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Introduction

The aim of this contribution is to show the possibilities for solving
ordinary differential equations with algorithmic methods using Sophus Lie’s
ideas and computer means. Our material is related especially to Lie’s work on
transformations and differential equations—essential ideas are already contained
in his first paper on transformation groups [5]—and to his article on differential
invariants [6]. Very good modern surveys on such questions as are discussed here
and on related problems are found in [8,9].

Lie’s first intentions were to create a theory for solving differential equa-
tions with means of group theory in analogy with the Galois theory for algebraic
equations. With respect to typical elements of Galois theory—fields, groups,
automorphisms and relations betweeen them—this concept is realized today in
the so-called Picard-Vessiot theory for linear ordinary differential equations.
Those of Lie’s methods which are used today in systematic investigations of dif-
ferential equations are based on symmetries. We will discuss here these methods
and inspect them for the presence of algorithmic elements.

Symmetries

A symmetry of a differential equation is a transformation which trans-
forms solutions into solutions. For the application of analytical methods it is
useful to narrow this notion down as follows:

Definition. The elements of a connected Lie group G of diffeomorphisms of
R2 which transform solutions of a differential equation

y(n) = F (x, y, y′, . . . , y(n−1))

into solutions are called symmetries of this equation. Alternatively, the infinitesi-
mal generators of the Lie algebra g of such a group G are also called symmetries
of the differential equation.

This is usually expressed also by saying “the differential equation is
invariant with respect to G” or “the differential equation admits G”.
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Remark. In this sense, Lie methods use only connected symmetry groups. For
instance, the differential equation y′′ = (xy′ − y)3 is invariant with respect to
Sl(2) and its natural action on R2 . But the reflection y 7→ −y is a symmetry in
the original sense of the word this is not covered by Lie methods.

In order to make the notion of symmetry practical it is necessary to
describe first the action of point transformations on the derivatives ocurring in
a differential equation. Let G = {Tt} denote a (local) one-parameter group of
diffeomorphisms on R2 , defined as follows:

Tt(x, y) =
(
Φ(x, y, t),Ψ(x, y, t)

)
.

If for fixed t we set (x, y) =
(
Φ(x, y, t),Ψ(x, y, t)

)
and if x 7→ y = y(x)

is a function, then, under suitable conditions on domains of definition etc., there
is a function x 7→ y(x) such that the relation

(
x, y(x)

)
=
(
Φ(x, y(x), t),Ψ(x, y(x), t)

)
= Tt

(
x, y(x)

)

is satisfied. The transformation Tt now produces a transformation T
(1)
t on R3

such that T
(1)
t

(
x, y(x), y′(x)

)
= (x, y(x), y′(x)

)
and so on for all higher deriva-

tives. We obtain transformations T
(n)
t realizing in this fashion the assignments

y 7→ y, y′ 7→ y′, . . . , y(n) 7→ y(n).

Now the elements of the (local) one-parameter group {Tt} are symmetries of
y(n) = F (x, y, y′, . . . , y(n−1)) iff the following implication holds:

y(n) = F (x, y′, . . . , y(n−1)) =⇒ y(n) = F (x, y, y′, . . . , y(n−1)).

Since the transformation formulas for the derivatives y′, y′′, . . . , y(n) are
rather complicated, it is more convenient to describe the transformation groups

T
(n)
t by their generators. If, in the following, ∂v means the differentiation with

respect to v , and if the vector field generating Tt is denoted by

∂ = ξ(x, y)∂x + η(x, y)∂y,

then the extension to the level of derivatives leads to a sequence

∂ = ξ(x, y)∂x + η(x, y)∂y,

∂′ = ∂ + η′(x, y, y′)∂y′ ,

...

∂(n) = ∂(n−1) + η(n)(x, y, . . . , y(n))∂y(n)

of generators, and this extension procedure is given recursively by

η(k+1) =
dη(k)

dx
− y(k+1) dξ

dx
.
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Its implementation requires no more than a lot of simple calculations, especially
differentiations.

There are two criteria for symmetries going back to Lie [7]:

Criterion 1. The generator ∂ = ξ∂x + η∂y is a symmetry of

y(n) = F (x, y, y′, . . . , y(n−1)) iff ∂(n)(y(n) − F )|y(n)=F ≡ 0.

