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Abstract. This research aims to replicate David Huffman’s Design with ellipses
of two-degree two-vertices in the Grasshopper environment as a modeling tool
that can be further explored as an architectural concept with various options to
change basic geometric features of the shape. We used methods and approaches
from previous studies on structural modeling to enhance Huffman’s design with
ellipses by implementing user input elements to change the shape parameters of
the ellipse design.
Key Words: Geometry, CAD, Graphics, Curved Origami
MSC 2020: 51N05 (primary), 51M04, 51N15

1 Introduction

Curved crease origami is a challenging art form to study since it creates complicated and
beautiful designs by bending the folds of a flat sheet of paper rather than making them
straight. David Huffman, a computer scientist and artist, was one of the pioneers of curved
crease origami, who experimented with the geometric and aesthetic potential of curved folds
in the 1970s and 1980s. Huffman made many impressive models and designs with curved
folds, using different curves, such as ellipses, parabolas, hyperbolas, and spirals [1]. However,
Huffman did not share his work or his techniques, and his curved crease origami was largely
undiscovered until his death in 1999. After that, researchers began to uncover and reconstruct
his models, revealing the mathematical and artistic beauty of his designs [1].

The main idea of this research is to recreate and implement Huffman’s design with ellipses
(Figure 1) as an architectural element for any design purposes, either exterior facade design
or interior design ornament, by considering them as dynamic elements that are sensitive to
the light and can be stretched or contracted automatically, similar to the state of being folded
or unfolded.
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Figure 1: Huffman’s Design with ellipses. Left: 3D state of the origami. Right: Crease pattern [1].
Dashed lines represent valley folds, while dotted lines represent mountain folds.

Figure 2: Ellipses as various elements, from left to right: Facade element (a) Pavilion (b) Interior
element (c). Sketches are drawn by the author.

Figure 2 depicts some examples of the concept of using the ellipse structure in various
architectural applications.

The design we concentrate on is a 3D origami model of ellipses of two degrees—two
vertices (meaning there are two vertices where the two fold lines connect), which Huffman
used to make a curved-fold structure that can change from a flat sheet to a 3D shape. We try
to restore Huffman’s model and reveal the mathematical elegance behind his artistic work.
We applied a similar method to the additive algorithm method, in which the entire origami
is represented as a discretized model using a set of planar quadrilaterals. The method uses
a seeded quad strip as a starting point and builds the shape by sequentially adding quad
strips [3]. We also included user input features in our model, enabling the user to adjust the
parameters and constraints of the ellipse design to be able to see the change in basic geometric
features and the final 3D shape of the model. We show the aesthetic and functional potential
of Huffman’s design and investigate the opportunities of creating new shapes and forms with
curved creases.
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2 Related work

In origami, the term “curved folding” describes the process of folding along curved lines as
opposed to straight ones. Unlike traditional origami, which mostly uses straight creases, this
style of curved folding makes the bending part of the surface build complicated and often
more organic structures. With this technique, flat sheets of material may be used to form
intricate, three-dimensional shapes [5]. Curved origami has attracted many artists because
of the beauty of its form, and attempts have been made to elucidate its geometric properties.
On the other hand, its useful engineering aspects have also attracted attention. Structural
integrity and utility can be achieved by creating structures that can be folded compactly and
then deployed into their desired shapes [6]. This methodology creates new opportunities to
explore the aesthetic and functional potential of origami and to create deployable and self-
assembling devices [7]. One notable work is Curve-Quad, an origami quadruped at centimeter
scale [4]. The project’s objective was to create a little robot that could crawl, drive, and fold
itself using curved creases and a single actuator. The outcomes demonstrated that the Curve-
Quad robot could self-fold, walk forward, and steer toward a light source. To comprehend the
basic ideas of curved structures and how they are generated under geometrical constraints
and energy considerations, researchers on “Folding on the Curve” investigated the geometric
limitations and energy minimization in curved crease origami [2]. Another study concentrated
on developing curved origami for tunable flexibility [8] achieved in the construction of origami
structures with adjustable stiffness based on the function of tunable flexibility.

