗ are connected to vertices
B∗, D, A∗, C, respectively, by edges [AB∗], [C∗D], [BA∗], and [D∗C]; the segments [AA∗],
[BB∗], [CC∗], and [DD∗] are diagonals of the box

(
AC∗BD∗

B∗DA∗C

)
; and by drawing two diagonals

on each face, we obtain two tetrahedron ∇ABCD and ∇A∗B∗C∗D∗ circumscribed by this
box. See Figure 1. This is a motivation for the next definition.

Definition 1. A tetrahedron ∇A∗B∗C∗D∗ is said to tangle a tetrahedron ∇ABCD at
(E, F, G, H, I, J) if (AB) ∩ (C∗D∗) = {E}, (AC) ∩ (B∗D∗) = {F}, (AD) ∩ (B∗C∗) = {G},
(BC) ∩ (A∗D∗) = {H}, (BD) ∩ (A∗C∗) = {I}, (CD) ∩ (A∗B∗) = {J}. See Figure 1.

Here, by (AB) ∩ (C∗D∗) = {E}, we mean that the edges (AB) and (C∗D∗) intersect
at E. The order of the listed vertices in (E, F, G, H, I, J) is to indicate E ∈ (AB), F ∈
(AC), G ∈ (AD), H ∈ (BC), I ∈ (BD), J ∈ (CD). So ∇ABCD tangles ∇A∗B∗C∗D∗

at (J, I, H, G, F, E). And we say that the box
(

AC∗BD∗

B∗DA∗C

)
circumscribes ∇A∗B∗C∗D∗ and

∇ABCD. We also say that ∇ABCD and ∇A∗B∗C∗D∗ are tangled at (E, F, G, H, I, J).

We write △ABC to indicate a triangle ABC, and ΩABC to indicate the plane containing
△ABC. We say that points D′ ∈ R3 and D ∈ R3 are on the same side with respect to ΩABC

if [DD′]∩ΩABC = ∅, and points D′ ∈ R3 and D ∈ R3 are on the opposite sides with respect to
ΩABC if (DD′) ∩ ΩABC ̸= ∅. If ABCD is a quadrilateral, then ΩABCD is the plane containing
the quadrilateral ABCD.

Constructing a box
(

AC∗BD∗

B∗DA∗C

)
is equivalent to finding two tangled tetrahedra ∇A∗B∗C∗D∗

and ∇ABCD. Our first observation is Theorem 1.

Theorem 1. Let ∇ABCD be a tetrahedron. Let E ∈ (AB), F ∈ (AC), G ∈ (AD), H ∈
(BC), I ∈ (BD), J ∈ (CD). (See Figure 1.) Then there is a tetrahedron ∇A∗B∗C∗D∗ that
tangles ∇ABCD at (E, F, G, H, I, J) if and only if
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(i) ΩEHI ∩ΩF HJ ∩ΩGJI = {A∗}, ΩEF G∩ΩHF J ∩ΩIGJ = {B∗}, ΩF EG∩ΩHEI ∩ΩJGI = {C∗},
ΩGEF ∩ ΩIEH ∩ ΩJF H = {D∗}, and

(ii) the points A∗, B∗, C∗, D∗ are on the opposite side of A, B, C, D with respect to ΩBCD,
ΩACD, ΩABD, ΩABC, respectively.

Proof. Suppose ∇A∗B∗C∗D∗ tangles ∇ABCD at (E, F, G, H, I, J). Then ΩEHI = ΩA∗C∗D∗ ,
ΩF HJ = ΩA∗B∗D∗ , and ΩGJI = ΩA∗B∗C∗ . Hence, ΩEHI ∩ ΩF HJ ∩ ΩGJI = {A∗}. Similarly,
ΩEF G ∩ΩHF J ∩ΩIGJ = {B∗}, ΩF EG ∩ΩHEI ∩ΩJGI = {C∗}, and ΩGEF ∩ΩIEH ∩ΩJF H = {D∗}.
And the points A∗, B∗, C∗, D∗ are on the opposite side of A, B, C, D with respect to ΩBCD,
ΩACD, ΩABD, ΩABC , respectively.

Conversely, suppose (i) and (ii) are satisfied. Then ΩEHI = ΩA∗C∗D∗ , ΩF HJ = ΩA∗B∗D∗ ,
and ΩGJI = ΩA∗B∗C∗ , and ΩEF G = ΩB∗C∗D∗ . Thus, the line C∗D∗ = ΩA∗C∗D∗ ∩ ΩB∗C∗D∗ =
ΩEHI ∩ ΩEF G. Hence, E is on the edge [C∗D∗]. That is, [AB] ∩ [C∗D∗] = {E}. Similarly,
[AC]∩ [B∗D∗] = {F}, [AD]∩ [B∗C∗] = {G}, [BC]∩ [A∗D∗] = {H}, [BD]∩ [A∗C∗] = {I}, and
[CD] ∩ [A∗B∗] = {J}. Therefore, ∇A∗B∗C∗D∗ tangles ∇ABCD at (E, F, G, H, I, J).

In Theorem 1, choosing E, F , G, H, I, J randomly on the edges of ∇ABCD may not
result in obtaining a tetrahedron ∇A∗B∗C∗D∗ that tangles ∇ABCD at (E, F, G, H, I, J). So
we will consider a more specific way of finding points E, F , G, H, I, J in order to find a
tetrahedron ∇A∗B∗C∗D∗ that tangles ∇ABCD.

Definition 2. Suppose ∇A∗B∗C∗D∗ tangles ∇ABCD. The diagonals [AA∗], [BB∗], [CC∗],
[DD∗] of the circumscribing box

(
AC∗BD∗

B∗DA∗C

)
are called diagonals of the tangled tetrahedra

∇A∗B∗C∗D∗ and ∇ABCD.