The second criterion is formulated in terms of the differential operator

D = ∂x + y′∂y + . . .+ y(n−1)∂y(n−2) + F∂y(n−1) ,

which is associated with the given differential equation as the total differentiation
with respect to x by means of the differential equation. The kernel of D is the
space of first integrals of the differential equation.

Criterion 2 The generator ∂ = ξ∂x + η∂y is a symmetry of

y(n) = F (x, y, y′, . . . , y(n−1)) iff [∂(n−1), D] = λD

where λ is a certain function depending on x, y, y′, . . . , y(n−1) .

Criterion 1 is useful for the computation of symmetries: For n > 1 the
corresponding identity contains the free variables y′, . . . , y(n−1) , which allow us
to split this identity into a system of linear partial differential equations for the
unknown functions ξ and η .

From Criterion 2 it follows easily that the symmetries (as generators)
form a Lie algebra and that the kernel of D (the space of first integrals) is
invariant under the action of symmetries.

Algorithmic procedure

The effect of Lie methods applied to ordinary differential equations can
be characterized as follows:

An ordinary differential equation with symmetries can be reduced to
lower order equations and quadratures.

For a given equation y(n) = F (x, y, y′, . . . , y(n−1)) one has to work in the
following steps:

(1) Assuming a symmetry as ∂ = ξ∂x + η∂y with unknown functions ξ
and η , one has to extend the generator ∂ to generators ∂(n) and to form the
identity ∂(n)(y(n) − F )

∣∣
y(n)=F

≡ 0, corresponding to Criterion 1.

(2) By splitting the above identity with respect to the free variables
y′, . . . , y(n−1) (for n > 1) one gets the system of determining equations. These
are linear homogeneous partial differential equations for ξ and η .
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(3) Symmetries are obtained by simplifying and solving the determining
system.

(4) For the Lie algebra L of symmetries one has to determine the type
of isomorphy, the canonical form and a corresponding base.

(5) Depending on this informations one gets a solution procedure, i. e.,
there are additional first order linear partial differential equations to determine
first integrals. This is equivalent to the reduction of the differential equation
mentioned above.

Let us now refer to the steps of this algorithm and its realization. The
steps (1) and (2) pose no problems and can be implemented with computer
algebra means, too. The essential problem in finding symmetries is to solve the
system of determining equations in step (3). At first glance this problem seems
not to be easier than the solution of the original differential equation. But this
impression is disproved by experience: As many concrete examples show, the
system of determining equations leads by a simplification procedure (which is an
analogue to the Gröbner base algorithm for algebraic equations [11]) to simple
equations. We will formulate this as

Hypothesis. Let S be the determining system of an ordinary differential
equation. Then one can derive from S , by means of differentiations and combi-
nations of equations only, an equation for only one function, which is in fact an
ordinary linear homogeneous differential equation.

Here we give two examples:

(1) The determining system of y′′ = yy′

x
+ y′2 is:

ξyy + ξy = 0,

2ξxy + 2
y

x
ξy +−ηyy + ηy = 0,

−ξxx −
y

x
ξx +

y

x2
ξ + 2ηxy − 2ηx −

1

x
η = 0,

ηxx −
y

x
ηx = 0.

The first and the last equation are obviously ordinary differential equa-
tions.

(2) For the equation

y′′ =
(1 + y′2)3/2 − y′2 − 1

y

we get the determining equations

yξx − 2yηy + η = 0,

ξy + ηx = 0,

−2yξx + yηy + η = 0,

yξyy − ξy = 0,

−2y2ξxy + y2ηyy + yηy − η = 0,

2yξx + y2ηxx − yηy − η = 0.
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Here the fourth equation is an ordinary differential equation for ξ .

At this point it is clear, that Lie methods in the algorithmic sense are
not self-consistent: As a consequence of the superposition principle, for linear
homogeneuos equations, the determination of all symmetries is equivalent to
solving the equation itself. This is true in the case of arbitrary first order
equations, too. There are only special cases with enough known symmetries,
for which work Lie methods effectively. In this sense, if the hypothesis is true,
then the solving of linear homogeneous equations and first order equations (for
instance, quadratures) is the key for effective applications of Lie methods. Hence
in these cases, with respect to the algorithmic point of view and computer means,
it is necessary to apply other methods. We will quote here only some results,
which express the progress in this topic and are based on methods resembling
Galois theory:

The problem of integrating elementary functions has been proved to be
algorithmic [1]. The theory is based on old ideas of Liouville. There are
computer implementations in partial cases, too. For certain classes of linear
homogeneous equations there exist algorithms [4, 10] which lead to Liouvillean
solutions, if such solutions exist.