Tachi et al. carried out another important study on composite rigid foldable curved
origami structures [10]. These structures are discretized by a set of flat quads rather than a
curved surface model. The purpose of the research was to design multilayered rigid-foldable
and flat-foldable vault structures with a curved-folding style. The result of the study was
to produce a family of tubular structures that rigidly fold and unfold as compact deployable
structures that can have significant implications for creating deployable architectural or other
large-scale applications. According to the results, curved origami structures could offer a
new range of stiffness-to-flexibility ratios, which is particularly useful in robotics and other
fields requiring adaptable materials. A design method to approximate curved surfaces using
generalized Miura-ori units was proposed by [11]. By enabling the creation of complex 3D
structures from 2D sheets, this method advanced the field of mechanical metamaterials and
opened up new useful applications. In the field of architecture, curved origami is used in
a variety of designs, including the One-Fold project by Patkau Architects, Tal Friedman’s
Origami Pavilion, Zaha Hadid’s Arum Pavilion, etc.

3 Preliminary

There are two main approaches to handling the shape of curved origami using a computer.
The first approach treats the curved creases and surfaces analytically as continuous entities,
and the second approach uses a discrete model that represents the curve as a poly-line and
the surface as a quad-mesh. This section introduces the two distinct approaches.

3.1 The Geometry of Curved Origami with a Curved Crease
In the first approach, shapes involving curved folds are constructed based on findings in the
field of differential geometry, using the relationships between the curvature and torsion of the
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folding curves in the 2D pattern and its folded 3D shape, as well as the folding angles, to form
the 3D model. The relationship among these elements is expressed by formulas (1) to (3) [9]:

κ2D(s) = κ(s) cosα(s), (1)

cot βL(s) = α′(s) − τ(s)
κ2D(s) tanα(s) = α′(s) − τ(s)

κ(s) sinα(s) , (2)

cot βR(s) = −α′(s) − τ(s)
κ2D(s) tanα(s) = −α′(s) − τ(s)

κ(s) sinα(s) , (3)

where s is the arclength parameter, κ2D(s) is the curvature of the 2D projection of the folding
curve, κ(s) is the curvature of the folding curve in 3D, α(s) is the folding angle, τ(s) is the
torsion of the folding curve in 3D, and βL(s) and βR(s) are the angles between the rulings
and the tangent vector in the 2D projection on the left and right sides of the fold (Figure 3).

Figure 3: Geometry of curved folding.

When the folding angle α is constant, the torsion and curvature are related through the
cotangent function as follows:

cot βL(s) = cot βR(s) = −τ(s)
κ2D(s) tanα = −τ(s)

κ(s) sinα (4)

From these relationships, it is theoretically possible to determine the 3D folding curve
by specifying a single-variable angle function parameterized by the arclength for a 2D crease
pattern. In this way, the 3D model can, in principle, be reconstructed. However, this is
clearly limited to cases where there is only a single curved fold. Huffman’s ellipse, which is the
focus of this study, includes multiple curved creases and features the unique situation where
the creases terminate within the interior of the region, making it challenging to analytically
derive the resulting shape. Therefore, we adopt a discrete model, as described in the following
subsection.

3.2 An Additive Algorithm Method for Origami Design
One method for constructing the shape of curved origami is to represent it as a discretized
model composed of flat quads. In this approach, the geometric constraints are limited to
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ensuring that the quads forming the shape remain flat and that the sum of the sector angles
around each interior vertex equals 2π. This makes it easier to construct the shape compared
to the analytical approach based on the equations described in the previous subsection.

The additive algorithm for origami design [3] is an approach for creating complicated
origami surfaces by increasingly adding strips of quadrilateral facets. This method simpli-
fies the design process of a 3D origami surface by breaking it into manageable steps while
preserving its geometric constraints.

First, a quad strip called the seed is prepared, and additional quad strips are sequentially
added to it. The sequence of boundary edges where new quads are connected is referred to as
the growth front. When the sequence of vertices constituting the growth front is denoted by
xi, the edge extending from the vertex xi connects to a newly generated vertex x′

i. As shown
in Figure 4, the vector x′

i − xi is represented as ri, and the problem reduces to determining
the vector ri from the growth front. Let θi,j (1 ≤ j ≤ 4) denote the sector angle around the
vertex xi, then the following equation holds:

4∑
j=1

θi,j = 2π (5)

to ensure that the structure can be folded without tearing or overlapping.