If the diagonals [AA∗], [BB∗], [CC∗], [DD∗] concur at a point P , we say that ∇A∗B∗C∗D∗

and ∇ABCD are tangled with concurrent diagonals at P . We also say that ∇A∗B∗C∗D∗

tangles ∇ABCD with concurrent diagonals at P . See Figure 2.
Remark 1. Every parallelepiped has concurrent diagonals. We are not used to thinking of a
box without concurrent diagonals. But there are many boxes without concurrent diagonals.
Figure 4 in Section 4 is an example of a box without concurrent diagonals.

Definition 3. Let P be a point inside of ∇ABCD. Let {A′} = AP ∩ ΩBCD, {B′} =
BP ∩ ΩACD, {C ′} = CP ∩ ΩABD, and {D′} = DP ∩ ΩABC . The points P is said to be a deep
interior point of a tetrahedron ∇ABCD if |PA| > |PA′|, |PB| > |PB′|, |PC| > |PC ′|, and
|PD| > |PD′|.

Remark 2. Let ∇ABCD be a tetrahedron. See Figure 3. Let E, F , G, H, I, J be the
midpoints of the edges [AB], [AC], [AD], [BC], [BD], [CD], respectively. Let P be a point
inside of ∇ABCD. Let {A′} = AP ∩ ΩBCD. Then |PA| > |PA′| if and only if P /∈ ∇AEFG.
Hence, the point P is a deep interior point of ∇ABCD if and only if P ∈ ∇ABCD −
(∇AEFG ∪ ∇BEHI ∪ ∇CFHJ ∪ ∇DGJI). That is, the point P is a deep interior point of
∇ABCD if and only if P is in the interior of the octahedron EFGHIJ . For example, since
[EJ ] is a diagonal of the octahedron EFGHIJ , any point on the segment (EJ) is a deep
interior point of ∇ABCD.

In Theorem 2 of Section 2, we will show that, for any deep interior point P of any
tetrahedron ∇ABCD, there exists a unique tetrahedron ∇A∗B∗C∗D∗ that tangles ∇ABCD
with concurrent diagonals at P . Theorem 2 is a consequence of the results in [5], and the
basis of this paper.
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Definition 4. Suppose a box
(

AC∗BD∗

B∗DA∗C

)
that circumscribes a tetrahedron ∇ABCD is a par-

allelepiped having [AB], [AC], [AD], [BC], [BD], [CD] as diagonals of its six parallelogram
faces. So, for example, the face AC∗BD∗ contains the edge [AB] of ∇ABCD and is parallel to
CD. Such a parallelepiped always exists for any tetrahedron ∇ABCD. In this case, the tetra-
hedron ∇A∗B∗C∗D∗ tangles and is congruent to ∇ABCD, and the tetrahedra ∇A∗B∗C∗D∗

and ∇ABCD are said to be twin tetrahedra of simply twins. See [1, Page 58] for additional
information on twins.

In Theorem 3 of Section 3, we will show that the two tetrahedra are twins if and only if
they are tangled tetrahedra with concurrent diagonals at the centroid of one of the tetrahedra.
We will give two proofs of Theorem 3. The alternate proof of Theorem 3 uses Theorem 4.
Theorem 4 gives a characterization of the centroid of a tetrahedron that we think is new.

Definition 5. A tetrahedron ∇ABCD such that |AB| = |CD|, |AC| = |BD|, and |AD| =
|BC| is said to be an isosceles tetrahedron.

The parallelepiped
(

AC∗BD∗

B∗DA∗C

)
that circumscribes an isosceles tetrahedron ∇ABCD is a

rectangular box since ∇ABCD ∼= ∇A∗B∗C∗D∗ implies that the two diagonals of the face
AC∗BD∗, for example, is of the same length, i.e., AC∗BD∗ is a rectangle. For additional
basic properties of an isosceles tetrahedron, see [1, Pages 94–102]. The next definition gives
a weaker version of an isosceles tetrahedron.

Definition 6. A tetrahedron ∇ABCD is reversible if (|AB| = |CD| and |AC| = |BD|), or
(|AC| = |BD| and |AD| = |BC|), or (|AB| = |CD| and |AD| = |BC|). Hence, a tetrahedron
is reversible if and only if its faces can be labeled f1, f2, f3, f4 so that (f1 is congruent to f2)
and (f3 is congruent to f4).

Remark 3. We believe that a reversible tetrahedron is a notion introduced by D. A. Klain.
Using the notations in the above definition, Klain in [6] proved that a tetrahedron is reversible
if and only if area(f1) = area(f2) and area(f3) = area(f4).

We make the following convention.
Convention. We will identify a reversible tetrahedron ∇ABCD such that |AC| = |BD| and
|AD| = |BC| by saying that ∇ABCD is reversible with |AB| ≤ |CD| or |CD|

|AB| = k ≥ 1.

Suppose ∇ABCD is a reversible tetrahedron with |AB| ≤ |CD|. In Theorem 5 of Sec-
tion 4, we will prove that there is a tetrahedron ∇A∗B∗C∗D∗ that tangles ∇ABCD with
concurrent diagonals such that ∇D∗C∗B∗A∗ ∼= ∇ABCD. Here, please note that we are not
talking about the twin tetrahedron ∇A∗B∗C∗D∗ of ∇ABCD, and the box

(
AC∗BD∗

B∗DA∗C

)
cir-

cumscribing ∇A∗B∗C∗D∗ and ∇ABCD is trapezoidal (see Definition 7 below) rather than a
parallelepiped.

2 Two Tangled Tetrahedra with Concurrent Diagonals

Lemma 1 is from [4, Theorem 2]. We will give it a new proof different from the one in [4].

Lemma 1. Let P be a point inside of ∇ABCD. Then there are unique points E, F , G, H,
I, J on the edges [AB], [AC], [AD], [BC], [BD], [CD], respectively, such that the segments
[EJ ], [FI] and [GH] concur at P . (See Figure 2 for points E, J , and P .)
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Figure 1: A box
(AC∗BD∗

B∗DA∗C

)
circumscribing tetrahedron ∇A∗B∗C∗D∗ and ∇ABCD. The points D

and D∗, for example, are on the opposite sides of the plane ΩABC . The tetrahedron ∇A∗B∗C∗D∗

tangles ∇ABCD at (E, F, G, H, I, J).