Use of symmetries for solving procedures

Let ∂ = ξ∂x + η∂y be a symmetry of the n -th order equation

y(n) = F (x, y′, . . . , y(n−1)).

Then we can introduce new variables x = Φ(x, y), y = Ψ(x, y), where y is
considered as function depending on x , in such a way that ∂ = ∂y . Then
the differential equation with respect to the new variables attains the form
y(n) = F (x, y′, . . . , y(n−1)) (y itself does not occur). Hence we have to solve an
(n−1)-th order differential equation for y′ , and y is given then by a quadrature.

In the general case, this means that if there is a Lie algebra L of
symmetries, the methods given by Lie are split with respect to various isomorphy
types and canonical forms of L . We will try to explain a concept for solving a
differential equation by first integrals in this way.

The canonical form of a Lie algebra L of generators is the equivalence
class with respect to point transformations which contains L . For instance, every
one-dimensional Lie algebra L can be transformed by point transformations
(x, y) 7→ (x, y) into L = 〈∂y〉 . Therefore L = 〈∂y〉 is also called the canonical
form of a one-dimensional Lie algebra. For a two-dimensional abelian Lie algebra
there are two canonical forms: L = 〈∂x, ∂y〉 or L = 〈∂x, y∂x〉 . (In fact these
concrete Lie algebras stand for the whole classes).

The determination of the canonical forms is a kind of representation
theory, which was worked out for lower dimensional Lie algebras by Lie. The
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concept of solving or reducing a differential equation with symmetries is based
on the following proposition.

Proposition. Let y(n) = F (x, y′, . . . , y(n−1)) be a differential equation with the
Lie algebra of symmetries L . Let further I denote the space of first integrals,
i. e., of functions

u = u(x, y, y′, . . . , y(n−1)) with D(u) = 0,

where D = ∂x + y′∂y + F∂y(n−1) . Then the mapping Φ: ∂ → ∂(n−1)
∣∣
I

is a Lie
algebra monomorphism.

The proof is not hard if one uses Criterion 2 and the relation

[∂1, ∂2]
(k)

= [∂1
(k), ∂2

(k)].

Hence, if I is regarded, with respect to n independent first integrals, as
a space of functions depending on n variables, there is a canonical form for L
with respect to transformations only among first integrals. We will denote this
form as FI-form of L . If the FI-form is known, one gets additional equations
for first integrals. Let us illustrate this fact by some examples of second order
equations. Our goal is to obtain two independent first integrals u = u(x, y, p),
v = v(x, y, p) (here p stands for y′ as in the following, too).

(1) If y′′ = F (x, y, p) has one symmetry ∂ , the canonical FI-form can be
obtained as ∂′|I = ∂v . But this means that there are first integrals u , v forming
a base of I , which satisfy

D(u) = 0, D(v) = 0,
∂′(u) = 0, ∂′(v) = 1.

This is a first order system of linear partial differential equations for u and
v , which is equivalent to ordinary first equations and quadratures and can be
regarded as the final result of our procedure.

(2) The equation

y′′ =
(1 + p2)3/2 + 2(1 + p2)(xp− y)

(1 + x2 + y2)

has so(3)-symmetry. The corresponding generators are

∂1 = y∂x − x∂y,

∂2 =
(1 + x2 − y2)

2
∂x + xy∂y,

∂3 = xy∂x +
(1− x2 + y2)

2
∂y.
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The group is SU(2) acting by Möbius transformations on C . There is
only one canonical form on R2 . Hence one gets the canonical FI-form analogously
to the above equations. This implies the existence of first integrals satisfying

∂′1(u) = v, ∂′1(v) = −u,
∂′2(u) = (1+u2−v2)

2 , ∂′2(v) = uv,

∂′3(u) = uv, ∂′3(v) = (1−u2+v2)
2 ,

D(u) = 0, D(v) = 0.

Elimination of the derivatives of u, v leads to two algebraic equations for u, v .
With the help of computer algebra means we can then eliminate p ad get the
general solution as a polynomial equation in x, y, u, v of very large volume. (u, v
can then be considered as constants for every solution). In the simplest case
u = 0, v = 0 one gets y2(−x8 − 4x6y2 + x6 − 6x4y4 + 3x4y2 + 4x4 − 4x2y6 +
3x2y4 + 8x2y2 + x2 − y8 + y6 + 4y4 + y2 − 1) = 0.