Figure 4: Construction process of the initial seed of an origami.

The direction of ri is determined by the angles αi and βi. Here, βi is the angle between
the edges ei and ei+1, while αi, referred to as the flap angle in [4], is the angle between the
plane containing βi and the quad added via ei. Let θi,3 and θi,4 represent the two sector
angles around xi based on the seed quads, and θi,1 and θi,2 represent the two sector angles
obtained from the newly added quads. Based on the spherical geometric relationships and
the spherical law of cosines, the following equations hold:

cos θi,2 = cos βi cosαi + sin βi sinαi cos θi,4 (6)

By considering Equations (5) and (6), we can calculate the values for θi,1, θi,2, Then, we
obtain the following equations:

θi,1 = tan−1
(

cos ki − cos βi

sin βi cosαi − sin ki

)
, θi,1 ̸= π

2 (7)

and
θi,2 = ki − θi,1, (8)

where ki = 2π − θi,3 − θi,4, and angle αi is a user-specified parameter. By the calculation of
θi,1 and θi,2 we can determine the direction of ri which determines the next quads strip.
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4 Methodology

In this section, we explain the process of creating Huffman’s design with ellipses 3D origami
structure as a discrete model incorporating triangles and quads. Since a triangle can be
regarded as a degenerate quadrilateral where one edge collapses, the subsequent discussion
will not distinguish between the two. We want to use a method where its idea comes from
the additive method introduced in the previous section, and we make sure that it guarantees
the developability, in other words, we ensure that for all interior vertices, the sum of their
sector angles is 2π. The explanation process includes: assigning the boundaries, assigning
and dividing the crease pattern into patches, folding them, and evaluating the angle condition
around the vertices. Finally, we will explain the performance of our system implemented in
the grasshopper environment.

4.1 Boundary and Crease Curves
To begin with, let’s assign labels to the different parts of the unfolded plane as shown in
Figure 5. lls and rls stand for left and right lower surfaces; lus and rus stand for left and
right upper surfaces; lms and rms stand for left and right middle surfaces; lts and rts stand
for left and right triangular surfaces; llc and rlc stand for left and right lower curves; luc and
ruc stand for left and right upper curves; V1 and V2 stand for left and right curve tip vertices.

Figure 5: Abbreviation of names of each part.

An ellipse can be defined with parametric equations with parameter θ (0 ≤ θ ≤ 2π)
which represents the angle that determines the Cartesian coordinates of the point through
the following parametric equation. x = a cos θ

y = b sin θ

The bounding ellipse is defined by the values of a and b in this equation. To set the crease
curves, the endpoints of the crease curve, V1 and V2, are positioned symmetrically with respect
to the origin. Now we use copies of the smaller scale of four other ellipses for crease curves.
With rotation and translation, we locate them to the V1 and V2 as can be seen in Figure 6(a).
Besides, we assign two angle values ψ1, ψ2 as controlling parameters of rotations. As a result,
the crease pattern shown in Figure 6(b) is obtained.
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Figure 6: (a) The arrangement of ellipses used to obtain the crease pattern. (b) The resulting crease
pattern.

4.2 Polygonization
Having determined the plane boundary and crease lines, we can go to the next step. Since
we aim to create a 3D model that is a polygonal mesh, we represent a surface as a set of
triangles or plane quadrilaterals that are assembled, and for each pair of adjacent polygons,
a specific angle is allocated for their dihedral angle.

Here, we are going to describe the segmentation, i.e. polygonization. If we draw a line
that passes through OV1 and OV2, we can see that the shape is symmetric to this line and
therefore we only describe the division of the left side of the line. The right side would be
the same.

First, a sequence of vertices is placed on luc. This is achieved by sampling the parameter
θ of the elliptical equation, forming the luc at equal intervals. Let the number of vertices be
N . Next, the same number N of vertices is placed on llc by dividing the parameter range of
the llc’s elliptical equation into N−1 segments. Then, for each vertex on luc, the intersection
points between the boundary ellipse and the straight lines passing through the origin (the
center of the boundary ellipse) and the luc vertices are determined. These intersection points
form the sequence of vertices on the boundary ellipse.