Figure 2 Figure 3

Figure 2: Two tetrahedra ∇A∗B∗C∗D∗ and ∇ABCD that are tangled with concurrent diagonals
at P . The point P is the intersection of the diagonals [AA∗], [BB∗], [CC∗], [DD∗], of the box(AC∗BD∗

B∗DA∗C

)
. The points E and J are the intersections of ([AB] and [C∗D∗]) and ([CD] and [A∗B∗]),

respectively. The segment [EJ ] is shown to contain the point P . The segments [FI] and [GH]
are not drawn here, but they also contain P .

Figure 3: A tetrahedron ∇ABCD and the octahedron EFGHIJ are the ones mentioned in Re-
mark 2. Interior of the octahedron EFGHIJ is the deep interior of the tetrahedron ∇ABCD.
The point J is hidden in Figure 3.

Proof. Let E be the intersection of the edge [AB] and the plane ΩP CD. Then the line EP
intersects the edge [CD] at a unique point. Let J be the intersection of the edge [CD] and the
plane ΩP AB. The line JP intersect the edge [AB] at a unique point. But then the lines EP
and JP must be the intersection of the planes ΩP CD and ΩP AB so that EP = JP . Hence,
the points E, P and J are collinear. And therefore, E and J are the unique points on the
segments [AB] and [CD], respectively, such that P is on the segment [EJ ].

Similarly, let F, G, H, I be the intersections of ([AC] and ΩP BD), ([AD] and ΩP BC), ([BC]
and ΩP AD), and ([BD] and ΩP AC), respectively. Then these points are the unique points on
the edges [AC], [AD], [BC], and [BD], respectively such that P ∈ [FI] and P ∈ [GH].
Hence, the segments [EJ ], [FI] and [GH] concur at P .

We combined Theorem 1 and Corollary 1 of [5] in the next lemma.
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Lemma 2. Let P be a point inside of ∇ABCD. Let E ∈ (AB), F ∈ (AC), G ∈ (AD),
H ∈ (BC), I ∈ (BD), J ∈ (CD) such that [EJ ] ∩ [FI] ∩ [GH] = {P}. Let A′ = AP ∩ ΩBCD.
Then we have the following:

(a) If |PA| = |PA′|, then the planes ΩEHI , ΩF HJ and ΩGJI do not intersect at a point.
(b) If |PA| < |PA′|, then ΩEHI , ΩF HJ and ΩGJI intersect at a point. Their intersection

A∗ is on the same side of A with respect to the plane ΩBCD.
(c) If |PA| > |PA′|, then ΩEHI , ΩF HJ and ΩGJI also intersect at a point. Their intersection

A∗ is on the opposite sides of A with respect to the plane ΩBCD.
In either case (b) or (c), if ΩEHI ∩ ΩF HJ ∩ ΩGJI = {A∗}, the point A∗ is on the line AP .
(See Figure 2 for the statement (c).)

Lemma 3. Let P be a deep interior point of ∇ABCD. Let E ∈ (AB), F ∈ (AC), G ∈
(AD), H ∈ (BC), I ∈ (BD), J ∈ (CD) such that [EJ ] ∩ [FI] ∩ [GH] = {P}. Then
ΩEHI ∩ ΩF HJ ∩ ΩGJI ̸= ∅, ΩEF G ∩ ΩHF J ∩ ΩIGJ ̸= ∅, ΩF EG ∩ ΩHEI ∩ ΩJGI ̸= ∅, and
ΩGEF ∩ ΩIEH ∩ ΩJF H ̸= ∅.

Proof. This is a consequence of Lemma 2(c).

Theorem 2. Let P be a deep interior point of a tetrahedron ∇ABCD. Let E ∈ (AB),
F ∈ (AC), G ∈ (AD), H ∈ (BC), I ∈ (BD), J ∈ (CD) such that [EJ ]∩ [FI]∩ [GH] = {P}.
Let ΩEHI ∩ΩF HJ ∩ΩGJI = {A∗}, ΩEF G ∩ΩHF J ∩ΩIGJ = {B∗}, ΩF EG ∩ΩHEI ∩ΩJGI = {C∗},
and ΩGEF ∩ ΩIEH ∩ ΩJF H = {D∗}. (See Figure 2.) Then

(1) the tetrahedron ∇A∗B∗C∗D∗ tangles ∇ABCD at (E, F, G, H, I, J),
(2) ∇A∗B∗C∗D∗ and ∇ABCD are tangled with concurrent diagonals at P , and
(3) the tetrahedron ∇A∗B∗C∗D∗ is the only tetrahedron that tangles ∇ABCD with concur-

rent diagonals at P . In other words, the box
(

AC∗BD∗

B∗DA∗C

)
is the only box that circumscribes

∇ABCD with concurrent diagonals concurring at P .

Proof. We know the existence of the points A∗, B∗, C∗, D∗ by Lemma 3. By Lemma 2(c),
since P is a deep interior point of ∇ABCD, the points A∗, B∗, C∗, D∗ are on the opposite
side of A, B, C, D with respect to ΩBCD, ΩACD, ΩABD, ΩABC , respectively. Therefore, by
Theorem 1, ∇A∗B∗C∗D∗ tangles ∇ABCD at (E, F, G, H, I, J). Moreover, we have [AA∗] ∩
[BB∗] ∩ [CC∗] ∩ [DD∗] = {P} by Lemma 2. Hence, ∇A∗B∗C∗D∗ and ∇ABCD are tangled
with concurrent diagonals at P .