(3) The Lie algebra sl(2) has 3 canonical forms with respect to real point
transformations:

∂1 = ∂x,

∂2 = x∂x + y∂y,

∂3 =
(x2 + εy2)

2
∂x + xy∂y, (ε = 0, 1,−1).

ε = 0 corresponds to the linear action of Sl(2) on R2 ,

ε = −1 to the action of Sl(2) by Möbius transformations on C ,

ε = 1 to the action by simultaneous Möbius transformations on R2 .

With respect to complex transformations the cases ε = +1,−1 coincide.
Hence for a given differential equation with sl(2) symmetry one must know again
the canonical FI-form, i. e., the corresponding ε value. For instance, in the case
y′′ = (xp − y)3 (invariance with respect to the linear action of Sl(2) on R2 )
the canonical FI-form is that with ε = 1. I. e., if the symmetries are given by
L = 〈∂1, ∂2, ∂3〉 with [∂1, ∂2] = ∂1 , [∂1, ∂3] = ∂2 , [∂2, ∂3] = ∂3 , then there are
first integrals u, v satisfying

∂′1(u) = 1, ∂′1(v) = 0,
∂′2(u) = u, ∂′2(v) = v,

∂′3(u) = u2+v2

2
, ∂′3(v) = uv,

D(u) = 0, D(v) = 0.

Concrete generators in the case of linear action of Sl(2) are

∂1 =
−y√

2
∂x, ∂2 =

x

2
∂x −

y

2
∂y, ∂3 =

x√
2
∂y.

With these generators, an elimination procedure analogous to that in the previous
example leads us via computer algebra to the following general solution (u , v
can now be regarded as constants):
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2x2y2v3 − x4y2v2 − y2v4 + 2x3y3uv2 − x2y4u2v2 + 2xyuv2 − 2x3yuv− x2y4v4 +
x2y2u2v − y2u2v2 − 2x2v2 + x4v + v3 = 0.

Analogously, for every second order ordinary differential equation with 2
or 3 known symmetries, there is a procedure which is based on the canonical FI-
Form of its Lie algebra and which reduces the differential equation to quadratures
or to a system of algebraic equations.

Invariants

The problem of obtaining the information about the canonical FI-form
can be solved by computing special cases corresponding to the various canonical
forms and by subsequently using differential invariants as labels.

A differential invariant (with respect to point transformations) for a
differential equation y(n) = F (x, y, y′, . . . , y(n−1)) is a function Ω depending
on the arguments of F (regarded as independent variables) and on the partial
derivatives of F (as dependent variables), which is invariant under the action
of point transformations (absolute invariants) or which is multiplied by a factor
being a certain function (relative invariants). The order of Ω is the order of the
highest derivative of F occuring in Ω.

Examples for second order equations y′′ = F (x, y, p), (p = y′) are the
following relative invariants I1 , I2 [3]:

I1 = Fpppp,

I2 = D2(Fpp)− 4D(Fpy)− FpD(Fpp) + 4FpFpy − 3FyFpp + 6Fyy.

Here D denotes again the operator ∂x + p∂y + F∂p .

We will illustrate the use of such invariants by the following

Proposition. Let y′′ = F (x, y, p) be a differential equation with sl(2)-sym-
metry. Then the canonical FI-form is given by ε = 1 iff I2 = 0 , and by ε = 0
iff I2 6= 0 .

Remark. For the other cases of second order equations with symmetries there
is only one canical FI-form for every type of isomorphy.

There are old ideas of Lie’s [6] to compute such invariants directly by
big systems of first order linear partial differential equations. The author has
followed this path and proved with the help of computer algebra the following
result.

Proposition. For the general second order equation y′′ = F (x, y, p) the func-
tions AI1 , AI2 below are absolute invariants with respect to point transforma-
tions. There are no nontrivial absolute invariants of order less than six.

AI1 = I−11
1 I2(6Fp5

2 − 5I1Fp6)4,

AI2 =
(6Fp5

2 − 5I1Fp6)2

(25I2
1Fp7 + 84Fp5

3 − 105Fp5Fp6)
.

(Here Fp5 means Fppppp and so on).
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