With these steps, the positions of all necessary vertices are determined. Subsequently,
the region lls is divided by connecting V1 with each vertex on llc (Figure 7a). Then, the
region lms is divided by sequentially connecting the vertex sequences on the llc and luc from
one end to the other (Figure 7b). Finally, the region lus is divided by similarly connecting
the vertex sequence on the lms with that on the boundary ellipse (Figure 7c). The region lts
is not divided. The same process is applied to the right side, completing the division of the
entire structure (Figure 7d).

The folding process is only the assignment of the fold-angle for all edges. In the rest of
this paper, we explain how do we assign the angle values among these edges while satisfying
the constraint that the sum of the sector angles around each interior vertex equals 2π.

4.3 Seed and its Extension
According to the additive algorithm method described in Section 3.2, a seed refers to the
initial folded configuration of a quad strip from which the design process begins. This seed
serves as the starting point for growing a folded surface in a three-dimensional state. In our
method, the positions of the initial triangle are first determined, and then the coordinates of
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Figure 7: Dividing the crease pattern onto the regions, from left to right: inner regions, two main
branches, outer regions, overall regions.

the vertices are sequentially calculated. According to the division that we indicated before,
we choose four polygonal faces, s1, s2, s3, and s4, as shown in Figure 8 for the initial step.

Figure 8: The first four polygonal faces were used in constructing the 3D shape.

We assume that the unfolded plane lies on the xy-plane such that the center of the ellipse
coincides with the origin and the long diagonal of the ellipse aligns with the x-axis. For
simplicity, we will use the same capital letters to denote the corresponding pieces of the
folded state as we used for the unfolded state. For instance, we use Pi to denote a vertex
of the folded state corresponding to pi for the unfolded state. Consider Figure 9 and let ϕ
be the angle between triangles P2V2V1 and the xyplane specified by the user. Using ϕ, we
perform a rotation on triangles, V1p2V2 resulting in V1P2V2 while keeping V1 and V2 fixing as
depicted in Figure 9a.

Now for determining the position of P1 and P3 in Figure 9b, consider the below formula,
which is described in [3].

cos θ2 = cos θ1 cos β + sin θ1 sin β cosα,

where α is the flap angle described in Section 3.2 and is one of the user-specified parameters.
From the above formula, we get β as the following:

β = cos−1
(cos θ2 cos θ1 ± sin θ1 cosα

√
cos2 θ1 − cos2 θ2 + sin2 θ1 cos2 α

cos2 θ2 + cos2 θ1

)
.

By preserving the angle P1P2V2 = θ3 and the length P1P2 = p1p2, we rotate the point P1
about the line V2P2 to get the angle between edges V1P2 and P1P2 equal to β. P3 is obtained
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Figure 9: The initial steps for constructing the folded state.

by rotating it by α with respect to the β plane. In this way, the positions of P1, P2, and P3 are
determined. Since P4 lies on the plane formed by these points, its position can be determined
accordingly. The most notable characteristic of the surface at point P2 is its fulfillment of the
angle condition around the vertex, denoted by ∑4

j=1 θj.

Figure 10: Left: Finding the position of a new point of P4. Right: Extension of the initial seed.

Now we continue by applying the same method for the next point. Note that from this
step on the flap angle, α is automatically obtained from the previous step. By assigning
similar names for new points and angles, as depicted in Figure 10, and following the same
argumentation, we could decide the folded state of the following polygons in both in rls and
rms.

With this method, we are able to complete RLS and RMS. Besides, the same steps can
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be taken to complete LLS and LMS as well (Figure 11).

Figure 11: The 3D model of the constructed regions LMS, LLS, RMS, and RLS.

Subsequently, the shapes of the remaining regions RTS, RUS, LTS, and LUS are con-
structed. As shown in Figure 12a, let u be the vector along the edge at the boundary of
region lus, and v be the vector along the first line segment of the curve luc. Let γ be the
angle between u and v in the unfolded state, and δ be the angle formed by region rts around
V2. These angles remain unchanged in the folded state. When constructing the folded state
of LUS, we first rotate the first quad s in the region lus around the vector v in the folded
state so that these angles (γ and δ) do not change. The rotation angle that satisfies this
condition is found using a binary search. In this way, RTS is determined, and the position
of the first quad in LUS is fixed, and the remaining region of LUS is determined using the
method described before. Finally, LTS and RUS are constructed using symmetry.