By Lemma 1, points E, F , G, H, I, J are the uniquely determined points on the edges
[AB], [AC], [AD], [BC], [BD], [CD], respectively, such that the segments [EJ ], [FI] and [GH]
concur at P . Hence, the tetrahedron ∇A∗B∗C∗D∗ that tangles ∇ABCD at (E, F, G, H, I, J)
must be unique. Therefore, the tetrahedron ∇A∗B∗C∗D∗ is the only tetrahedron that tangles
∇ABCD with concurrent diagonals at P .

3 Centroids and Twin Tetrahedra

Let ∇ABCD be a tetrahedron. The point P ∈ R3 such that #    »

AP = 1
4( #    »

AB + #    »

AC + #    »

AD) is the
centroid of the tetrahedron ∇ABCD, and it is inside of this tetrahedron.

The next lemma is Theorem 198 and Corollary 199 on [1, Pages 59–60] expressed slightly
differently with our terminology.

Lemma 4. Let
(

AC∗BD∗

B∗DA∗C

)
be a parallelepiped and let [AA∗] ∩ [BB∗] ∩ [CC∗] ∩ [DD∗] = {P}.

Then the twin tetrahedron ∇A∗B∗C∗D∗ and ∇ABCD are tangled tetrahedra with concurrent
diagonals at P , and P is the centroid of both ∇A∗B∗C∗D∗ and ∇ABCD.
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Lemma 5. If E ∈ (AB), F ∈ (AC), G ∈ (AD), H ∈ (BC), I ∈ (BD), J ∈ (CD) are the
midpoints of these edges of a tetrahedron ∇ABCD, then [EJ ], [FI] and [GH] concur at their
midpoints, say at P ; and the points P is the centroid of ∇ABCD.

Proof. See Theorem 152 on page 48 of [1], for example.

Lemma 6. Let P be the centroid of a tetrahedron ∇ABCD. Then there is a tetrahedron
∇A∗B∗C∗D∗ that tangles ∇ABCD with the concurrent diagonals at P .

Proof. Let the points E and J be the midpoints of the edges [AB] and [CD], respectively.
Then P ∈ (EJ), and P is a deep interior point of ∇ABCD. By Theorem 2, there is a unique
tetrahedron ∇A∗B∗C∗D∗ that tangles ∇ABCD with the concurrent diagonals at P .

Lemmas 4 and 6 lead us to the following question:
Question 1. Is the tetrahedron ∇A∗B∗C∗D∗ in Lemma 6 the twin of ∇ABCD?

The answer is in the next theorem.

Theorem 3. Two tetrahedra are twins if and only if they are tangled with concurrent diago-
nals at P , where P is the centroid of one of the tetrahedra.

Proof. By Lemma 4, we only prove that if two tetrahedra are tangled with concurrent diag-
onals at P , where P is the centroid of one of the tetrahedra, then they are twins. Suppose
P is the centroid of a tetrahedron ∇ABCD, and suppose the tetrahedron ∇A∗B∗C∗D∗ tan-
gles ∇ABCD with concurrent diagonals at P . Let ∇A′B′C ′D′ be the twin tetrahedron of
∇ABCD. Then ∇A′B′C ′D′ tangles ∇ABCD with concurrent diagonals at P by Lemma 4.
But by Theorem 2, the tetrahedron that tangles ∇ABCD with concurrent diagonals at
P is unique. Hence, ∇A′B′C ′D′ and ∇A∗B∗C∗D∗ must be identical. This proves that
∇A∗B∗C∗D∗ is the twin of ∇ABCD.

Perhaps, the above proof of Theorem 3 is too short to be convincing. By considering an
alternate proof of Theorem 3, we discovered Theorem 4 about the centroid of a tetrahedron
that we think is new. Theorem 4 below is a stronger version of Lemma 6. And we use it to
give an alternate proof of Theorem 3. Ceva’s theorem is used to prove Theorem 4.

Theorem (Ceva’s Theorem; see [2, Pages 4–5]). Let △ABC be a triangle. Let A′, B′, C ′ be
points on the edges [BC], [CA], [AB], respectively. Then [AA′], [BB′] and [CC] concur if
and only if |AC′|

|C′B| · |BA′|
|A′C| · |CB′|

|B′A| = 1.

Theorem 4. Let ∇ABCD be a tetrahedron. Let E ∈ (AB), F ∈ (AC), G ∈ (AD), H ∈
(BC), I ∈ (BD), J ∈ (CD). If [EJ ] ∩ [FI] ∩ [GH] = {P}, and if P is the midpoint of the
segments [EJ ], [FI], and [GH], then P is the centroid of ∇ABCD.

Proof. We prove this using vectors. Let #    »

AB = #»

b , #    »

AC = #»c , #    »

AD = #»

d . In order to show that
P is the centroid, we prove that #    »

AP = 1
4( #»

b + #»c + #»

d ).
Note that #    »

AG = g
#    »

AD = g
#»

d and #     »

BH = h
#    »

BC = h( #»c − #»

b ) for some 0 < g, h < 1. Since
P is the midpoint of the segment [GH], we have

#    »

AP = 1
2

(
#    »

AG + #    »

AH
)

= 1
2

(
#    »

AG + #    »

AB + #     »

BH
)

= (1 − h)
2

#»

b + h

2
#»c + g

2
#»

d .
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Since J ∈ ΩAP B, we have #   »

AJ = s
#    »

AB + t
#    »

AP for some s, t ∈ R. Hence,

#   »

AJ = s
#»

b +
(

t(1 − h)
2

#»

b + th

2
#»c + tg

2
#»

d
)

=
(

s + t(1 − h)
2

)
#»

b + th

2
#»c + tg

2
#»

d .

Since J is a point on the edge [CD], we have
#   »

CJ = u
#    »

CD for some 0 < u < 1.

Since #   »

AJ = #    »

AC + #   »

CJ = #    »

AC + u
#    »

CD, we have
#   »

AJ = #»c + u
(
− #»c + #»

d
)

= (1 − u) #»c + u
#»

d .

Hence, we must have
(
s + t(1−h)

2

)
#»

b + th
2

#»c + tg
2

#»

d = #   »

AJ = (1 − u) #»c + u
#»

d .
This shows that s + t(1−h)

2 = 0, th
2 = 1 − u, and tg

2 = u. From tg
2 = u, we have t

2 = u
g
.

Substituting this into th
2 = 1 − u, we have uh

g
= 1 − u. Hence, we have u = g

g+h
. This

gives us
#   »

AJ = h

g + h
#»c + g

g + h

#»

d .

From this, we have

#   »

JP = #    »

AP − #   »

AJ =
{(1 − h)

2
#»

b + h

2
#»c + g

2
#»

d
}

−
{

h

g + h
#»c + g

g + h

#»

d
}

= 1 − h

2
#»

b +
(

h

2 − h

g + h

)
#»c +

(
g

2 − g

g + h

)
#»

d .

Since P is the midpoint of [EJ ], we have

#    »

AE = #   »

AJ + 2 #   »

JP =
{

h

g + h
#»c + g

g + h

#»

d
}

+ 2
{1 − h

2
#»

b +
(

h

2 − h

g + h

)
#»c +

(
g

2 − g

g + h

)
#»

d
}

= (1 − h) #»

b + h
(

1 − 1
g + h

)
#»c + g

(
1 − 1

g + h

)
#»

d .

Since E is on the edge AB, we must have #    »

AE = (1 − h) #»

b . Hence, 1 − 1
g+h

= 0 so that

h = 1 − g and u = g.

Summarizing, we have
#    »

AG = g
#    »

AD,
#     »

BH = (1 − g) #    »

BC,
#   »

CJ = u
#    »

CD = g
#    »

CD, and #    »

AE = g
#    »

AB.

Since ΩDEP ∩ ΩDF P ∩ ΩDHP = DP , the line DP intersects the triangular face △ABC,
say at D′. So, the segments [AH], [BF ], [CE] must concur at D′. By Ceva’s theorem applied
to △ABC, we must have

|AE|
|EB| · |BH|

|HC| · |CF |
|F A| = 1,

or g
1−g

· 1−g
g

· |CF |
|F A| = 1. Hence, |CF | = |FA|, or F is the midpoint of [AC]. We have #    »

AF = 1
2

#»c .
Similarly, since ΩAHP ∩ ΩAIP ∩ ΩAJP = AP , the line AP intersects the triangular face

△BCD, say at A′. So, the segments [BJ ], [CI], [DH] must concur at A′. By Ceva’s theorem
applied to △BCD, we must have

|BH|
|HC|

· |CJ |
|JD|

· |DI|
|IB|

= 1,
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or 1−g
g

· g
1−g

· |DI|
|IB| = 1. Hence, |DI| = |IB|, or I is the midpoint of BD. We have #  »

AI = 1
2( #»

b + #»

d ).
Now, since P is the midpoint of the segment [FI], we have

#    »

AP = 1
2

(
#    »

AF + #  »

AI
)

= 1
2

(1
2

#»c + 1
2

(
#»

b + #»

d
))

= 1
4

(
#»

b + #»c + #»

d
)
.

This proves that P must be the centroid of ∇ABCD.

An alternate proof of Theorem 3. We only prove that if two tetrahedra are tangled with con-
current diagonals at P , where P is the centroid of one of the tetrahedra, then they are twins.
Suppose P is the centroid of a tetrahedron ∇ABCD. Let ∇A∗B∗C∗D∗ be the tetrahedron
that tangles ∇ABCD with the concurrent diagonals at P . The existence of ∇A∗B∗C∗D∗ is
proved in Lemma 6. We will prove that ∇A∗B∗C∗D∗ and ∇ABCD are twin tetrahedra by
showing the box

(
AC∗BD∗

B∗DA∗C

)
is a parallelepiped.

Let E ∈ (AB), F ∈ (AC), G ∈ (AD), H ∈ (BC), I ∈ (BD), J ∈ (CD) be the midpoints,
respectively. Then [EJ ] ∩ [FI] ∩ [GH] = {P}; P is the midpoint of the segments [EJ ],
[FI], and [GH]; and P is the centroid of a tetrahedron ∇ABCD by Lemma 5. On the
other hand, since ∇A∗B∗C∗D∗ tangles ∇ABCD at (E, F, G, H, I, J) we have E ∈ (C∗D∗),
F ∈ (B∗D∗), G ∈ (B∗C∗), H ∈ (A∗D∗), I ∈ (A∗C∗), J ∈ (A∗B∗), and since P is the
midpoint of the segments [EJ ], [FI], and [GH], we know that P is also the centroid of
∇A∗B∗C∗D∗ by Theorem 4. The point P being the centroid ∇A∗B∗C∗D∗ implies that
the points E, F, G, H, I, J are the midpoints of the edges [C∗D∗], [B∗D∗], [B∗C∗], [A∗D∗],
[A∗C∗], and [A∗B∗], respectively. But the points E, F , G, H, I, J are chosen to be the
midpoints of [AB], [AC], [AD], [BC], [BD], [CD], respectively. In particular, the diagonals
[AB] and [C∗D∗] of the quadrilateral AC∗BD∗ intersect at their midpoint E. Therefore,
the quadrilateral AC∗BD∗ is a parallelogram. Similarly, all the remaining five quadrilateral
faces of

(
AC∗BD∗

B∗DA∗C

)
are parallelograms. Therefore, this proves that the box

(
AC∗BD∗

B∗DA∗C

)
is a

parallelepiped. This proves that ∇A∗B∗C∗D∗ and ∇ABCD are twins.

4 Reversible Tetrahedra

The next question is, perhaps, a natural consequence of Theorem 3.
Question 2. Are there tetrahedra ∇A∗B∗C∗D∗ and ∇ABCD that are tangled with the con-
current diagonals at P such that the circumscribing box

(
AC∗BD∗

B∗DA∗C

)
may not be a parallelepiped,

yet for some permutation (A′, B′, C ′, D′) of (A∗, B∗, C∗, D∗), the tetrahedron ∇A′B′C ′D′ is
congruent to ∇ABCD?