Figure 12: To ensure that the angle δ within RTS and the angle γ within the first quadrilateral of
LUS remain unchanged, the rotation angle along the vector v is determined.

Using the above method, the whole of the 3D shape can be constructed as shown in
Figure 13.

5 Result and Evaluation

The method described in the previous section was implemented in the Grasshopper environ-
ment on the 3D CAD software Rhino, resulting in the generation of a 3D model of Huffman’s
ellipse. Here, we present models generated by varying the parameters and provide an evalu-
ation of their shapes. Subsequently, we introduce an example application.
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Figure 13: The final constructed 3D shape.

5.1 Model Generation Using the Proposed Method
By adjusting the values of various parameters using slider bars, users can generate the 3D
shape in real-time. Figure 14 shows the obtained 3D models, and Table 1 presents the
numerical information for the models.

Figure 14: From left to right: figures that depict changeable parameters described in table 1.

The input parameters in Table 1 are as below:
• α: flap angle for the first triangle.
• ϕ: angle between the xy-plane and the first triangle surface.
• ARboundary: aspect ratio of the boundary ellipse.
• ARsub: aspect ratio of the smaller ellipses used for crease curves.
• ψ1, ψ2: rotation angles of the smaller ellipses used for the crease curves.
The geometric validity of the generated 3D shape is evaluated from the perspective of

developability as the following metric.
• developability error: the maximum error value in degrees among the differences between

the sum of the sector angles around each vertex 360◦.
Table 1 lists the parameter values used to generate each model shown in Figure 14, along

with the corresponding developability error values.
By modifying the parameter values, we were able to generate variations that resemble

Huffman’s ellipse in appearance but differ in crease arrangements, folding angles, and overall
shape. When the values of α and ϕ are small, the resulting shape is closer to a flat config-
uration, whereas larger values of these parameters produce more pronounced folding angles
and a highly three-dimensional structure. The sum of angles around each vertex is nearly 2π,
and the deviation is small enough to be considered negligible during fabrication.
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model α ϕ ARboundary ARsub ψ1 ψ2 developability Error
a 23◦ 2◦ 0.60 0.48 45◦ 16◦ 1.50 × 10−5

b 55◦ 10◦ 0.60 0.58 45◦ 25◦ 2.44 × 10−5

c 40◦ 10◦ 0.60 0.30 30◦ 20◦ 1.98 × 10−5

d 35◦ 6◦ 0.90 0.48 45◦ 16◦ 2.17 × 10−5

Table 1: Parameters and error values.

5.2 Potential Applications of Huffman’s Ellipse Origami
Huffman’s ellipse origami has potential applications in the field of architecture, as suggested
by the illustrations in Figure 2 in Section 1. Other example of such an application is shown
in Figure 15, representing an idea we devised. By incorporating a mechanism that sensitively
responds to light and airflow, the structure can flatten or fold into a three-dimensional form,
adapting dynamically to environmental changes. The ratio of the area of the shadow of the
folded state with respect to the area of the unfolded state is about 93%. Given this value, the
effect on adjusting the amount of light entering a room can be considered minimal, suggesting
its use in altering the room’s ambiance. Alternatively, it may serve as a functional element as
a pathway for air circulation (note that this is a conceptual proposal, and the mechanism for
deformation has not been considered.) The proposed method for shape generation is useful
for performing such visual simulations.

Figure 15: The change in visual impressions caused by the deformation of Huffman’s ellipse origami
arranged on a window.

6 Conclusion

In conclusion, we have developed a 3D digital module based on David Huffman’s ellipse design
with two degrees and two vertices. This interactive module empowers users to manipulate
geometric features such as size and fold angle, offering flexibility in design customization. Ad-
ditionally, the module is fully compatible with CAD environments, allowing it to be seamlessly
integrated into architectural projects as a unique design element.