We will answer this YES in Theorem 5 using a reversible tetrahedron.

Definition 7. A quadrilateral is a trapezoid if two opposing edges are parallel.

If a box
(

AC∗BD∗

B∗DA∗C

)
has two rectangular faces AC∗BD∗ and B∗DA∗C with centers E and

J , respectively, such that the line EJ is perpendicular to both ΩAC∗BD∗ and ΩB∗DA∗C ; (the
edges [AC∗], [A∗C], [BD∗], [B∗D] are parallel); and (the edges [C∗B], [CB∗], [D∗A] and
[DA∗] are parallel); then the box

(
AC∗BD∗

B∗DA∗C

)
is said to be trapezoidal. See Figures 4 and 5 for

examples of trapezoidal boxes. The next lemma gives a motivation for this naming.
Remark 4. In the above definition, the condition (the edges [AC∗], [A∗C], [BD∗], [B∗D] are
parallel), for example, is necessary in order for

(
AC∗BD∗

B∗DA∗C

)
to be a box.
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Lemma 7. Suppose
(

AC∗BD∗

B∗DA∗C

)
is a trapezoidal box. Then the lateral faces AB∗DC∗, C∗DA∗B,

BA∗CD∗, and D∗CB∗A are trapezoids such that |AB∗| = |C∗D| = |BA∗| = |D∗C|; |AD| =
|B∗C∗| = |BC| = |A∗D∗|; and |BD| = |A∗C∗| = |AC| = |B∗D∗|. Hence, ∇D∗C∗B∗A∗ ∼=
∇ABCD and these tetrahedra can be circumscribed by the same sphere.

Proof. By the definition of a trapezoidal box
(

AC∗BD∗

B∗DA∗C

)
, we can embed it in R3 by letting

A = (−a, −b, c), C∗ = (a, −b, c), B = (a, b, c), D∗ = (−a, b, c), and B∗ = (−α, β, 0), D =
(α, −β, 0), A∗ = (α, β, 0), C = (−α, β, 0) for some a, b, c, α, β > 0. Hence, |AB∗| =
|C∗D| = |BA∗| = |D∗C| =

√
(a − α)2 + (b − β)2 + c2. Hence, AB∗DC∗ and BA∗CD∗ are

congruent trapezoids, and C∗DA∗B and D∗CB∗A are congruent trapezoids. Hence, |AD| =
|B∗C∗| = |BC| = |A∗D∗| and |BD| = |A∗C∗| = |AC| = |B∗D∗|. Moreover, since the
faces AC∗BD∗ and B∗DA∗C are rectangles, we have |AB| = |D∗C∗| and |CD| = |B∗A∗|.
Therefore, ∇D∗C∗B∗A∗ ∼= ∇ABCD.

Next let Q = (0, 0, q), where q = 1
2c

{(a2 + b2) − (α2 + β2) + c2}. We will show that
Q is the center of the sphere circumscribing the trapezoidal box

(
AC∗BD∗

B∗DA∗C

)
. Since |QA| =

|QB| = |QC∗| = |QD∗| and |QA∗| = |QB∗| = |QC| = |QD|, we only have to shown that
|QA| = |QA∗|.

4c2|QA|2 = 4c2(a2 + b2) + (2c2 − 2cq)2

= 4c2(a2 + b2) + {c2 − (a2 + b2) + (α2 + β2)}2

= 4c2(a2 + b2) + c4 + (a2 + b2)2 + (α2 + β2)2 − 2c2(a2 + b2) + 2(α2 + β2)c2

− 2(a2 + b2)(α2 + β2)
= c4 + (a2 + b2)2 + (α2 + β2)2 + 2c2(a2 + b2) + 2(α2 + β2)c2 − 2(a2 + b2)(α2 + β2).

Similarly,

4c2|QA∗|2 = 4c2(α2 + β2) + {c2 + (a2 + b2) − (α2 + β2)}2

= 4c2(α2 + β2) + c4 + (a2 + b2)2 + (α2 + β2)2 + 2c2(a2 + b2) − 2(α2 + β2)c2

− 2(a2 + b2)(α2 + β2)
= c4 + (a2 + b2)2 + (α2 + β2)2 + 2c2(a2 + b2) + 2(α2 + β2)c2 − 2(a2 + b2)(α2 + β2).

Hence, |QA| = |QA∗|. This proves that ∇D∗C∗B∗A∗ and ∇ABCD are circumscribed by the
same sphere.

Lemma 8. A trapezoidal box
(

AC∗BD∗

B∗DA∗C

)
has four concurrent diagonals if and only if |B∗D|

|AC∗| =
|DA∗|
|C∗B| .

Proof. As in the proof of Lemma 7, since
(

AC∗BD∗

B∗DA∗C

)
is a trapezoidal box, we let A = (−a, −b, c),

C∗ = (a, −b, c), B = (a, b, c), D∗ = (−a, b, c), and B∗ = (−α, −β, 0), D = (α, −β, 0),
A∗ = (α, β, 0), C = (−α, β, 0) for some a, b, c, α, β > 0.

Suppose the trapezoidal box
(

AC∗BD∗

B∗DA∗C

)
has four concurrent diagonals. Then #      »

AA∗ = ⟨α +
a, β + b, −c⟩ so that the vector equation of AA∗ is

⟨x, y, z⟩ = ⟨−a + u(α + a), −b + u(β + b), c − cu⟩, u ∈ R.

Similarly, the vector equation of BB∗ is

⟨x, y, z⟩ = ⟨a − v(α + a), b − v(β + b), c − cv⟩, v ∈ R.
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Since AA∗ and BB∗ intersect, we must have

⟨−a + u(α + a), −b + u(β + b), c − cu⟩ = ⟨a − v(α + a), b − v(β + b), c − cv⟩

for some u, v ∈ R. From c − cu = c − cv, we must have u = v.
The equation −a + u(α + a) = a − u(α + a) gives us u = a

α+a
.

The equation −b + u(β + b) = b − u(β + b) gives us u = b
β+b

.
Hence, a

α+a
= b

β+b
, which implies that α

a
= β

b
. Since |A∗D|

|AC∗| = α
a

and |DA∗|
|C∗B| = β

b
, we have

|B∗D|
|AC∗| = |DA∗|

|C∗B| .
On the other hand, suppose |B∗D|

|AC∗| = |DA∗|
|C∗B| . Since α

a
= |B∗D|

|AC∗| = |DA∗|
|C∗B| = β

b
, let α

a
= β

b
= k.

Then α = ka and β = kb. The vector equation of AA∗ is

⟨x, y, z⟩ = ⟨−a + ua(k + 1), −b + ub(k + 1), c − cu⟩, u ∈ R.

Then vector equation of BB∗ is

⟨x, y, z⟩ = ⟨a − va(k + 1), b − vb(k + 1), c − cv⟩, v ∈ R.

Let u = 1
k+1 = v. Then we see that the point P = (0, 0, ck

k+1) is a point on [AA∗] and [BB∗].
The vector equation of CC∗ is

⟨x, y, z⟩ = ⟨−ka − sa(k + 1), kb + ub(k + 1), cs⟩, s ∈ R.

The vector equation of DD∗ is

⟨x, y, z⟩ = ⟨ka + ta(k + 1), −kb − tb(k + 1), ct⟩, t ∈ R.

Let s = − k
k+1 = t. Then we see that the point P = (0, 0, ck

k+1) is also a point on [CC∗] and
[DD∗]. Therefore, the diagonals [AA∗], [BB∗], [CC∗], and [DD∗] concur at P .

Lemma 9 is a corollary of Lemma 8.

Lemma 9. Suppose
(

AC∗BD∗

B∗DA∗C

)
is a trapezoidal box such that |B∗D|

|AC∗| = |DA∗|
|C∗B| so that its four

diagonals concur, say at P . Let |B∗D|
|AC∗| = |DA∗|

|C∗B| = k for some k > 0. Then |CD|
|AB| = k. Moreover,

if we let E and J be the midpoints of the edges [AB] and [CD], respectively, then P ∈ (EJ)
and |P J |

|EP | = k.

Proof. Let A = (−a, −b, c), C∗ = (a, −b, c), B = (a, b, c), D∗ = (−a, b, c), and B∗ =
(−α, −β, 0), D = (α, −β, 0), A∗ = (α, β, 0), C = (−α, β, 0) for some a, b, c, α, β > 0.
Since |B∗D|

|AC∗| = |DA∗|
|C∗B| , we have α

a
= |B∗D|

|AC∗| = k = |DA∗|
|C∗B| = β

b
so that α = ka, and β = kb. Now

#    »

AB = ⟨2a, 2b, 0⟩ so that |AB| = 2
√

a2 + b2. Hence, |CD|
|AB| = k.

Let E and J be the midpoints of the edges [AB] and [CD], respectively. We have
E = (0, 0, c) and J = (0, 0, 0). From the second half of the proof of Lemma 8, we have
P = (0, 0, ck

k+1) so that |EP | = c − ck
k+1 = c

k+1 , and |PJ | = ck
k+1 . Therefore, we have P ∈ (EJ)

and |P J |
|EP | = k.

Lemma 10 (Crelle’s Theorem). If ∇ABCD is a tetrahedron, then there is a triangle having
edges of lengths |AB| · |CD|, |AC| · |BD|, and |AD| · |BC|.
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Proof. See [3, 7, 8].

Lemma 11. Let ∇ABCD be a reversible tetrahedron such that |CD|
|AB| = k ≥ 1. Then the

tetrahedron ∇ABCD can be embedded in R3 so that A = (−a, −b, c), B = (a, b, c), C =
(−ka, kb, 0), and D = (ka, −kb, 0), for some a, b, c > 0.

Proof. Since ∇ABCD is reversible, we let |AC| = |BD| = x, |AD| = |BC| = y, and
1
k
|CD| = |AB| = 2z for some x, y, z > 0. Then

|AB| · |CD| = 4kz2, |AC| · |BD| = x2, and |AD| · |BC| = y2.

Let a = 1√
2

(
y2−x2

4k
+ z2

)1/2
, b = 1√

2

(
x2−y2

4k
+ z2

)1/2
, and c = 1√

2{(x2 + y2) − (2kz2 + 2z2)}1/2.
Since there is a triangle of sides |AB| · |CD|, |AC| · |BD| and |AD| · |BC| by Lemma 10, we

must have the triangle inequality |AC|·|BD|+|AB|·|CD| > |AD|·|BC| so that x2+4kz2 > y2,
or x2−y2

4k
+ z2 > 0. Since x2−y2

4k
+ z2 > 0, the definition of the number b makes sense.

Similarly, since |AD|·|BC|+|AB|·|CD| > |AC|·|BD| by Lemma 10 so that y2−x2

4k
+z2 > 0,

the definition of the number a makes sense.
Again, we have |AC| · |BD| + |AD| · |BC| > |AB| · |CD| by Lemma 10. So we have

x2 + y2 > 4kz2. Note that k ≥ 1 implies that 4kz2 ≥ 2kz2 + 2z2 = 2z2(k + 1) so that
(x2 + y2) − 2z2(k + 1) > 0. Hence, the definition of the number c makes sense.

Now,

|AB|2 = 4(a2 + b2) = 2
(

y2 − x2

4k
+ z2

)
+ 2

(
x2 − y2

4k
+ z2

)
= 4z2

so that |AB| = 2z. Next,

|AC|2 = a2(k − 1)2 + b2(k + 1)2 + c2

= 1
2

((y2 − x2(k − 1)2)
4k

+ z2(k − 1)2
)

+ 1
2

((x2 − y2)(k + 1)2

4k
+ z2(k + 1)2

)
+ c2

= −2(y2 − x2)k + 2(x2 − y2)k
2 · 4k

+ 1
2z2(k − 1)2 + 1

2z2(k + 1)2 + c2

= (x2 − y2)
2 + z2(k2 + 1) + 1

2{(x2 + y2 − 2z2(k2 + 1)} = x2.