In this study, we focused on the shape of Huffman’s ellipse; however, the proposed method
can be applied to other curved origami designs as well. For example, it is straightforward to
change the contour from an ellipse to other shapes, and variations in the crease patterns, such
as their shape, arrangement, and number, can also be introduced. By further developing the
proposed method, it becomes possible to construct a wide range of origami designs.
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With the digital design phase now complete, we can have the prospect of creating a
physical model in the future, which will further bring this innovative concept to life.

Acknowledgments

This work was supported by JST CREST Grant Number JPMJCR1911, Japan.

References

[1] E. D. Demaine, M. L. Demaine, and D. Koschitz: Reconstructing David Huffman’s
Legacy in Curved-Crease Folding. In Origami 5: Fifth International Meeting of Origami
Science, Mathematics, and Education, 39–52. A K Peters/CRC Press, 2011.

[2] M. A. Dias, L. H. Dudte, L. Mahadevan, and C. D. Santangelo: Geometric
Mechanics of Curved Crease Origami. Physical Review Letters 109(11), 114301, 2012.
doi: 10.1103/physrevlett.109.114301.

[3] L. H. Dudte, G. P. T. Choi, and L. Mahadevan: An additive algorithm for
origami design. Proceedings of the National Academy of Sciences 118(21), 2021. doi:
10.1073/pnas.2019241118.

[4] D. Feshbach, X. Wu, S. Vasireddy, L. Beardell, B. To, Y. Baryshnikov,
and C. Sung: CurveQuad: A Centimeter-Scale Origami Quadruped that Leverages
Curved Creases to Self-Fold and Crawl with One Motor. In 2023 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), 2485–2492. IEEE, 2023.
doi: 10.1109/iros55552.2023.10342339.

[5] T.-U. Lee, Y. Chen, M. T. Heitzmann, and J. M. Gattas: Compliant curved-
crease origami-inspired metamaterials with a programmable force-displacement response.
Materials & Design 207, 109859, 2021. doi: 10.1016/j.matdes.2021.109859.

[6] J. Mitani: Curved-Folding Origami Design. CRC Press, 2019. ISBN 9780429059179.
doi: 10.1201/9780429059179.

[7] D. Raducanu, V. D. Cojocaru, V. A. Raducanu, A. Nocivin, N. Serban,
I. Cinca, E. M. Cojocaru, L. Moldovan, C. Trisca-Rusu, and I. V. Balkan:
Design and Optimization of a Curved-Crease-Folding Process Applied to a Light Metallic
Structure. Processes 9(7), 1110, 2021. doi: 10.3390/pr9071110.

[8] Y. Sun, K. Song, J. Ju, and X. Zhou: Curved-creased origami mechanical metama-
terials with programmable stabilities and stiffnesses. International Journal of Mechanical
Sciences 262, 108729, 2024. doi: 10.1016/j.ijmecsci.2023.108729.

[9] T. Tachi: One-DOF Rigid Foldable Structures from Space Curves. Proceedings of the
IABSE-IASS Symposium 20–23, 2011.

[10] T. Tachi: Composite Rigid-Foldable Curved Origami Structure. Proceedings of Trans-
formables 18–20, 2013.

https://dx.doi.org/10.1103/physrevlett.109.114301
https://dx.doi.org/10.1073/pnas.2019241118
https://dx.doi.org/10.1073/pnas.2019241118
https://dx.doi.org/10.1109/iros55552.2023.10342339
https://dx.doi.org/10.1016/j.matdes.2021.109859
https://dx.doi.org/10.1201/9780429059179
https://dx.doi.org/10.3390/pr9071110
https://dx.doi.org/10.1016/j.ijmecsci.2023.108729


212 A. Safary et al.: Parameterized Folded State Shape Modeling of . . .

[11] F. Wang, H. Gong, X. Chen, and C. Q. Chen: Folding to Curved Surfaces: A Gen-
eralized Design Method and Mechanics of Origami-based Cylindrical Structures. Scientific
Reports 6, 2016.

Received December 2, 2024; final form February 17, 2025.


	Introduction
	Related work
	Preliminary
	The Geometry of Curved Origami with a Curved Crease
	An Additive Algorithm Method for Origami Design

	Methodology
	Boundary and Crease Curves
	Polygonization
	Seed and its Extension

	Result and Evaluation
	Model Generation Using the Proposed Method
	Potential Applications of Huffman's Ellipse Origami

	Conclusion