And

|AD|2 = a2(k + 1)2 + b2(k − 1)2 + c2

= 1
2

((y2 − x2)(k + 1)2

4k
+ z2(k + 1)2

)
+ 1

2

((x2 − y2)(k − 1)2

4k
+ z2(k − 1)2

)
+ c2

= 2(y2 − x2)k − 2(x2 − y2)k
2 · 4k

+ z2(k + 1)2 + z2(k − 1)2 + c2

= 2(y2 − x2)k − 2(x2 − y2)k
2 · 4k

+ 1
2z2(k + 1)2 + 1

2z2(k − 1)2 + c2

= (−x2 + y2)
2 + z2(k2 + 1) + 1

2{x2 + y2 − 2z2(k2 + 1)} = y2.

This proves Lemma 11.
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Theorem 5. Let ∇ABCD be a reversible tetrahedron such that |CD|
|AB| = k ≥ 1. Let E and J

be the midpoints of the edges [AB] and [CD], respectively. Let P ∈ (EJ) such that |P J |
|EP | = k.

Let ∇A∗B∗C∗D∗ be the tetrahedron that tangles ∇ABCD with the concurrent diagonals at
P . Then ∇D∗C∗B∗A∗ ∼= ∇ABCD, and these tetrahedra can be circumscribed by the same
sphere. Moreover,

(
AC∗BD∗

B∗DA∗C

)
is a trapezoidal box such that |B∗D|

|AC∗| = |DA∗|
|C∗B| = k.

Proof. Since P ∈ (EJ), the point P is a deep interior point of ∇ABCD. Hence, there exists
a unique tetrahedron ∇A∗B∗C∗D∗ that tangles ∇ABCD with the concurrent diagonals at
P by Theorem 2. Since ∇ABCD is a reversible tetrahedron such that |CD|

|AB| = k, we can let
A = (−a, −b, c), B = (a, b, c), C = (−ka, −kb, 0), and D = (ka, −kb, 0), for some a, b, c > 0,
by Lemma 11. Let A′ = (ka, kb, 0), B′ = (−ka, −kb, 0), C ′ = (a, −b, c), and D′ = (−a, b, c).
Then it is not difficult to check that

(
AC′BD′

B′DA′C

)
is a trapezoidal box such that |B′D|

|AC′| = |DA′|
|C′B| = k.

This implies that the trapezoidal box
(

AC′BD′

B′DA′C

)
has four concurring diagonals by Lemma 8,

say at P ′. By Lemma 7, ∇D′C ′B′A′ ∼= ∇ABCD and these tetrahedra can be circumscribed
by the same sphere. By Lemma 9, P ′ ∈ (EJ) such that |P ′J |

|EP ′| = k. However, since P ∈ (EJ)
such that |P J |

|EP | = k, we must have P ′ = P . Also, ∇A∗B∗C∗D∗ is the unique tetrahedron that
tangles ∇ABCD with the concurrent diagonals at P . Therefore, ∇A∗B∗C∗D∗ = ∇A′B′C ′D′

by Theorem 2. This prove this theorem.

Remark 5. Suppose ∇ABCD is an isosceles tetrahedron. Then ∇ABCD is a reversible
tetrahedron such that |CD|

|AB| = 1. Let E and J be the midpoints of the edges [AB] and [CD],
respectively, and let P ∈ [EJ ] such that |P J |

|EP | = 1. Then P is the centroid of ∇ABCD.
Then the trapezoidal box

(
AC∗BD∗

B∗DA∗C

)
guaranteed by Theorem 5 is a parallelepiped by The-

orem 3. That is, ∇A∗B∗C∗D∗ and ∇ABCD are twins. Since the diagonals of the faces
of this parallelepiped are pairwise the same length,

(
AC∗BD∗

B∗DA∗C

)
is a rectangular box. Hence,

∇ABCD ∼= ∇D∗C∗B∗A∗ ∼= ∇A∗B∗C∗D∗.
On the other hand, suppose ∇ABCD is a reversible tetrahedron such that |CD|

|AB| = k > 1.
Then ∇ABCD is not isosceles. Let ∇A∗B∗C∗D∗ be the tetrahedron that tangles ∇ABCD
with concurrent diagonals such that ∇D∗C∗B∗A∗ ∼= ∇ABCD in Theorem 5. Figure 5 is show-
ing this situation. Since |A∗B∗| = |CD| ̸= |AB|, ∇A∗B∗C∗D∗ is not the twin of ∇ABCD.
Remark 6. The condition that (the tetrahedron ∇A∗B∗C∗D∗ tangles ∇ABCD with the
concurrent diagonals at P ) in Theorem 5 is important since without it, there is the other
possibility that a tetrahedron ∇A∗B∗C∗D∗ tangles ∇ABCD and ∇D∗C∗B∗A∗ ∼= ∇ABCD.
For example, let ∇A∗B∗C∗D∗ and ∇ABCD be the tetrahedra circumscribed by the box
in Figure 4. Then ∇ABCD is an isosceles tetrahedron, and ∇ABCD ∼= ∇A∗B∗C∗D∗ ∼=
∇D∗C∗B∗A∗.
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Figure 4 Figure 5

These two figures are examples of trapezoidal boxes. Figure 4 is drawn so that |B∗D|
|AC∗| = 2 and

|A∗D|
|BC∗| = 1

2 so that the diagonals of this trapezoidal box do not intersect by Lemma 8. Figure 5
is drawn so that |B∗D|

|AC∗| = 2 = |A∗D|
|BC∗| so that the diagonals of this trapezoidal box intersect by

Lemma 8.
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